JPH0462717B2 - - Google Patents

Info

Publication number
JPH0462717B2
JPH0462717B2 JP62062709A JP6270987A JPH0462717B2 JP H0462717 B2 JPH0462717 B2 JP H0462717B2 JP 62062709 A JP62062709 A JP 62062709A JP 6270987 A JP6270987 A JP 6270987A JP H0462717 B2 JPH0462717 B2 JP H0462717B2
Authority
JP
Japan
Prior art keywords
microorganisms
adsorption
potential
ceramics
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62062709A
Other languages
Japanese (ja)
Other versions
JPS63230088A (en
Inventor
Takeshi Kobayashi
Takeshi Majima
Mitsuo Kawase
Yasu Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6270987A priority Critical patent/JPS63230088A/en
Publication of JPS63230088A publication Critical patent/JPS63230088A/en
Publication of JPH0462717B2 publication Critical patent/JPH0462717B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は酵母、菌体等の微生物固定化用担体、
特にセラミツクスよりなる担体に関する。 (従来の技術) 近年、固定化酵素は糖類、アミノ酸などの生産
用触媒、分析用触媒等として実用化され、その開
発・利用は急速に進展しつつある。また一方、微
生物が生産する酵素を純粋に単離・精製して固定
するための煩雑な手間を省くため、酵素産生菌な
どの微生物自体を担体に固定して利用する微生物
固定化技術の研究が進められ、例えば特開昭54−
11288号、同59−39290号、同59−198976号、同60
−160885号各広報には、微生物菌体をアニオン交
換繊維、ポリアミン化合物、アセタール化ポリビ
ニルアルコール繊維、アルギン酸金属塩ゲル体な
どに固定することが提案され、その他にもポリア
クリルアミド、寒天、κ−カラギナン、などの有
機質高分子担体を用いた包括法による菌体固定は
公知であり、あるものは既に実用化されている。
しかしながらこのような有機質担体は機械的刺戟
で破壊し易く、また酸素や基質との接触効率が小
さいという欠点がある。 かかる有機質担体に比してガラス、セラミツク
スなどの無機質担体は、寸法安定性が大きいこ
と、劣化または死滅した微生物を燃焼除去して再
使用し得ること、または細菌および溶液のPH変化
や化学的侵食に対して抵抗性を有することなどの
長所の故に、その研究並びに利用がにわかに活発
化しつつある。ところが無機質担体に対する微生
物の固定は物理的吸着によるため、酸素との接触
効率は良好であり、調製容易にして安価である反
面、微生物と担体との結合力が比較的小さく、微
生物が流亡し易いという重大な欠点がある。 (発明が解決しようとする問題点) 本発明は、上述の問題点を解消すべく無機質担
体であるセラミツクスに対する酵素産生微生物の
物理的吸着挙動について研究を重ねた結果、担体
および微生物の界面動電位が両者の親和性に密接
に関連することを知見し、本発明に到達したもの
である。 本発明の目的は、高い触媒効率を長期間に亘つ
て維持し得る微生物固定化セラミツクスを提供す
るにある。 本発明の他の目的は、微生物固定化用としての
セラミツクス担体の適用種類範囲を拡大するとと
もに、微生物の適用種類の範囲をも拡げんとする
にある。 (問題点を解決するための手段) 上述の目的を達成するための本発明微生物固定
化用担体は、オルガノシランによる化学修飾を施
して界面動電位を改変したセラミツクスよりなる
ことを特徴とするものである。上記の改変とは界
面動電位の荷電符号を正負逆転せしめた場合と、
同一符号内で増加せしめた場合の両者を包含す
る。 本発明微生物固定化用担体の好適な態様におい
ては、オルガノシランがオルガノシリルアミンで
あり、セラミツクス表面にシランを介してアミン
が付加されてなる。また別の好適な態様は、オル
ガノシランがオルガノシリルカルボン酸であり、
セラミツクス表面にシランを介してカルボキシル
基が付加されてなるものである。 さらに、改変された界面動電位の絶対値は好ま
しくは少なくとも40mV、さらに好ましくは少な
くとも50mV、最も好ましくは少なくとも100m
V、特に少なくとも140mVである。 本発明に適用するセラミツクスは、珪酸塩、金
属酸化物およびこれらの混合物、さらに炭素、ほ
う素、珪素などの炭化物、セレン化物などを含む
ことができ、例えば、シリカ;カオリナイト、葉
ろう石、シリマナイト、ムライトなどの珪酸アル
ミナ;長石、雲母、モンモリロナイト、リウサイ
トなどのアルカリ珪素アルミナ;コージエライ
ト、ステアタイト、タルク、フオルステライトな
どの珪酸マグネシウム;スピネル構造のアルミン
酸マグネシウム;コランダム、サフアイア、ボー
キサイト、ギブサイトなどのアルミナ;その他ア
パタイト、チタン白、磁器、煉瓦などを包含し、
就中、コージエライト、ムライト、アルミナおよ
びジルコニアは好適である。これらは粉末、細粒
状として、あるいはそれらの焼結体、多孔質体と
して、例えばハニカムなどの貫通型マルチセル構
造の成形体として用いられる。 本発明においては、先ず上記セラミツクスの表
面にオルガノシランによる化学修飾を施してセラ
ミツクスの界面動電位を改変する。 ここに界面動電位とは、ζ−ポテンシヤルとも
いわれ、電解質溶液中のコロイド粒子の溶液に対
する電位差であり、本発明では、対象セラミツク
スを微粉砕して得られる微粒子または微生物につ
いて後述の方法により測定した値とする。 かかる界面動電位は電解質の種類、濃度および
PHによつて異なり、またセラミツクスにあつては
例えば第1表に示すごとく、酸化ジルコニウムお
よびアルミナのように正電荷のものもあるが、石
英を始めコージエライト、ムライトなどその他多
くのものが負荷電である。 一方有用微生物も電荷の正負や量は一定してお
らず、例えば第2表に示す如き同一種の酵母、サ
ツカロミセス・セレヴイジエ(Saccharomyces
Cerevisiae)のみについても亜種によつて様々な
符号と値とを示すことが実測の結果認められた。
(Industrial Application Field) The present invention provides a carrier for immobilizing microorganisms such as yeast and bacterial cells,
In particular, it relates to a carrier made of ceramics. (Prior Art) In recent years, immobilized enzymes have been put to practical use as catalysts for production and analysis of sugars, amino acids, etc., and their development and use are rapidly progressing. On the other hand, in order to avoid the troublesome work of isolating, purifying, and immobilizing enzymes produced by microorganisms, research is being conducted on microorganism immobilization technology that uses microorganisms such as enzyme-producing bacteria by immobilizing them on carriers. For example, Japanese Patent Application Publication No. 1983-
No. 11288, No. 59-39290, No. 59-198976, No. 60
-160885 each bulletin suggests fixing microbial cells on anion exchange fibers, polyamine compounds, acetalized polyvinyl alcohol fibers, alginate metal salt gels, etc., and also proposes fixing microorganisms on anion exchange fibers, polyamine compounds, acetalized polyvinyl alcohol fibers, alginate metal salt gels, etc., and also uses polyacrylamide, agar, κ-carrageenan, etc. , etc., are known, and some methods have already been put to practical use.
However, such organic carriers have the disadvantage that they are easily destroyed by mechanical stimulation and have low contact efficiency with oxygen and substrates. Compared to such organic carriers, inorganic carriers such as glass and ceramics have greater dimensional stability, can be reused by burning off degraded or dead microorganisms, and are less susceptible to PH changes and chemical attack of bacteria and solutions. Because of its advantages, such as its resistance to However, since microorganisms are immobilized on inorganic carriers by physical adsorption, the contact efficiency with oxygen is good, and while preparation is easy and inexpensive, the binding force between microorganisms and carriers is relatively small, and microorganisms are easily washed away. There is a serious drawback. (Problems to be Solved by the Invention) In order to solve the above-mentioned problems, the present invention was developed as a result of repeated research on the physical adsorption behavior of enzyme-producing microorganisms to ceramics, which is an inorganic carrier. The present invention was achieved based on the finding that the compatibility between the two is closely related. An object of the present invention is to provide microorganism-immobilized ceramics that can maintain high catalytic efficiency over a long period of time. Another object of the present invention is to expand the range of applicable types of ceramic carriers for immobilizing microorganisms, and also to expand the range of applicable types of microorganisms. (Means for Solving the Problems) The carrier for immobilizing microorganisms of the present invention to achieve the above-mentioned object is characterized by being made of ceramics whose interfacial potential has been modified by chemical modification with organosilane. It is. The above modification is when the charge sign of the electrokinetic potential is reversed,
This includes both cases where they are increased within the same sign. In a preferred embodiment of the carrier for immobilizing microorganisms of the present invention, the organosilane is an organosilylamine, and the amine is added to the ceramic surface via the silane. In another preferred embodiment, the organosilane is an organosilycarboxylic acid,
It is made by adding carboxyl groups to the surface of ceramics via silane. Furthermore, the absolute value of the altered electrokinetic potential is preferably at least 40 mV, more preferably at least 50 mV, most preferably at least 100 mV.
V, especially at least 140 mV. Ceramics applied to the present invention can include silicates, metal oxides, and mixtures thereof, as well as carbides such as carbon, boron, and silicon, and selenides, such as silica; kaolinite, pyrophyllite, Alumina silicate such as sillimanite and mullite; Alkali silicon alumina such as feldspar, mica, montmorillonite, and liusite; Magnesium silicate such as cordierite, steatite, talc, and forsterite; Magnesium aluminate with spinel structure; corundum, saphire, bauxite, gibbsite, etc. alumina; other apatite, titanium white, porcelain, brick, etc.
Among these, cordierite, mullite, alumina and zirconia are preferred. These are used in the form of powders, fine particles, sintered bodies, porous bodies, and molded bodies having a penetrating multi-cell structure such as honeycomb. In the present invention, first, the surface of the ceramic is chemically modified with organosilane to modify the interfacial potential of the ceramic. Here, the interfacial potential is also called ζ-potential, and is the potential difference between colloidal particles in an electrolyte solution and a solution. value. This interfacial potential depends on the type, concentration and electrolyte.
The pH varies depending on the pH, and as shown in Table 1, for ceramics, some materials have a positive charge, such as zirconium oxide and alumina, but many others, such as quartz, cordierite, and mullite, have a negative charge. be. On the other hand, useful microorganisms are not constant in their charge polarity or amount; for example, the same species of yeast, Saccharomyces cerevisiae, as shown in Table 2.
As a result of actual measurements, it was found that only the subspecies (Cerevisiae) showed various signs and values depending on the subspecies.

【表】【table】

【表】【table】

〔微生物の界面動電位〕[Interfacial potential of microorganisms]

対象微生物を培養液から遠心分離して集菌す
る。菌体をHCl、KClでPH3.0、電気伝導度0.5ミ
リジーメンスとなした溶液に1.5〜3.0×106個/ml
の濃度となるように懸濁する。懸濁液をブリツグ
スセルの中に入れて通電する。顕微鏡にて微生物
粒子の電気泳動速度を測定するとともに荷電の正
負を判定する。泳動速度の測定値より次式により
−ζポテンシヤルを求める。 ζ=4πμ/D・A/i・C・u×9×1010 但し、ζ:ゼータポテンシヤル(mV) μ:液の粘性係数(ポアズ) D:液の誘電率(−) A:電位勾配に直角方向のセル断面積(cm2) i:セル中を流れる電流(mA) C:懸濁液の電気伝導度(S) u:粒子の泳動速度(cm/sec) 〔セラミツクスの界面動電位〕 対象セラミツクスを微粉砕し、上記と同じ溶液
に懸濁する。 よく撹拌し、暫時放置したものの上澄液を用
い、濃度を前記と同様の範囲になるよう調整して
同様手順で界面動電位を測定する。 また微生物として適用した酵母の吸着量の測定
は次によつた。 〔吸着量〕 波長570nmの光学濃度(OD570)が約2の酵母
懸濁液10mlに粒径1〜1.4mmに粉砕したセラミツ
クス1gを投入し、4℃の温度で2時間振盪後、
再びOD570を測定した。最初のOD570の値に対す
る減少量を吸着量とした。 実施例 1 コージエライトを粉砕し、平均粒径1〜1.4mm
となしたもの1gを還流冷却器付き300ml容フラ
スコ中にトルエン100mlおよび沸騰石とともに入
れた。これをトルエンの沸点105℃にまで加熱し
て、オルガノシラン修飾剤を10ml添加し、引続き
加熱して5時間還流した。次いでトルエンを濾別
してコージエライトをトルエンで洗浄し、さらに
アセトンで洗浄した後、風乾した。 上記オルガノシランとしてKBM903(信越化学
社製、γ−アミノプロピルトリエトキシシラン)
を用いたものおよびKBM603〔同社製、N−(β
−アミノエチル)−γ−アミノプロピルトリメト
キシシラン〕を用いたものの二通りの修飾コージ
エライトを作った。 前記第2表中のサツカロミセス・セレヴイジエ
Z−73およびKSC−44をそれぞれ用い、エタノ
ール3重量%およびグルコース3重量%を含有
し、かつ塩酸でPHを3.0に調節した水溶液を分散
媒として酵母懸濁液を調整し、化学修飾したコー
ジエライトの吸着量を測定した。 比較例 1 上記実施例1で用いた平均粒径1〜1.4mmに粉
砕したコージエライトに、化学修飾を施すことな
く、実施例1と同様にして酵母吸着量を測定し
た。 上記実施例1および比較例1によりそれぞれ得
られた結果を第3表に示す。
Target microorganisms are collected by centrifugation from the culture solution. 1.5 to 3.0 x 10 cells/ml of bacterial cells in a solution made with HCl and KCl to a pH of 3.0 and an electrical conductivity of 0.5 millisiemens.
Suspend to a concentration of . Place the suspension in a Blitz cell and energize it. The electrophoretic speed of microbial particles is measured using a microscope, and the positive or negative charge is determined. The −ζ potential is determined from the measured value of the electrophoresis speed using the following formula. ζ=4πμ/D・A/i・C・u×9×10 10 However, ζ: Zeta potential (mV) μ: Viscosity coefficient of liquid (Poise) D: Dielectric constant of liquid (-) A: Potential gradient Cross-sectional area of the cell in the perpendicular direction (cm 2 ) i: Current flowing in the cell (mA) C: Electrical conductivity of the suspension (S) u: Migration speed of particles (cm/sec) [Interfacial electrokinetic potential of ceramics] The target ceramic is finely ground and suspended in the same solution as above. Using the supernatant after stirring well and allowing it to stand for a while, the concentration is adjusted to the same range as above and the interfacial potential is measured in the same manner. The adsorption amount of yeast, which was used as a microorganism, was measured as follows. [Adsorption amount] 1 g of ceramics ground to a particle size of 1 to 1.4 mm was added to 10 ml of a yeast suspension with an optical density (OD 570 ) of approximately 2 at a wavelength of 570 nm, and after shaking at a temperature of 4°C for 2 hours,
OD 570 was measured again. The amount of decrease from the initial OD 570 value was defined as the amount of adsorption. Example 1 Cordierite was crushed to give an average particle size of 1 to 1.4 mm.
1 g of the prepared product was placed in a 300 ml flask equipped with a reflux condenser together with 100 ml of toluene and a boiling stone. This was heated to the boiling point of toluene, 105°C, and 10 ml of organosilane modifier was added thereto, followed by heating and refluxing for 5 hours. Next, the toluene was filtered off, and the cordierite was washed with toluene, further washed with acetone, and then air-dried. KBM903 (manufactured by Shin-Etsu Chemical Co., Ltd., γ-aminopropyltriethoxysilane) as the above organosilane
and KBM603 [manufactured by the same company, N-(β
-aminoethyl)-γ-aminopropyltrimethoxysilane] Two types of modified cordierite were prepared. Yeast suspension was carried out using Satucharomyces cerevisiae Z-73 and KSC-44 in Table 2 above, using an aqueous solution containing 3% by weight of ethanol and 3% by weight of glucose and whose pH was adjusted to 3.0 with hydrochloric acid as a dispersion medium. The liquid was prepared and the amount of chemically modified cordierite adsorbed was measured. Comparative Example 1 The amount of yeast adsorption was measured in the same manner as in Example 1, without chemically modifying the cordierite used in Example 1, which was ground to an average particle size of 1 to 1.4 mm. The results obtained in Example 1 and Comparative Example 1 are shown in Table 3.

【表】 上表から明らかな通り、コージエライトの界面
動電位は化学修飾を施さないものは−32mVを示
し、サツカロミセス・セレヴイジエZ−73は界面
動電位が反対符号の+13mVであるため或る程度
の吸着量を示したがその固着強度は必ずしも大と
は言えなかつた。また同符号の界面動電位を有す
るサツカロミセス・セレヴイジエKSC−44は殆
ど吸着しないにも拘らず、化学修飾を施した本発
明品にあつては、コージエライトの界面動電位が
大きく正符号側に改変されていたため、大きい吸
着量を示した。また、コージエライトの界面動電
位が+113mVのものに比して+140mVを超えた
ものの吸着量の増大は著しく、これらの結合はま
た頗る強固であつて、酵母を担持した本発明品を
バイオリアクターに充填してグルコース溶液を流
通せしめたところ、酵母の増殖が観察されたが流
亡は殆ど認められず、長期間に亘つて良好な活性
を維持することができた。 実施例 2 前記第1表に示したアルミナをセラミツクス担
体とし、オルガノシランKBM903を修飾剤とし
て用いる他は、実施例1と同一方法でアルミナに
化学修飾を施し、表面にアミノ基を有する担体を
得た。その風乾したものに水10mlにアゼライン酸
0.4gを加えたPH5.0の溶液を添加し、更に触媒と
して1−シクロヘキシル−3−(モルホリノエチ
ル)カルボジイミドメト−p−トルエンスルホン
酸を0.1g添加して、60℃で一晩振盪した。反応
完了した溶液を濾別し、水洗したのち、乾燥し
た。 得られた担体の界面動電位を測定したところ、
正荷電から負に転換していた。またそれに対する
サツカロミセス・セレヴイジエZ−73とKSC−
44のそれぞれの吸着量を測定した。 比較例 2 上記実施例2で用いたアルミナに化学修飾を施
すことなく、実施例2と同様にして酵母吸着量を
測定した。 上記の実施例2及び比較例2の結果をまとめて
第4表に示す。
[Table] As is clear from the above table, the interfacial potential of cordierite without chemical modification is -32 mV, and the interfacial potential of Satucharomyces cerevisiae Z-73 is +13 mV with the opposite sign, so there is a certain degree of interfacial potential. Although the amount of adsorption was shown, the adhesion strength could not necessarily be said to be large. Furthermore, although Satucharomyces cerevisiae KSC-44, which has an interfacial potential of the same sign, is hardly adsorbed, in the chemically modified product of the present invention, the interfacial potential of cordierite is significantly changed to the positive sign side. Therefore, it showed a large amount of adsorption. Furthermore, compared to cordierite with an interfacial potential of +113 mV, the adsorption amount of cordierite exceeding +140 mV was significantly increased, and these bonds were also extremely strong. When a glucose solution was passed through the cell, yeast growth was observed, but almost no runoff was observed, and good activity could be maintained for a long period of time. Example 2 Alumina was chemically modified in the same manner as in Example 1, except that the alumina shown in Table 1 was used as a ceramic carrier and organosilane KBM903 was used as a modifier to obtain a carrier having amino groups on the surface. Ta. Add azelaic acid to 10ml of water after air drying.
A PH5.0 solution containing 0.4 g of 1-cyclohexyl-3-(morpholinoethyl)carbodiimidemeth-p-toluenesulfonic acid was added thereto as a catalyst, and the mixture was shaken overnight at 60°C. After the reaction was completed, the solution was filtered, washed with water, and then dried. When the interfacial potential of the obtained carrier was measured,
The charge had changed from positive to negative. In addition, Satsukaromyces cerevisiae Z-73 and KSC-
The adsorption amount of each of the 44 substances was measured. Comparative Example 2 The amount of yeast adsorption was measured in the same manner as in Example 2 without chemically modifying the alumina used in Example 2 above. The results of the above Example 2 and Comparative Example 2 are summarized in Table 4.

【表】 上表から明らかな通り、アルミナの界面動電位
は元来正荷電であるため、界面動電位が同符号の
Z−73は殆ど親和性を示さず、その吸着による固
定は困難であつたが、本発明になるものは大きい
吸着力により、安定した高率の固定化を示した。
これにより担体及び微生物の組合わせ適用範囲が
著しく広がることが理解されよう。 実施例 3 上記実施例2で用いたアルミナに実施例1と同
様手順を以てKBM903で化学修飾を行つたとこ
ろ、界面動電位は+28mVのものが+142mVに
まで増大した。このものにサツカロミセス・セレ
ヴイジエKSC−44を吸着させたところ、1.98とい
う優れた吸着量を示した。 比較例 4 セラミツクスとしてムライトを用い、オルガノ
シラン修飾剤としてKBC1003(信越化学社製、ト
リメトキシビニルシラン)を用いる他は前記実施
例1と同様にして、ムライトの表面処理を行つ
た。表面処理前後のムライトに対する酵母吸着量
を実施例1と同様にして測定したところ、サツカ
ロミセス・セレヴイジエZ−73、KSC−44共に
表面処理前後において実質的に有意差が認められ
なかつた。 (発明の効果) 以上の説明及び実施例により例証されたところ
から明らかな通り、本発明になる微生物固定化用
担体は、シランを介して有機アミンまたはカルボ
キシル基が表面に強固に結合しているセラミツク
スよりなるため極めて安定な改変された界面動電
位を示し、それと組合された反対符号荷電の界面
動電位を有する微生物は従来の単なるフアンデル
ワールス吸着に比して頗る強固な吸着力を以て多
量に吸着する。その為、微生物と酸素及び基質と
の接触効率が良好であるという物理的吸着の長所
と相俟つて極めて優れた作用活性を示すととも
に、操業中の流亡が減少するから、旺盛な活性を
長期間に亘つて維持することができる。 さらに従来の物理的吸着によるセラミツクス担
体においては、或る微生物に対しては適用し得て
も別の微生物に対しては満足な吸着を示さず、ま
た微生物側を生体としてみればセラミツクスによ
つて吸着の難易に差があり、適用可能範囲にそれ
ぞれ制約があつた。本発明者によりかかる吸着機
構が解明され、それに基づいて完成された本発明
は上記の制約を解除し、セラミツクス担体の適用
範囲並びに微生物の適用範囲を随意に拡大し得た
もので、将来の微生物固定化技術の発展、工業化
における大きな寄与が期待される。
[Table] As is clear from the table above, since the interfacial potential of alumina is originally positively charged, Z-73, which has the same interfacial potential, shows almost no affinity, and it is difficult to fix it by adsorption. However, the material according to the present invention exhibited stable and high immobilization rate due to its large adsorption power.
It will be appreciated that this significantly widens the range of applications for carrier and microorganism combinations. Example 3 When the alumina used in Example 2 was chemically modified with KBM903 in the same manner as in Example 1, the interfacial potential increased from +28 mV to +142 mV. When Saccharomyces cerevisiae KSC-44 was adsorbed onto this material, it showed an excellent adsorption amount of 1.98. Comparative Example 4 Mullite was surface-treated in the same manner as in Example 1, except that mullite was used as the ceramic and KBC1003 (manufactured by Shin-Etsu Chemical Co., Ltd., trimethoxyvinylsilane) was used as the organosilane modifier. When the amount of yeast adsorbed to mullite before and after the surface treatment was measured in the same manner as in Example 1, there was virtually no significant difference observed before and after the surface treatment for both Satucharomyces cerevisiae Z-73 and KSC-44. (Effects of the Invention) As is clear from the above explanation and Examples, the microorganism immobilization carrier of the present invention has an organic amine or carboxyl group firmly bonded to the surface via silane. Since it is made of ceramics, it exhibits an extremely stable and modified interfacial potential, and in combination with this, microorganisms with an oppositely charged interfacial potential can be absorbed in large quantities with a strong adsorption force that is far superior to conventional simple van der Waals adsorption. Adsorb. Therefore, in combination with the advantage of physical adsorption, which is good contact efficiency between microorganisms and oxygen and substrates, it exhibits extremely excellent action and activity, and because it reduces runoff during operation, it maintains strong activity for a long period of time. can be maintained for a period of time. Furthermore, although conventional ceramic carriers based on physical adsorption can be applied to certain microorganisms, they do not show satisfactory adsorption to other microorganisms, and if the microorganisms are considered living organisms, ceramics There were differences in the difficulty of adsorption, and each had restrictions on the applicable range. The present inventors have elucidated this adsorption mechanism, and the present invention, which was completed based on this, has lifted the above-mentioned restrictions and has been able to arbitrarily expand the range of application of ceramic carriers and the range of application of microorganisms, and is expected to be useful for future microorganisms. It is expected to make a major contribution to the development of immobilization technology and industrialization.

Claims (1)

【特許請求の範囲】 1 オルガノシランによる化学修飾を施して界面
動電位を任意荷電符号における絶対値で少なくと
も40mVの値に改変したセラミツクスよりなるこ
とを特徴とする微生物固定化用担体。 2 前記化学修飾によりセラミツクスの界面動電
位の荷電符号を逆転せしめた特許請求の範囲第1
項記載の微生物固定化用担体。 3 前記化学修飾によりセラミツクスの界面動電
位を同一荷電符号において増加せしめた特許請求
の範囲第1項記載の微生物固定化用担体。
[Scope of Claims] 1. A carrier for immobilizing microorganisms, characterized in that it is made of ceramics which have been chemically modified with organosilane to change the electrokinetic potential to a value of at least 40 mV in absolute value in a given charge sign. 2 Claim 1, wherein the charge sign of the electrokinetic potential of the ceramics is reversed by the chemical modification.
A carrier for immobilizing microorganisms as described in . 3. The carrier for immobilizing microorganisms according to claim 1, wherein the chemical modification increases the electrokinetic potential of the ceramic at the same charge sign.
JP6270987A 1987-03-19 1987-03-19 Microorganism immobilizing carrier Granted JPS63230088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6270987A JPS63230088A (en) 1987-03-19 1987-03-19 Microorganism immobilizing carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6270987A JPS63230088A (en) 1987-03-19 1987-03-19 Microorganism immobilizing carrier

Publications (2)

Publication Number Publication Date
JPS63230088A JPS63230088A (en) 1988-09-26
JPH0462717B2 true JPH0462717B2 (en) 1992-10-07

Family

ID=13208118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6270987A Granted JPS63230088A (en) 1987-03-19 1987-03-19 Microorganism immobilizing carrier

Country Status (1)

Country Link
JP (1) JPS63230088A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852443A1 (en) 2006-05-05 2007-11-07 Leukocare AG Biocompatible three dimensional matrix for the immobilization of biological substances
EP2058335B1 (en) * 2007-11-07 2020-06-24 Leukocare Ag Biocompatible three dimensional matrix for the immobilization of biological substances

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532357A (en) * 1978-08-29 1980-03-07 Matsushita Electric Works Ltd Dimming device
JPS6163287A (en) * 1977-09-14 1986-04-01 コ−ニング グラス ワ−クス Biological group composite and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163287A (en) * 1977-09-14 1986-04-01 コ−ニング グラス ワ−クス Biological group composite and its production
JPS5532357A (en) * 1978-08-29 1980-03-07 Matsushita Electric Works Ltd Dimming device

Also Published As

Publication number Publication date
JPS63230088A (en) 1988-09-26

Similar Documents

Publication Publication Date Title
Weetall Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports
CA1331598C (en) High stability porous zirconium oxide spherules
Betancor et al. Bioinspired enzyme encapsulation for biocatalysis
Qiao et al. Synthesis and bio-adsorptive properties of large-pore periodic mesoporous organosilica rods
US3892580A (en) Method of making porous inorganic bodies
US4675113A (en) Affinity chromatography using dried calcium alginate-magnetite separation media in a magnetically stabilized fluidized bed
EP0158909A2 (en) Immobilized enzymes, processes for preparing same and use thereof
JPH06122521A (en) Method of obtaining interaction by sol-gel glass and said sol-gel glass
DE3672207D1 (en) CATALYST CARRIER WITH HIGH RESISTANCE AND WITH A LARGE SPECIFIC SURFACE AND METHOD FOR THE PRODUCTION THEREOF.
Lei et al. Enzyme specific activity in functionalized nanoporous supports
US4001085A (en) Immobilization of enzymes on an inorganic matrix
Samuneva et al. Sol–gel synthesis and structure of silica hybrid biomaterials
JPH0462717B2 (en)
WO2020159314A1 (en) Enzyme-carrier complex
JP4612789B2 (en) Environmental purification system using DNA hybrid and DNA hybrid
US7741069B2 (en) Mesoporous material having dendritic skeleton containing immobilized glucose dehydrogenase
US5167812A (en) Affinity chromatogry using dried calcium alginate-magnetite separation media in a magnetically stabilized fluidized bed
Samuneva et al. Sol–gel synthesis and structure of silica hybrid materials
JPH0716415B2 (en) Support for immobilizing biocatalyst, immobilized biocatalyst using the same, and method for producing the same
HU204084B (en) Process for producing enzymes bonded to a carrier
Messing et al. Covalent coupling of alkaline bacillus subtilis protease to controlledpore silica with a new simplified coupling technique
JPH064029B2 (en) Inorganic carrier for enzyme immobilization
CN102323317B (en) Preparation method of immobilized enzyme electrode using ZrP-CA as carrier
JPH0222121A (en) Production of spherical silica porous form
Bhandari et al. Choice of Enzyme Immobilization Matrices Used in Biosensor for Healthcare Applications