JPH046267A - Microwave plasma treating device - Google Patents

Microwave plasma treating device

Info

Publication number
JPH046267A
JPH046267A JP2107573A JP10757390A JPH046267A JP H046267 A JPH046267 A JP H046267A JP 2107573 A JP2107573 A JP 2107573A JP 10757390 A JP10757390 A JP 10757390A JP H046267 A JPH046267 A JP H046267A
Authority
JP
Japan
Prior art keywords
microwave
current
plasma processing
plasma
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2107573A
Other languages
Japanese (ja)
Other versions
JP2886941B2 (en
Inventor
Tetsunori Kaji
哲徳 加治
Masaharu Gushiken
貝志堅 正春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2107573A priority Critical patent/JP2886941B2/en
Publication of JPH046267A publication Critical patent/JPH046267A/en
Application granted granted Critical
Publication of JP2886941B2 publication Critical patent/JP2886941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stably output high reliable and high-velocity impulsive microwaves by forming the microwave generating means of the plasma treating device which generates plasma by microwaves and execute a surface treatment into a specific construction. CONSTITUTION:The microwave oscillator 1, as represented by an electromagnetic tube, etc., in the plasma treating device which generates the plasma by using the microwaves and execute the surface treatment is driven by a microwave source driving section 10 and the generated microwave electric power is inputted through a waveguide 13 then through glass 20 for vacuum sealing into a reaction chamber 14 to generate the plasma in the chamber. A sample 15 is subjected to the etching surface treatment by this plasma. The microwave generating means is constituted of the microwave generator 1, a filament circuit including a power source 4, a high-voltage constant current power source 2', and a current switching section 5 between the output thereof and a filament circuit for microwave oscillation to stably output the high-velocity impulsive microwaves.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波を用いてプラズマを発生させ、エツ
チング、デボジシ、ン1重合、酸化、焼結あるいは表面
改質などを行うプラズマ処理装置に係り、特にこれらの
各処理装置に用いるプラズマとして好適な発生手段を具
備するプラズマ処理装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to plasma processing equipment that generates plasma using microwaves and performs etching, deposition, polymerization, oxidation, sintering, surface modification, etc. In particular, the present invention relates to a plasma processing apparatus equipped with suitable plasma generating means for use in each of these processing apparatuses.

〔従来の技術〕[Conventional technology]

従来、半導体ウェハ等の被処理物をプラズマ処理する方
法として、マイクロ波により効果よ鳴プラズマを発生さ
せて行う方法が知られている。二のプラズマ処理性能を
更に向上させる方法としてマイクロ波をパルス状にして
印加する方法も、特開平1−21422号公報等におい
て述べられている。
2. Description of the Related Art Conventionally, as a method for plasma processing an object to be processed such as a semiconductor wafer, a method has been known in which a microwave is used to generate a buzzing plasma. As a method for further improving the second plasma processing performance, a method of applying microwaves in the form of pulses is also described in Japanese Patent Laid-Open No. 1-21422.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術においては、マイクロ波をパルス化する方
法においては―じられていない。
In the above-mentioned prior art, there is no difference in the method of pulsing microwaves.

マイクロ波の発生源として、磁電管(マグネトロン)が
一般に用いられている。
A magnetron is generally used as a source of microwaves.

第1図は磁電管の高圧を流(I)−高圧電圧(V)特性
を示す。マイクロ波出力電力は、高圧電流にほぼ比例し
ており、マイクロ波出力電力を、特開平1−21412
2号公報に述べられているように、ON/OFFする場
合、第1図のA点とB点間でスイッチングを行うことに
なる。この場合、磁電管には、lパルス毎にO←VHの
大きな電圧変化と、マイクロ波発振のON10 F F
を繰返すことになる。
FIG. 1 shows the high voltage flow (I)-high voltage (V) characteristics of the magnetic tube. The microwave output power is almost proportional to the high voltage current, and the microwave output power is
As stated in Publication No. 2, when turning on/off, switching is performed between points A and B in FIG. In this case, the magnetic tube has a large voltage change of O←VH for every l pulse and ON10 F F of microwave oscillation.
will be repeated.

ところで、磁電管は、発振をOFF→ONにする時に、
異常モード発振等により劣化が生じやすい性質があり、
短かい周期でON/OFFを繰返すと、磁電管の寿命が
大幅に短か(なる欠点があった0 また、1パルス毎に大きな電圧変化が生じるため、磁電
管の陽極と陰掘間に存在するフィルタ用キャパシタ(数
百ピコ・ファラツド)の光・放電[fLが大きくなり、
早い変化は困難であった。
By the way, when the magnetic tube turns the oscillation from OFF to ON,
It has a tendency to deteriorate due to abnormal mode oscillation, etc.
If ON/OFF is repeated in short cycles, the life of the magnetic tube will be significantly shortened (there was a drawback that 0) Also, since a large voltage change occurs with each pulse, there is The light/discharge of the filter capacitor (several hundred picofarads) [fL increases,
Rapid change was difficult.

第2因に従来の磁電管lの駆動電源100例を示す。フ
ィラメント電#4.電流検出器3.高圧制御電源2から
なり、電fLHk出7g3と高圧制御IE源2とにより
、高圧定電流電#2′が構成される。高圧定電流電源2
′の出力は、フィラメント回路の片側に接続されている
。高圧制御電源2の設定信号として、ON/OFFのパ
ルス繰返し信号を加えれば、パルス化マイクロ波出力を
得ることは可能であるが、前に述べたように、磁電管の
寿命が短い、早い応答が困−という欠点があった。
As the second factor, 100 examples of conventional drive power sources for magnetron tubes 1 are shown. Filament electric #4. Current detector 3. It consists of a high voltage control power source 2, and the voltage fLHk output 7g3 and the high voltage control IE source 2 constitute a high voltage constant current power source #2'. High voltage constant current power supply 2
The output of ' is connected to one side of the filament circuit. It is possible to obtain pulsed microwave output by adding an ON/OFF pulse repetition signal as a setting signal for the high voltage control power supply 2, but as mentioned earlier, the lifetime of the magnetic tube is short and the response is fast. There was a drawback that it was difficult to

本発明の目的は、高信頼性を有するパルス化マイクロ波
を発生させる二とのできるマイクロ波プラズマ処理装置
を提供する二とにある。
An object of the present invention is to provide a microwave plasma processing apparatus capable of generating highly reliable pulsed microwaves.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、パルス状のマイクロ波発生
手段と、該マイクロ波発生手段からのマイクロ波を反応
室内に導入する伝達手段と、前記反応室に連結されたガ
ス供給手段および排気手段と、前1e叉応室内に設↓す
た1INCI4台とを備え、前記反応室内にプラズマを
発生させて試料を処理するプラズマ処理装置において、
前記マイクロ波発生手段は、マイクロ波発生用のマイク
ロ波発生器。
In order to achieve the above object, a pulsed microwave generation means, a transmission means for introducing the microwave from the microwave generation means into a reaction chamber, and a gas supply means and an exhaust means connected to the reaction chamber are provided. , and four INCI units installed in the reaction chamber, and generates plasma in the reaction chamber to process a sample,
The microwave generating means is a microwave generator for generating microwaves.

マイクロ波発生器用フィラメント回路、高圧定電流回路
および前記高圧定電流回路の出力と前記マイクロ波発生
器用フィラメント回路との間に設けた電流切換部とで構
成したものである。
It is composed of a microwave generator filament circuit, a high voltage constant current circuit, and a current switching section provided between the output of the high voltage constant current circuit and the microwave generator filament circuit.

〔作  用〕[For production]

上記のように、磁電管(マイクロ波発生器)用高圧定電
流回路と、−電管フィラメント回路間に電流切換部を設
け、高レベル電位/低しベル電浣間で所定同期で変化さ
せる。それによって&f′WL管の発振は中断されるこ
となく、また、磁電管の陽極−陰極間に加わる電圧の変
化は少なくなるため、高速でかつ、高信相のパルス化マ
イクロ波出方が得られ、これを用いた高信頼で高性能の
プラズマ・プロセス処理が可能となる。
As described above, a current switching section is provided between the high voltage constant current circuit for the magnetic tube (microwave generator) and the electric tube filament circuit, and the current is changed between the high level potential and the low level potential at a predetermined synchronization. As a result, the oscillation of the &f'WL tube is not interrupted, and changes in the voltage applied between the anode and cathode of the magnetron tube are reduced, making it possible to output pulsed microwaves at high speed and with high reliability. This makes it possible to perform highly reliable and high-performance plasma processing using this technology.

すなわち、磁電管(マイクロ波発生器)に加える高圧電
流を高レベル/低レベルで変化させることにより、磁電
管の発振を中断させず、磁電管に加わる高圧電圧の変化
を少な(させ、磁電管の寿爺を大幅に長くするものであ
る。
In other words, by changing the high-voltage current applied to the magnetic tube (microwave generator) between high and low levels, the oscillation of the magnetic tube is not interrupted, and the change in the high voltage applied to the magnetic tube is minimized. This will greatly extend the longevity of the old man.

ここで、マイクロ波の高出力レベルにおける高圧電流I
H(第1図人点)に対し、マイクロ波の低出力レベルに
おける高圧電流It、(第1図C点)の比IL/IHを
l/2oo〜1/3に設定することにより、パルス性マ
イクロ波によるプロセス性能向上が失なわれることなく
、磁電管の安定な動作が得られる。IL/IHが1/2
oo 以下では磁電管の安定な動作が困難であり、IL
/IHが1/3以上ではパルス性マイクロ波によるプロ
セス性能向上が大幅に失なわれる。
Here, the high voltage current I at the high output level of the microwave
By setting the ratio IL/IH of the high voltage current It at the low output level of the microwave (point C in Figure 1) to H (point C in Figure 1), the pulse property can be improved. Stable operation of the magnetron tube can be achieved without losing the process performance improvements made by microwaves. IL/IH is 1/2
Below oo, it is difficult for the magnetic tube to operate stably, and the IL
When /IH is 1/3 or more, the improvement in process performance by pulsed microwaves is significantly lost.

また、第3図に示すように高圧定電流電源2′の出力と
磁電管のフィラメント回路間に電流切換部5を設け、電
流切換部5内には、$4図に示すよう、低レベル電流を
流す低レベル電流制御回路6と、高レベル電流を流す高
レベル電流制御回路7とを並列に設け、少なくとも高レ
ベル電流制御回路7には所定のパルス周期でON10 
F Fを行う機能を有し、高圧定電流電源2′の定電流
制御の応答時間を上記パルス周期より長(するようにし
、高レベル電流IHに対し低レベル電流ILの比IL/
IHを1/  〜1/3に設定する。
Further, as shown in Fig. 3, a current switching unit 5 is provided between the output of the high voltage constant current power supply 2' and the filament circuit of the magnetic tube. A low-level current control circuit 6 that flows a high-level current and a high-level current control circuit 7 that flows a high-level current are provided in parallel, and at least the high-level current control circuit 7 has an ON10 at a predetermined pulse period.
It has a function to perform F
Set IH to 1/3 to 1/3.

また、高レベル電流制御回路7中のON10 FFと、
磁電管の陽極電圧(V)波形、陽極電流(1)波形を第
5図に示す。
In addition, ON10 FF in the high level current control circuit 7,
FIG. 5 shows the anode voltage (V) waveform and anode current (1) waveform of the magnetic tube.

なお、磁電管に流すttiLとして二つのレベルの場合
を述べたが、三つ以上のレベルの電流を用いる場合にお
いても、最低レベル電流と最高レベル電流とが前記の高
レベル電流、低レベル電流の性質を有すれば、本発明に
含まれることはもちろんである。
Although we have described the case where there are two levels of ttiL flowing through the magnetic tube, even when using three or more levels of current, the lowest level current and highest level current are the same as the above-mentioned high level current and low level current. Of course, if it has the properties, it is included in the present invention.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第6図に示す。 An embodiment of the present invention is shown in FIG. 6 below.

磁電管1はフィラメント電j14によりフィラメント電
流を供給される。電流検出器3と高圧制御電#2とで構
成される高圧定電流電源2′の出力とフィラメント回路
間の電流切換部5を設ける。電流切換部5には、パルス
発生部8により、高レベル電流のON/OFFを行う高
レベル電流制御回路7と、低レベル電流を設定する低レ
ベル電流制御回路6.高速で電流変化を制御する電流切
換部5と比較的低速で平均電流を制御する高圧定電流電
源2′との整合をとるための高耐圧コンデンサ9゜を設
置する。高耐圧コンデンサ9は、高圧定電流電源2′中
に内蔵させることもできるが、パルス性電流を吸収する
たゆ、高レベル電流制御回路6の近傍に設置することが
望ましい。
The magnetic tube 1 is supplied with filament current by a filament electric current j14. A current switching section 5 is provided between the output of a high voltage constant current power supply 2' consisting of a current detector 3 and a high voltage control voltage #2 and the filament circuit. The current switching section 5 includes a high-level current control circuit 7 that turns on/off a high-level current by a pulse generating section 8, and a low-level current control circuit 6 that sets a low-level current. A high voltage capacitor 9° is installed to match the current switching unit 5 which controls current changes at high speed and the high voltage constant current power supply 2' which controls average current at relatively low speed. Although the high-voltage capacitor 9 can be built into the high-voltage constant-current power supply 2', it is preferably installed near the high-level current control circuit 6 because it absorbs pulsed current.

低レベル電流制御回路6.高レベル電流制御回路7.パ
ルス発生部8の実例を第7(2)に示す。低レベル電流
制御回路6は抵抗6aで構成する。高レベル電流制御回
路7は、高耐圧MOSトランジスタ7aとサージ吸収素
子7b、抵抗7Cで構成される。なお抵抗7Cは、磁電
管l自身の内部抵抗を利用して、削除することもできる
Low level current control circuit6. High level current control circuit7. An actual example of the pulse generator 8 is shown in No. 7 (2). The low level current control circuit 6 is composed of a resistor 6a. The high level current control circuit 7 is composed of a high voltage MOS transistor 7a, a surge absorbing element 7b, and a resistor 7C. Note that the resistor 7C can also be omitted by utilizing the internal resistance of the magnetic tube l itself.

パルス信号ffi 8 aからの信号をトランジスタに
より増幅後、絶縁用トランス7dの1次側に入力し、絶
縁されたパルス出力を7dの2次側より出力し、高耐圧
MO8I−ランジスタフaのゲート−ソース間に加えて
高耐圧MO8トランジスタ7aのON/OFFを行う。
The signal from the pulse signal ffi8a is amplified by a transistor, then inputted to the primary side of the isolation transformer 7d, and an insulated pulse output is output from the secondary side of the transformer 7d. In addition to the connection between the sources, the high voltage MO8 transistor 7a is turned on/off.

第7図は高耐圧MOSトランジスタ7aのOFF期間の
電流をコンデンサ7eに蓄えることにより高耐圧MOS
トランジスタ7aのゲート用回路の電源を省略している
。なお、高圧電流切換時にフィラメント間に異常な電圧
を生じさせないために、フィラメント回路間にコンデン
サUを設置している。
FIG. 7 shows a high voltage MOS transistor 7a that stores the current during the OFF period of the high voltage MOS transistor 7a in a capacitor 7e.
The power supply for the gate circuit of transistor 7a is omitted. Note that a capacitor U is installed between the filament circuits in order to prevent abnormal voltage from occurring between the filaments when switching high-voltage currents.

また、第8図に第6図中の高圧レベル電流制御回路7と
パルス発生部8の他の例を示す。発光ダイオードと、こ
の光によりMO8hラントランジスタ10FFする機能
、ならびに発光ダイオードとMOSトランジスタ間を絶
縁する機能を有する光励起MOSトランジスタ7fを用
いると、パルス源信号源8aの信号入力により、簡単な
構成でパルス発生部8と高レベル[fi制御回路7とを
構成することができる。
Further, FIG. 8 shows another example of the high voltage level current control circuit 7 and pulse generator 8 in FIG. 6. By using a light-emitting diode and a light-excited MOS transistor 7f, which has the function of activating the MO8h run transistor 10FF by this light and the function of insulating between the light-emitting diode and the MOS transistor, pulses can be generated with a simple configuration by inputting a signal from the pulse source signal source 8a. The generating section 8 and the high level [fi control circuit 7] can be configured.

動作例を以下に示す。An example of operation is shown below.

1H=l)QQaλIL =10 +aA   IL 
=IH=1/60vH=4xv、vH−VL=200V
、周波数: 2.45 GHzTR=500p8.  
TIy=100,11TR,Twの最適値は使用プロセ
ス条件により大幅に異なる。
1H=l)QQaλIL =10 +aA IL
=IH=1/60vH=4xv, vH-VL=200V
, Frequency: 2.45 GHzTR=500p8.
The optimal values of TIy=100, 11TR, and Tw vary greatly depending on the process conditions used.

番6図ないし第8図に示したマイクロ波源駆動部10を
適用するプラズマ処理装置の例を第9図および第10図
に示す。
An example of a plasma processing apparatus to which the microwave source driving section 10 shown in FIGS. 6 to 8 is applied is shown in FIGS. 9 and 10.

マイクロ波源駆動部lOにより磁電管等で代表されるマ
イクロ波[1を駆動し、発生したマイクロ波電力を導波
管Bを経由し、真空封止用ガラスXを通り、反応室14
に入力される。反株室には被処理用の試料巧が設置され
、ガス供給部用ならびに排気装置17に結合されている
。なお、プラズマの発生を低ガス圧化で効率よく行うた
めに、磁場コイル16により電子サイクロトロン共鳴1
GB)を生じさせる場合がある。また、導波管13また
は反応室14の一部でマイクロ波を共鳴させるための共
振器を構成させる場合があり、filo図で反射板ルは
その目的で設置される・ 他の実施例を第11図により説明する。第11図はプロ
セス性能の向上のため、複数個の磁電管を用いる時の図
である。複数個の磁電管1a、Lb、複数個のフィラメ
ント電源4a、4b、複数個の電流切換部5a、5bと
1個の高圧定電流電jli2’とからなる。磁電管1m
の出力は導波管13aを経由して導波管B′に入力され
る。同様に磁電管1bの出力は導波管L3bを経由して
導波管13’に入力される。
A microwave source drive unit IO drives a microwave [1 represented by a magnetron, etc., and the generated microwave power is passed through a waveguide B, through a vacuum sealing glass X, and then into a reaction chamber 14.
is input. A sample chamber for processing is installed in the anti-seed chamber, and is connected to a gas supply section and an exhaust device 17. In order to efficiently generate plasma with low gas pressure, the magnetic field coil 16 is used to generate electron cyclotron resonance 1.
GB) may occur. In addition, there are cases where a resonator for resonating microwaves is configured in a part of the waveguide 13 or the reaction chamber 14, and in the filo diagram, a reflector plate is installed for that purpose. This will be explained with reference to FIG. FIG. 11 is a diagram when a plurality of magnetic tubes are used to improve process performance. It consists of a plurality of magnetic tubes 1a, Lb, a plurality of filament power supplies 4a, 4b, a plurality of current switching parts 5a, 5b, and one high voltage constant current electric current jli2'. Magnetic tube 1m
The output is input to waveguide B' via waveguide 13a. Similarly, the output of the magnetic tube 1b is input to the waveguide 13' via the waveguide L3b.

電流切換部5aによって生じる電流パルスの位相と電流
切換部5bによって生じる電流パルスの位相を異なるよ
うにすれば、複数の磁電管に対して、1個の高圧定電流
電源で構成できる。高圧定電流電源は高価なため、個数
を少なくできることは大きな利点となる。
By making the phase of the current pulse generated by the current switching section 5a and the phase of the current pulse generated by the current switching section 5b different, a single high voltage constant current power source can be used for a plurality of magnetrons. High-voltage constant-current power supplies are expensive, so being able to reduce their number is a big advantage.

なお、これまでマイクロ波源として磁電管(マグネトロ
ン)について説明したが、他のマイクロ波源を用いた場
合について同様に適用できる。
Although a magnetron has been described as a microwave source, the present invention can be similarly applied to cases where other microwave sources are used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高信頼性を有しかつ高速のパルス性マ
イクロ波出力を得ることができるので、高信頼かつ高性
能のプラズマ処理装置を得ることができる。
According to the present invention, a highly reliable and high-speed pulsed microwave output can be obtained, so a highly reliable and high-performance plasma processing apparatus can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のマイクロ波プラズマ処理装置の磁電管
駆動部の構成図、第2図は本発明のマイクロ波プラズマ
処理装置の電流切換部の構成図、第3図は磁電管に加わ
る電圧−電流パルスのパターン図、1!4図は第1図お
よび第2図を組み合わせた本発明の一実施例を示す構成
図、第5図は第4図の詳細を示す構成図、9J6図は第
4図の高圧レベルIE流制御回路とパルス発生部との他
の実施例を示す構成図、187図ないし第9図は本発明
のマイクロ波プラズマ処理装置の構成例を示す図、91
0図は磁電管の特性を示す図、第11図は従来の磁電管
駆動部を示す構成図である。 l・・・・・・磁電管、2・・・・・・高圧制御電源、
2′・・・・・・高圧定電流電源、4・・・・・・フィ
ラメント電源、5 ・・・・・・電流切換部、6・・・
・・・低レベル電流制御回路、7・・・高レベル電流制
御回路、10・・・・・・マイクロ波源駆動部、超・・
・・・・導波管、14・・・・・・反応室、17・・・
・・・排気装置、田・・・・・−ガス供給部 代理人 弁理士  小 川 勝 男−電力。 オノ図 42 図 第 図 オ 図 第 図 オ 図 イ デ 図 /7
Fig. 1 is a block diagram of the magnetron tube driving section of the microwave plasma processing apparatus of the present invention, Fig. 2 is a block diagram of the current switching section of the microwave plasma processing apparatus of the present invention, and Fig. 3 is the voltage applied to the magnetron tube. - Current pulse pattern diagram, Figures 1 and 4 are configuration diagrams showing an embodiment of the present invention combining Figures 1 and 2, Figure 5 is a configuration diagram showing details of Figure 4, and Figures 9J6 and 9J6 are FIG. 4 is a configuration diagram showing another embodiment of the high-pressure level IE flow control circuit and the pulse generation section; FIGS. 187 to 9 are diagrams showing configuration examples of the microwave plasma processing apparatus of the present invention;
FIG. 0 is a diagram showing the characteristics of a magnetic tube, and FIG. 11 is a configuration diagram showing a conventional magnetic tube drive section. l...Magnetic tube, 2...High voltage control power supply,
2'... High voltage constant current power supply, 4... Filament power supply, 5... Current switching unit, 6...
...Low level current control circuit, 7...High level current control circuit, 10...Microwave source drive section, super...
...Waveguide, 14...Reaction chamber, 17...
...Exhaust equipment, field...-Katsuo Ogawa, Patent Attorney, Gas Supply Department Agent-Electricity. Ono diagram 42 Figure / 7

Claims (1)

【特許請求の範囲】 1、パルス状のマイクロ波発生手段と、該マイクロ波発
生手段からのマイクロ波を反応室内に■入する伝達手段
と、前記反応室に連結されたガス供給手段および排気手
段と、前記反応室内に設けた試料台とを備え、前記反応
室内にプラズマを発生させて試料を処理するプラズマ処
理装置において、前記マイクロ波発生手段は、マイクロ
波発生用のマイクロ波発生n、マイクロ波発生器用フィ
ラメント回路、高圧定電流回路および前記高圧定電流回
路の出力と前記マイクロ波発生器用フィラメント回路と
の間に設けた電流切換、とで構成したことを特徴とする
マイクロ波プラズマ処理装置。 2、特許請求の範囲1項記載のプラズマ処理装置におい
て、前配電流切換部として、最低電流を設定するための
回路と並列に、所定周期でON/OFFするパルス電流
発生回路を有するマイクロ波プラズマ処理装置。 3、特許請求の範囲第1項記載のプラズマ処理装置にお
いて、前記電流切換部により切換えられる最低電流(I
_L)と最高電流(I_H)との比(I_L/I_H)
が1/200−1/3であるマイクロ波プラズマ処理装
置。 4、特許請求の範囲第1項記載のプラズマ処理装置にお
いて、複数のマイクロ波発生器、複数のマイクロ波発生
器用フィラメント回路、複数の電流切換部および1個の
高圧定電流回路を有するマイクロ波プラズマ処理装置。 5、特許請求の範囲第1項記載のプラズマ処理装着にお
いて、前記電流切換部内に高圧コンデンサを設置したマ
イクロ波プラズマ処理装置。 6、特許請求の範囲第1項記載のプラズマ処理装置にお
いて、前記高圧定電流回路の応答時定数を、前記電流切
換部で発生する電流パルスの周期より長くしたマイクロ
波プラズマ処理装置。
[Claims] 1. A pulsed microwave generating means, a transmitting means for introducing the microwave from the microwave generating means into a reaction chamber, and a gas supply means and exhaust means connected to the reaction chamber. and a sample stage provided in the reaction chamber, and the plasma processing apparatus processes a sample by generating plasma in the reaction chamber, wherein the microwave generation means includes a microwave generator n for generating microwaves, a microwave generator n for generating microwaves, A microwave plasma processing apparatus comprising: a wave generator filament circuit; a high voltage constant current circuit; and a current switch provided between the output of the high voltage constant current circuit and the microwave generator filament circuit. 2. The plasma processing apparatus according to claim 1, wherein the microwave plasma has a pulse current generation circuit that is turned on and off at a predetermined period in parallel with a circuit for setting the minimum current as a predistribution current switching section. Processing equipment. 3. In the plasma processing apparatus according to claim 1, the lowest current (I
_L) to the maximum current (I_H) (I_L/I_H)
A microwave plasma processing apparatus in which the ratio is 1/200 to 1/3. 4. The plasma processing apparatus according to claim 1, wherein the microwave plasma has a plurality of microwave generators, a plurality of microwave generator filament circuits, a plurality of current switching sections, and one high voltage constant current circuit. Processing equipment. 5. A microwave plasma processing apparatus in which a high voltage capacitor is installed in the current switching section in the plasma processing installation according to claim 1. 6. The microwave plasma processing apparatus according to claim 1, wherein the response time constant of the high voltage constant current circuit is longer than the period of the current pulse generated by the current switching section.
JP2107573A 1990-04-25 1990-04-25 Microwave plasma processing equipment Expired - Lifetime JP2886941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107573A JP2886941B2 (en) 1990-04-25 1990-04-25 Microwave plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107573A JP2886941B2 (en) 1990-04-25 1990-04-25 Microwave plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH046267A true JPH046267A (en) 1992-01-10
JP2886941B2 JP2886941B2 (en) 1999-04-26

Family

ID=14462601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107573A Expired - Lifetime JP2886941B2 (en) 1990-04-25 1990-04-25 Microwave plasma processing equipment

Country Status (1)

Country Link
JP (1) JP2886941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057935A1 (en) * 2002-12-20 2004-07-08 Hamamatsu Foundation For Science And Technology Promotion Microwave plasma generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057935A1 (en) * 2002-12-20 2004-07-08 Hamamatsu Foundation For Science And Technology Promotion Microwave plasma generating device

Also Published As

Publication number Publication date
JP2886941B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
US5468296A (en) Apparatus for igniting low pressure inductively coupled plasma
KR100291152B1 (en) Plasma generating apparatus
US2409222A (en) Electron discharge device
US5179264A (en) Solid state microwave powered material and plasma processing systems
Price et al. Diode plasma effects on the microwave pulse length from relativistic magnetrons
US5696428A (en) Apparatus and method using optical energy for specifying and quantitatively controlling chemically-reactive components of semiconductor processing plasma etching gas
Boulos et al. Basic concepts of plasma generation
US2498719A (en) High-frequency protective circuits
JP2972227B2 (en) Plasma processing method and apparatus
JPH046267A (en) Microwave plasma treating device
Fan et al. Parameterized nanosecond pulse realization through parametrical modulation of timing sequence of switches in Marx circuit
JP3063761B2 (en) Plasma processing method and apparatus
Bokhan et al. Generation of High-Voltage Pulses with a Picosecond Front in a Cascade Kivotron Connection
US2559582A (en) Microwave generator
US4140942A (en) Radio-frequency electron accelerator
Chen et al. Operation of a long-pulse relativistic magnetron in a phase-locking system
US10812020B1 (en) Energy emitter control circuit
JPH02503970A (en) Plasma wave tube and method
Chen et al. Relativistic magnetron research
US20230187176A1 (en) Auxiliary plasma source for robust ignition and restrikes in a plasma chamber
US20220007490A1 (en) Generator for spectrometry
Gouda et al. Role of excited species in dielectric barrier discharge mechanisms observed in helium at atmospheric pressure
Vintizenko et al. Microwave radiation characteristics of relativistic magnetron with coupled cavities
Price et al. Diode plasma effects on the microwave pulse length from relativistic magnetrons
SU69373A1 (en) Electric operated valve