JPH0463033B2 - - Google Patents

Info

Publication number
JPH0463033B2
JPH0463033B2 JP63042941A JP4294188A JPH0463033B2 JP H0463033 B2 JPH0463033 B2 JP H0463033B2 JP 63042941 A JP63042941 A JP 63042941A JP 4294188 A JP4294188 A JP 4294188A JP H0463033 B2 JPH0463033 B2 JP H0463033B2
Authority
JP
Japan
Prior art keywords
lightweight
magnesia
less
aggregate
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63042941A
Other languages
Japanese (ja)
Other versions
JPH01215767A (en
Inventor
Akihiko Kusano
Shinichi Fukunaga
Shiro Sukenari
Akira Kojima
Kotaro Kuroda
Kazutoshi Iwashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63042941A priority Critical patent/JPH01215767A/en
Publication of JPH01215767A publication Critical patent/JPH01215767A/en
Publication of JPH0463033B2 publication Critical patent/JPH0463033B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、連続鋳造甚タンデむツシナにおける
内匵り母材のコヌテむング材に関する。 〔埓来の技術〕 連続鋳造甚タンデむツシナの内匵り母材衚面に
は、耐スラグ䟵食性の改善による母材の寿呜延
長、地金取りの容易化、クリヌンスチヌル化等の
ために、也匏吹付け工法、湿匏吹付け工法、コテ
塗り工法等による、塩基性質耐火材のコヌテむン
グが斜されおいる。 近幎、補鋌プロセスにおける連続鋳造比率の増
加、鋌の品質向䞊、タンデむツシナ内匵り材の寿
呜延長等の芁求たすたす激しくなり、それに察応
しおのコヌテむング材ず母材ずの焌付軜枛、母材
に察する熱負荷軜枛を狙぀お、断熱化、軜量化が
進められおいる。 軜量断熱コヌテむング材は埓来の高嵩比重コヌ
テむング材に比范し䜎熱䌝導率であり、この断熱
果により、母材の寿呜延長、地金取りの容易化に
よる解䜓性向䞊等の効果が埗られ、それず同時
に、軜量化による䜿甚量䜎枛が可胜ずなり、タン
デむツシナの党䜓コストの削枛にも効果を䞊げる
こずができる。 埓来、このコヌテむング材の軜量化のために䞻
に以䞋の察策が採られおいる。その぀は、耐火
物に発泡剀を䜵甚しお氎ずの混緎䞭にマトリツク
スに泡を生成させ、これによ぀お料料の嵩比重を
䞋げる方法であ぀お、䞻にコテ塗り斜工甚及び湿
匏吹付け甚材料ずしお甚いられおいる。他の぀
は有機あるいは無機繊維を䜵甚し、マトリツクス
の繊維の分散により䜎嵩比重化を図るもので、䞻
に也匏の吹付け工法甚材料ずしお甚いられる。 しかし、埓来の軜量化の察策は、いずれもコヌ
テむング材マトリツクスに空〓を生成させお、材
料党䜓の嵩比重を䞋げる方法であり、マトリツク
スの組織劣化、匷床䞍足、耐食性䜎䞋等の問題を
生じ、軜量化には限界がある。 このため、発泡系においおは敎泡剀等による泡
の埮现化、繊維系では短繊維の䜿甚等による改善
が行われおいるが、いずれも充分な効果を芋出す
には至぀おいない。 そのため、最近、䟋えば特開昭62−252363号公
報に蚘茉されおいるように、骚材そのものを軜量
化するこずによ぀おコヌテむング材を軜量にする
詊みがある。 〔発明が解決しようずする課題〕 しかしながら、埓来の軜量骚材は、平均気孔埄
が倧きく、匷床が䜎いため、混和䞭もしくは搬送
䞭に粉状にな぀おしたうずいう問題があり、ずく
に也匏吹付け材ずしお甚いた堎合にはリバりンド
ロスが増加しおしたうずいう欠点がある。 本発明の目的は、タンデむツシナコヌテむング
材の軜量化に際しおの軜量骚材の䜿甚における䜎
匷床による粉状化による問題を解消し、軜量断熱
性に富み、スラグ・溶鋌の耐浞透性に優れ、母材
ずの焌付け反応を軜枛し埗る超軜量のコヌテむン
グ材を提䟛するこずにある。 〔課題を解決するための手段〕 本発明のコヌテむング材は、嵩比重が2.0以䞋
で平均気孔埄10Ό以䞋、焌成枩床1450℃以䞊の軜
量マグネシア骚材を䜿甚したもので、これによ぀
お埓来の断断熱軜量化の限界を越えた軜量化を達
成したものである。 〔䜜甚〕 本発明は、埓来䜿甚されおいたマグネシアクリ
ンカヌ、スピネルクリンカヌ、ドロマむカクリン
カヌ等、嵩比重2.5ないし以䞊の骚材の郚又
は党郚を嵩比重2.0以䞋の軜量マグネシア骚材に
眮換するこずにより骚材粒子で軜量断熱化を行う
こずができるため、マトリツクス緻密性を維持し
たたた軜量断熱化が可胜ずなり、埓来の軜量断熱
化コヌテむング材ず比范しお耐食性、匷床等の性
胜を向䞊せしめたものである。 たた、本発明のコヌテむング材は埓来の発泡あ
るいは繊維配合のコヌテむング材ずの混合物にす
るこずにより、これたでの限界を越えた軜量断熱
化が可胜ずなる。 配合する軜量マグネシア骚材の嵩比重は、2.0
以䞋である必芁がある。たた、それよりも倧きい
ものでは軜量化の効果が小さい。たた、コヌテむ
ング材の斜工により充分な耐スラグ、耐溶鋌浞透
性を維持するためには、平均気孔埄は10Ό以䞋で
ある必芁があり、たた、骚材が混和又は搬送䞭に
厩壊しおしたわないための匷床を持たせお䜜業性
を安定させるためには、焌成枩床は1450℃以䞊で
ある必芁がある。 焌成枩床が1450℃未満だず、第衚に瀺す劂く
匷床がないため、吹付け䜜業性が安定せず、軜量
マグネシアの限界䜿甚量が60以䞊にならない
し、斜工䜓の嵩比重も充分に䜎䞋しない。これに
察し焌成枩床を1450℃以䞊にすれば、軜量マグネ
シアを100䜿甚しおも良奜な吹付け䜜業性が埗
られ、倧幅な嵩比重䜎䞋軜量断熱化が可胜ず
なる。 たた、平均気孔埄が10Όを越えるず、第衚に
瀺す劂く軜量マグネシア100䜿甚品においお、
軜量断熱化効果が出おいるにもかかわらず、気孔
埄が倧きいためにスラグ成分、溶鋌の浞透を助長
し、結果ずしお溶損量が増倧し、溶鋌、スラグの
未浞透厚も薄く、埓来の軜量断熱タむプ繊維
系にも劣぀おしたう。これに察し、平均気孔埄
が10Ό以䞋のものは、スラグ成分、溶鋌の浞透を
抑制し、埓来の軜量断熱タむプ繊維系以䞊の
断熱効果、耐食性を発揮するこずができる。 骚材の匷床ずしおは、粒子サむズ3.0mm以䞋0.5
mm以䞊の骚材を埄50mmの円筒に充填し、圧瞮詊隓
機によ぀お100Kg/cm2の荷重をかけたずきの32メツ
シナ通過分ずしおの粉化率が50重量以䞋である
こずが奜たしい。 さらに、本発明の䞊蚘コヌテむング材は、単独
の䜿甚も可胜であるが、電融マグネシアクリンカ
ヌ、海氎マグネシアクリンカヌ、倩然マグネサむ
トの焌成クリンカヌの皮又は皮以䞊の骚材ず
の䜵甚も可胜であり、さらには、䞊蚘発泡、繊維
系の断熱軜量化ずの䜵甚も勿論可胜である。 本発明のコヌテむング材を䞊蚘骚材ず䜵甚しお
軜量化の効果を発揮させるためには、䞊蚘特性を
有する軜量マグネシダ骚材を最䜎10重量配合す
るこずが必芁である。 䞊蚘軜量マグネシダ骚材の䜿甚は、党量䞭、10
重量未満では軜量断熱の効果の点で、問題があ
り、たた配合の効果もないが、埓来の骚材のすべ
おを眮換しおも、耐スラグ浞透性、耐食性の面か
らは党く問題はない。 本発明のコヌテむング材を也匏吹付け材ずしお
䜿甚する堎合には、マグネシア骚材の粒子サむズ
は吹付け斜工時のリバりドロスを抑制する点から
粒子サむズが1.5mm以䞋である必芁がある。 本発明のコヌテむング材をコテ塗り及び湿匏吹
付け材ずしお䜿甚する堎合には、コテ塗り䜜業性
あるいは湿匏吹付時のリバりドロスの抑制の点か
ら、マグネシア骚材の粒子サむズはmm以䞋であ
るこずが必芁であり、発泡剀の䜵甚により軜量断
熱化の効果を増すこずができる。 本発明のコヌテむング材の調補に際しおは、䞊
蚘配合物に、曎にバむンダヌ、硬化剀、増粘剀、
繊維を添加、混和しお行われる。 バむンダヌずしおは、各皮燐酞゜ヌダ、燐酞カ
ルシりム、燐酞マグネシりム、燐酞カリりム、燐
酞アルミニりム等の各皮燐酞塩、珪酞゜ヌダ、珪
酞カリりム、珪酞リチりム等の各皮珪酞塩の皮
又は皮以䞊の組合せが甚いられる。 硬化剀ずしおは、氎酞化カルシりム、炭酞カル
シりム、石膏、ポルトランドセメント、アルミナ
セメント、マグネスラグ、ダむカルシりムシリケ
ヌト、各皮燐酞カルシりム等の皮又は皮以䞊
の組合せが甚いられる。 たた、本発明に甚いる繊維ずしおは、朚綿、化
繊パルプ、玙等の有機質フアむバヌ、セラミツク
フアむバヌ、ガラスフアむバヌ、石綿等の無機質
フアむバヌの皮又は皮以䞊の組合せが甚いら
れる。 ずくに、コテ塗り及び湿匏吹付けコヌテむング
材に䜿甚される増粘剀ずしおは、各皮粘土、有機
のり剀、各皮珪酞塩、りん酞塩等が䜿甚され、発
泡剀ずしおは、たずえば、リグニンスルホン酞等
が䜿甚される。 〔実斜䟋〕 実斜䟋  第衚は也匏吹付け材ずしお、第衚に瀺す粒
床調敎した軜量マグネシアず、粒床調敎し
た海氎マグネシアクリンカヌずの組合せで構成さ
れた骚材郚に、バむンダヌ硬化剀をず
し、骚材郚の䜓積換算により添加量を倉えお配合
し、さらに䜜業性に必芁最小限の、もしくは軜量
断熱化が可胜な有機繊維を混合した混和物〜
を吹付け圢成した埌、110℃ドラむダヌ内で24時
間也燥した。 このサンプルをJIS−R2205及びJIS−R2213に
より品質を枬定した。次に同様のサンプルを第
図に瀺すような高呚波誘導炉の内匵りにセツトし
た。同図においお、は吹付け材サンプル、は
スラグ、は銑鉄、はMgOスタンプ
材、はコシルを瀺す。この内匵りを有する高呚
波誘導炉にC/Sのスラグ、銑鉄Kgを1550℃
で溶解し、30分おきにスラグ300を入れ替えな
がら時間保持した埌、スラグラむン䟵食率及び
スラグ、溶鋌の浞透を芳察した。 第衚に芋られるように、本発明の䟋を瀺す
〜、〜の堎合には充分な軜量化の効果が芋
られるのに察しお、党く軜量マグネシダを配合し
ないか、あるいは軜量マグネシア骚材の配合量が
少ない埓来䟋堎合には、軜量化が充分でな
い。 繊維系軜量断熱タむプ埓来䟋は、埓来タ
むプ埓来䟋に察しお軜量断熱化によりスラ
グ、溶鋌の未浞透厚みは増加するが、匷床䜎䞋が
芋られる。これに察し、有機繊維量を䜜業性に必
芁最小限埓来タむプ同様ずし、軜量マグネシ
アを20䜿甚したタむプ実斜䟋では匷床
䜎䞋、耐溶損性の劣化もほずんどなく、軜量断熱
化効果は埓来の軜量断熱タむプず同様である。こ
れはマトリツクスの組織の緻密さを維持したたた
軜量断熱化効果が埗られるこずがわかる。たた、
同䞀の材料系で軜量マグネシアの䜿甚量を20
以䞊にすれば損倱率は若干増倧するものの、さら
に軜量断熱化効果が倧きくな぀た実斜䟋
。このずき、マグネシアの粒子サむズを
mm以䞋ずするずリバりンドロスが増加し、䜜業性
が䜎䞋した実斜䟋。軜量マグネシア
を䜿甚したタむプ比范䟋は、軜量マグ
ネシアの焌成枩床が䜎いため、、クリンカヌ自䜓
の匷床が䜎く、吹付け圢成したサンプルの嵩比重
の䜎䞋が少ないため、軜量断熱効果が小さい。た
た平均気孔埄も倧きいため、溶損率が増倧した。 軜量マグネシアは埓来技術繊維断熱ずの
䜵甚実斜䟋により、これたでの限
界を越えた軜量化が可胜ずなり、匷床、䟵食性の
䜎䞋も埓来の軜量断熱むプず同様で、実炉での䜿
甚に充分耐え埗る。これにより、倧幅な原単䜍䜎
枛効果、断熱効果が埗られた。 実斜䟋  第衚は、本発明のコヌテむング材を湿匏吹付
け材ずしたずきの実斜䟋を瀺す。 実斜䟋の堎合ず同様に、第衚に瀺す粒床調
敎された軜量マグネシアず、同じく粒床調敎さ
れた海氎マグネシアクリンカヌずの組合せで構成
された骚材に、バむンダヌ、増粘剀あるいは発泡
剀を添加し、さらに䜜業性に必芁最小限の有機繊
維を混合した混和物〜を䜜業性を埗るに必芁
な量の氎ず共に、モルタルミキヌで分間混緎
し、圧送機によりノズル先端郚たで材料を送り、
ノズル先端で゚アヌにより材料を蚭き飛ばし、所
定の金枠に吹付けお圢成した埌、110℃ドラむダ
ヌ内で24時間也燥させる。このサンプルをJIS−
R2205及びJIS−R2213により品質を枬定した。
次に同様のサンプルを第図に瀺す高呚波誘導炉
の内匵りにセツトしC/Sスラグ、銑鉄Kgを
1550℃で溶解し30分おきにスラグ300を入れ替
えながら時間保持した埌、スラグラむン䟵食率
及びスラグ、溶鋌の浞透を芳察した。 ここでも実斜䟋の也匏吹付け材の堎合ず同様
に、埓来タむプ埓来䟋ず比范しお、軜量マ
グネシアを通垞海氎マグネシアず眮換したタむ
プ実斜䟋では、匷床䜎䞋、溶損率
増倧も軜埮で、軜量断熱化効果が向䞊した。 このずき、軜量マグネシアの粒子サむズは也匏
吹付けのように1.5mm以䞋にする必芁はなく、埓
来技術発泡断熱ずの䜵甚実斜䟋に
より、これたでの限界を越えた軜量化が可胜ずな
぀た。
[Industrial Application Field] The present invention relates to a coating material for a lining base material in a tundish for continuous casting. [Prior art] Dry spraying method, A coating of basic refractory material is applied using a wet spraying method, troweling method, etc. In recent years, there has been an increasing demand for increasing the continuous casting ratio in the steelmaking process, improving the quality of steel, and extending the life of tandem lining materials. In order to reduce this, efforts are being made to improve insulation and reduce weight. Light-weight heat-insulating coating materials have lower thermal conductivity than conventional high-density coating materials, and this heat-insulating effect provides benefits such as extending the life of the base material and improving disassembly by making metal removal easier. At the same time, it is possible to reduce the amount of use due to the weight reduction, and it is also possible to reduce the overall cost of the tundish. Conventionally, the following measures have been mainly taken to reduce the weight of this coating material. One method is to use a foaming agent in combination with the refractory material to generate foam in the matrix during kneading with water, thereby lowering the bulk specific gravity of the material. Used as a material for wet spraying. The other type uses organic or inorganic fibers in combination to achieve a low bulk specific gravity by dispersing the fibers in the matrix, and is mainly used as a material for dry spraying methods. However, conventional weight reduction measures all involve creating voids in the coating material matrix to lower the bulk specific gravity of the entire material, which causes problems such as structural deterioration of the matrix, lack of strength, and reduced corrosion resistance. There are limits to weight reduction. For this reason, improvements have been made in foaming systems by making the foam finer using foam stabilizers and the like, and in fiber systems by using short fibers, but neither of these efforts has led to a sufficient effect. Therefore, recently, there have been attempts to reduce the weight of the coating material by reducing the weight of the aggregate itself, as described in, for example, Japanese Unexamined Patent Publication No. 62-252363. [Problem to be solved by the invention] However, conventional lightweight aggregates have a large average pore diameter and low strength, so there is a problem that they turn into powder during mixing or transportation. When used as a material, there is a drawback that rebound loss increases. The purpose of the present invention is to solve the problem of pulverization due to low strength when using lightweight aggregate when reducing the weight of tundish coating materials, and to provide lightweight aggregates with excellent heat insulation properties and excellent penetration resistance from slag and molten steel. The object of the present invention is to provide an ultra-lightweight coating material that can reduce the baking reaction with the base material. [Means for Solving the Problems] The coating material of the present invention uses lightweight magnesia aggregate with a bulk specific gravity of 2.0 or less, an average pore diameter of 10 Ό or less, and a firing temperature of 1450°C or more. This has achieved weight reduction that exceeds the limits of insulation insulation weight reduction. [Function] The present invention replaces part or all of conventionally used aggregates with a bulk specific gravity of 2.5 to 3 or more, such as magnesia clinker, spinel clinker, and dromica clinker, with a lightweight magnesia aggregate with a bulk specific gravity of 2.0 or less. As a result, lightweight insulation can be achieved using aggregate particles, making it possible to achieve lightweight insulation while maintaining matrix density, improving performance such as corrosion resistance and strength compared to conventional lightweight insulation coating materials. It is something that Furthermore, by mixing the coating material of the present invention with conventional foamed or fiber-containing coating materials, it becomes possible to achieve lightweight insulation that exceeds the previous limits. The bulk specific gravity of the lightweight magnesia aggregate to be blended is 2.0.
Must be below. Moreover, if the size is larger than that, the effect of weight reduction will be small. In addition, in order to maintain sufficient slag resistance and molten steel penetration resistance by applying the coating material, the average pore diameter must be 10ÎŒ or less, and the aggregate must not collapse during mixing or transportation. In order to provide sufficient strength and stabilize workability, the firing temperature must be 1450°C or higher. If the firing temperature is lower than 1450℃, as shown in Table 1, there will be no strength, so the spraying workability will not be stable, the limit usage amount of lightweight magnesia will not exceed 60%, and the bulk specific gravity of the construction object will be insufficient. does not decrease. On the other hand, if the firing temperature is set to 1450°C or higher, good spray workability can be obtained even if 100% lightweight magnesia is used, and bulk specific gravity can be significantly reduced (lightweight insulation). In addition, when the average pore diameter exceeds 10ÎŒ, as shown in Table 2, in products made of 100% lightweight magnesia,
Despite the effect of lightweight insulation, the large pore size facilitates the penetration of slag components and molten steel, resulting in an increase in the amount of erosion loss, and the thickness of molten steel and slag that has not penetrated is thin. It is also inferior to lightweight insulation types (fiber-based). On the other hand, those with an average pore diameter of 10Ό or less can suppress the penetration of slag components and molten steel, and can exhibit better insulation effects and corrosion resistance than conventional lightweight insulation types (fiber-based). The strength of the aggregate is 0.5 with a particle size of 3.0 mm or less.
When a cylinder with a diameter of 50 mm is filled with aggregate of 50 mm or more in size and a load of 100 kg/cm 2 is applied using a compression tester, it is preferable that the pulverization rate is 50% by weight or less as the amount passing through 32 meshes. . Further, the above-mentioned coating material of the present invention can be used alone, but it can also be used in combination with one or more types of aggregates such as fused magnesia clinker, seawater magnesia clinker, and calcined natural magnesite clinker. Of course, it is also possible to use the above-mentioned foaming and fiber-based insulation and weight reduction. In order to achieve the weight reduction effect by using the coating material of the present invention in combination with the above-mentioned aggregate, it is necessary to mix at least 10% by weight of the lightweight magnesia aggregate having the above-mentioned characteristics. The use of the above-mentioned lightweight magnesia aggregate is 10 out of the total amount.
If it is less than % by weight, there is a problem in terms of the effect of lightweight insulation, and there is no effect of the blend, but even if all of the conventional aggregate is replaced, there is no problem in terms of slag penetration resistance and corrosion resistance. . When the coating material of the present invention is used as a dry spraying material, the particle size of the magnesia aggregate needs to be 1.5 mm or less in order to suppress ribald loss during spraying construction. When using the coating material of the present invention as a troweling or wet spraying material, the particle size of the magnesia aggregate must be 5 mm or less in terms of workability of troweling or suppression of ribaud loss during wet spraying. Therefore, the effect of lightweight insulation can be increased by using a foaming agent in combination. When preparing the coating material of the present invention, a binder, a curing agent, a thickener,
This is done by adding and mixing fibers. As the binder, one type or a combination of two or more of various phosphates such as various sodium phosphates, calcium phosphates, magnesium phosphates, potassium phosphates, and aluminum phosphates, and various silicates such as sodium silicate, potassium silicate, and lithium silicate are used. . As the hardening agent, one or a combination of two or more of calcium hydroxide, calcium carbonate, gypsum, Portland cement, alumina cement, magnes lag, dicalcium silicate, various calcium phosphates, etc. is used. Further, as the fibers used in the present invention, one type or a combination of two or more types of organic fibers such as cotton, synthetic fiber pulp, and paper, and inorganic fibers such as ceramic fibers, glass fibers, and asbestos are used. In particular, as thickeners used in troweling and wet spray coating materials, various clays, organic glues, various silicates, phosphates, etc. are used, and as blowing agents, for example, lignin sulfonic acid, etc. is used. [Example] Example 1 Table 4 shows that, as a dry spraying material, the aggregate part was composed of a combination of lightweight magnesia A and B shown in Table 3 with particle size adjustment and seawater magnesia clinker with particle size adjustment. Binder:Curing agent is 2:1, the amount added is changed depending on the volume of the aggregate part, and the minimum amount of organic fiber necessary for workability or lightweight insulation is mixed. M
After spraying, it was dried in a dryer at 110°C for 24 hours. The quality of this sample was measured according to JIS-R2205 and JIS-R2213. Next, add a similar sample to the first
It was set on the lining of a high frequency induction furnace as shown in the figure. In the figure, 1 is a sprayed material sample, 2 is a C/S=1 slag, 3 is pig iron, 4 is MgO stamp material, and 5 is Kosil. Slag with C/S=1 and 7kg of pig iron are heated to 155℃ in a high frequency induction furnace with this lining.
After holding for 3 hours while replacing 300 g of slag every 30 minutes, the slag line erosion rate and penetration of slag and molten steel were observed. As seen in Table 4, D
In the case of ~H and K~M, a sufficient weight reduction effect can be seen, whereas in the case where no lightweight magnesia is mixed at all or the amount of lightweight magnesia aggregate is small (conventional example C) , weight reduction is not sufficient. In the fiber-based lightweight insulation type (Conventional Example B), compared to the conventional type (Conventional Example A), the unpermeated thickness of slag and molten steel increases due to the lightweight insulation, but a decrease in strength is observed. On the other hand, the type (Example D) that uses the minimum amount of organic fiber necessary for workability (same as the conventional type) and uses 20% lightweight magnesia A has almost no decrease in strength or deterioration in erosion resistance, and is lightweight and insulating. The effect is the same as that of the conventional lightweight insulation type. This shows that a lightweight insulation effect can be obtained while maintaining the density of the matrix structure. Also,
20% less lightweight magnesia A in the same material system
Although the loss rate increased slightly by using the above, the effect of lightweight insulation was further increased (Example E,
F). At this time, the particle size of magnesia A is set to 2
When the thickness was less than mm, rebound loss increased and workability decreased (Examples G and H). Lightweight magnesia B
In the types using (Comparative Examples I and J), since the firing temperature of lightweight magnesia is low, the strength of the clinker itself is low, and the bulk specific gravity of the spray-formed sample decreases little, so the lightweight insulation effect is small. Furthermore, because the average pore diameter was large, the erosion rate increased. By combining lightweight magnesia A with conventional technology (fiber insulation) (Examples K, L, M), it is possible to reduce the weight beyond the previous limits, and the decrease in strength and erodibility is also lower than that of conventional lightweight insulation types. Similarly, it can withstand use in an actual furnace. This resulted in a significant reduction in basic unit consumption and a heat insulating effect. Example 2 Table 5 shows examples in which the coating material of the present invention was used as a wet spray material. As in the case of Example 2, a binder, a thickener, or a foaming agent was added to the aggregate composed of a combination of lightweight magnesia A whose particle size was adjusted as shown in Table 3 and seawater magnesia clinker whose particle size was also adjusted. Mixtures N to T containing the minimum amount of organic fiber necessary for workability are mixed with a mortar mixer for 3 minutes using a mortar mixer with the amount of water necessary to obtain workability, and then mixed with a pressure feeder to the tip of the nozzle. send the materials,
After blowing the material away with air at the tip of the nozzle and spraying it onto the designated metal frame, it is dried in a dryer at 110℃ for 24 hours. This sample is JIS-
Quality was measured according to R2205 and JIS-R2213.
Next, a similar sample was set on the lining of the high frequency induction furnace shown in Figure 1, and C/S = 1 slag and 7 kg of pig iron were added.
After melting at 1550°C and holding for 3 hours while replacing 300 g of slag every 30 minutes, the slag line erosion rate and penetration of slag and molten steel were observed. Here, as in the case of the dry sprayed material of Example 1, compared to the conventional type (Conventional Example N), the types (Examples O, P, Q) in which lightweight magnesia A was replaced with normal seawater magnesia, There was only a slight decrease in strength and an increase in the rate of erosion, and the lightweight insulation effect was improved. At this time, the particle size of lightweight magnesia does not need to be 1.5 mm or less unlike dry spraying, and by combining it with conventional technology (foam insulation) (Examples S and T), it is possible to achieve lightweight magnesia that exceeds the previous limit. It became possible to

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 に統䞀
[Table] Unified to

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の軜量断熱質タンデむツシナコヌテむン
グ材は、以䞋のような効果を奏するこずができ
る。 ã‚€ 埓来のものず比范しお溶鋌の耐浞透性に優
れ、耐溶損性を向䞊させ、もしくは埓来技術ず
の䜵甚により断熱効果が向䞊し、原単䜍䜎枛の
効果も倧きく、か぀母材に察する焌き付きを軜
枛し、母材寿呜延長に寄䞎する効果も極めお倧
きい。 ロ 埓来䜿甚されおいたマグネシアクリンカヌ、
スピネルクリンカヌ、ドロマむトクリンカヌ
等、嵩比重2.5ないし以䞊の骚材の郚又は
党郚を嵩比重2.0以䞋の軜量マグネシア骚材に
眮換するこずにより骚材粒子で軜量断熱化を行
うこずができる。 ハ マグネシアの緻密性を維持したたた軜量断熱
化が可胜ずなり、埓来タむプの軜量断熱化コヌ
テむングず比范しお、耐食性、匷床等の性胜が
向䞊する。 ニ 埓来の発泡、繊維系の軜量断熱化ず䜵甚する
こずにより、これたでの限界を越えた軜量断熱
化が可胜ずなる。
The lightweight heat-insulating tundish coating material of the present invention can have the following effects. B. Compared to conventional products, it has excellent penetration resistance of molten steel, improves corrosion resistance, or when used in combination with conventional technology, improves the heat insulation effect, has a large effect in reducing the basic unit, and reduces seizure to the base metal. The effect of reducing the amount of heat and contributing to extending the life of the base material is also extremely large. (b) Magnesia clinker, which was previously used,
By replacing part or all of an aggregate with a bulk specific gravity of 2.5 to 3 or more, such as spinel clinker or dolomite clinker, with a lightweight magnesia aggregate with a bulk specific gravity of 2.0 or less, lightweight heat insulation can be achieved using aggregate particles. It is possible to make lightweight insulation while maintaining the density of magnesia, improving performance such as corrosion resistance and strength compared to conventional lightweight insulation coatings. (d) By using it in conjunction with conventional foam and fiber-based lightweight insulation, it becomes possible to achieve lightweight insulation that exceeds previous limits.

【図面の簡単な説明】[Brief explanation of drawings]

第図はスラグ䟵食及びスラグ・溶鋌の浞透性
の評䟡詊隓に甚いた高呚波誘導炉の内匵りセツト
断面抂略図を瀺す。
FIG. 1 shows a schematic cross-sectional view of a lining set of a high-frequency induction furnace used for evaluation tests of slag erosion and slag/molten steel permeability.

Claims (1)

【特蚱請求の範囲】  嵩比重が2.0以䞋、平均気孔埄10Ό以䞋、焌成
枩床1450℃以䞊の軜量マグネシア骚材からなる軜
量断熱質タンデむツシナコヌテむング材。  嵩比重が2.0以䞋、平均気孔埄10Ό以䞋、焌成
枩床1450℃以䞊の軜量マグネシア骚材10重量以
䞊を、電融マグネシアクリンカヌ、海氎マグネシ
アクリンカヌ、倩然マグネサむトの焌成クリンカ
ヌの皮又は皮以䞊の骚材90重量以䞋ず混合
しおなる軜量断熱質タンデむツシナコヌテむング
材。  軜量マグネシア骚材の粒子サむズが1.5mm以
䞋であるこずを特城ずし、也匏吹付け工法で斜工
する特蚱請求の範囲第項又は第項蚘茉の軜量
断熱量タンデむツシナコヌテむング材。  軜量マグネシア骚材の粒子サむズがmm以䞋
で、発泡剀を䜵甚するこずを特城ずし、コテ塗り
及び湿匏吹付け工法で斜工する特蚱請求の範囲第
項又は第項蚘茉の軜量断熱質タンデむツシナ
コヌテむング材。
[Claims] 1. A lightweight heat-insulating tandice coating material made of lightweight magnesia aggregate with a bulk specific gravity of 2.0 or less, an average pore diameter of 10 Ό or less, and a firing temperature of 1450°C or higher. 2 At least 10% by weight of lightweight magnesia aggregate with a bulk specific gravity of 2.0 or less, an average pore diameter of 10Ό or less, and a firing temperature of 1450°C or more, one or two types of fused magnesia clinker, seawater magnesia clinker, and natural magnesite fired clinker. A lightweight heat-insulating tandice coating material made by mixing up to 90% by weight of the above aggregates. 3. The lightweight thermal insulation tandice coating material according to claim 1 or 2, characterized in that the particle size of the lightweight magnesia aggregate is 1.5 mm or less, and is constructed by a dry spraying method. 4. A lightweight heat insulating tan according to claim 1 or 2, characterized in that the particle size of the lightweight magnesia aggregate is 5 mm or less, a foaming agent is used in combination, and is constructed by troweling and wet spraying methods. Dateshi coating material.
JP63042941A 1988-02-24 1988-02-24 Lightweight tundish coating material Granted JPH01215767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042941A JPH01215767A (en) 1988-02-24 1988-02-24 Lightweight tundish coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042941A JPH01215767A (en) 1988-02-24 1988-02-24 Lightweight tundish coating material

Publications (2)

Publication Number Publication Date
JPH01215767A JPH01215767A (en) 1989-08-29
JPH0463033B2 true JPH0463033B2 (en) 1992-10-08

Family

ID=12650038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042941A Granted JPH01215767A (en) 1988-02-24 1988-02-24 Lightweight tundish coating material

Country Status (1)

Country Link
JP (1) JPH01215767A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387686B (en) * 2021-07-01 2022-12-20 䞊海利尔耐火材料有限公叞 Carbon-free dry material for continuous casting tundish

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238959A (en) * 1987-03-27 1988-10-05 Harima Ceramic Co Ltd Coating material for tundish
JPS63299852A (en) * 1987-05-29 1988-12-07 Kawasaki Refract Co Ltd Coating material for metallurgical molten metal vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238959A (en) * 1987-03-27 1988-10-05 Harima Ceramic Co Ltd Coating material for tundish
JPS63299852A (en) * 1987-05-29 1988-12-07 Kawasaki Refract Co Ltd Coating material for metallurgical molten metal vessel

Also Published As

Publication number Publication date
JPH01215767A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
US4751204A (en) Two-part gunning refractory composition
CN107032810B (en) Gunning mix with excellent bonding performance for sintering large flue and preparation method
CN103664204B (en) Silicon carbide resistive connection skin fire-proof spray coating
CN110256090A (en) A kind of tundish permanent layer lightweight insulated pouring material
CN102285813B (en) Zirconium-corundum-mullite structure and thermal insulation integrated composite brick and preparation method thereof
CN101857451A (en) Heat-insulating integrated composite brick with alkaline structure and preparation method thereof
CN108610063A (en) High-performance mullite thermal insulation fire-resistant pouring material
CN109879661B (en) Tundish coating material and preparation method thereof
CN104788115A (en) Fireproof spraying coating for steel ladle working lining and preparation method of fireproof spraying coating
CN106830958B (en) Low-aluminum low-heat-conduction alkali-resistant castable
CN108033795A (en) High alumina castable for fish torpedo ladle permanent layer
CN115321956B (en) High-temperature liquid phase toughened magnesia carbon brick and preparation method thereof
US5602063A (en) Lightweight sprayable tundish lining composition
CN106699205B (en) Sol-combined blast furnace lining wet-process spray coating and preparation method thereof
CN111995411A (en) High-aluminum silicon carbide refractory brick and preparation process thereof
JPS6221754B2 (en)
USRE35210E (en) Sprayable insulating liner compositions for metal vessels
CN102285810B (en) Forsterite structure and thermal insulation integrated composite brick and preparation method thereof
JPH042543B2 (en)
JPH0463033B2 (en)
US6054186A (en) Low cement refractory castable system for wet process pumping/spraying
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
JP2000203951A (en) Light weight heat-insulating castable composition
CN102285811A (en) Corundum-spinel structure and thermal insulation integrated composite brick and preparation method thereof
CN110642610A (en) Refractory brick for steel receiving opening of tundish and preparation method thereof