JPH0462469A - Analysis of hexafluoroacetone in 2, 2-bisaryl hexafluoropropane - Google Patents
Analysis of hexafluoroacetone in 2, 2-bisaryl hexafluoropropaneInfo
- Publication number
- JPH0462469A JPH0462469A JP17222990A JP17222990A JPH0462469A JP H0462469 A JPH0462469 A JP H0462469A JP 17222990 A JP17222990 A JP 17222990A JP 17222990 A JP17222990 A JP 17222990A JP H0462469 A JPH0462469 A JP H0462469A
- Authority
- JP
- Japan
- Prior art keywords
- hexafluoroacetone
- bisarylhexafluoropropane
- samples
- hfa
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VBZWSGALLODQNC-UHFFFAOYSA-N hexafluoroacetone Chemical compound FC(F)(F)C(=O)C(F)(F)F VBZWSGALLODQNC-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000004458 analytical method Methods 0.000 title abstract description 11
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical compound FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 15
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 10
- 238000003988 headspace gas chromatography Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 14
- 238000004817 gas chromatography Methods 0.000 abstract description 11
- 229910021642 ultra pure water Inorganic materials 0.000 abstract description 4
- 239000012498 ultrapure water Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- SNZAEUWCEHDROX-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-one;trihydrate Chemical compound O.O.O.FC(F)(F)C(=O)C(F)(F)F SNZAEUWCEHDROX-UHFFFAOYSA-N 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000004452 microanalysis Methods 0.000 abstract 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000011088 calibration curve Methods 0.000 description 4
- 150000007529 inorganic bases Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000012776 electronic material Substances 0.000 description 3
- 229920001973 fluoroelastomer Polymers 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- QGHDLJAZIIFENW-UHFFFAOYSA-N 4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical group C1=C(CC=C)C(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C(CC=C)=C1 QGHDLJAZIIFENW-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005264 electron capture Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000004454 trace mineral analysis Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はフルオロエラストマーの架橋剤や耐熱性に優れ
た含7ノ素ポリマーおよび電子材料、構造材料の原料等
として有用な2.2−ビスアリールヘキサフルオロプロ
パン中に含まれる不純物であるヘキサフルオロアセトン
の分析方法に関するものである。Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to a 2,2-bis-containing polymer useful as a crosslinking agent for fluoroelastomers, a hepta-containing polymer with excellent heat resistance, and a raw material for electronic materials and structural materials. The present invention relates to a method for analyzing hexafluoroacetone, which is an impurity contained in arylhexafluoropropane.
[従来の技術]
22−ビスアリールへキサフルオロプロパンの製造にお
いては原料としてヘキサフルオロアセトンを用いるもの
であり、2.2−ビスアリールヘキサフルオロプロパン
の中に未反応のヘキサフルオロアセトンが不純物として
混入する。このヘキサフルオロアセトンは、極めて毒性
の強い化合物であるため、ヘキサフルオロアセトンが2
.2−ビスアリールヘキサフルオロプロパン中に残存不
純物として微量でも存在すると、2,2−ビスアリール
ヘキサフルオロプロパンを前記のごとき分野において使
用する際、その取扱には特に注意を要する。[Prior art] In the production of 22-bisarylhexafluoropropane, hexafluoroacetone is used as a raw material, and unreacted hexafluoroacetone is mixed into the 2.2-bisarylhexafluoropropane as an impurity. . This hexafluoroacetone is an extremely toxic compound, so hexafluoroacetone is
.. If even trace amounts of residual impurities are present in 2-bisarylhexafluoropropane, special care must be taken when handling the 2,2-bisarylhexafluoropropane when it is used in the above-mentioned fields.
従来より、2,2−ビスアリールへキサフルオロプロパ
ン中のヘキサフルオロアセトンの分析は、22−ビスア
リールへキサフルオロプロパンを適当す溶媒に溶解し、
バツクドカラムを用いたダイレクトガスクロマトグラフ
ィ法を用いて分析を行なっている。Traditionally, the analysis of hexafluoroacetone in 2,2-bisarylhexafluoropropane has been carried out by dissolving 22-bisarylhexafluoropropane in a suitable solvent,
The analysis is performed using a direct gas chromatography method using a backed column.
[発明が解決しようとする問題点コ
しかし、従来の分析方法では、検出限界が1〜2りI)
Iであり、しかもカラムがすぐに劣化するため再現性が
なく、またヘキサフルオロアセトンは水和物を形成する
ため、ピークが単一にならない等の問題点があるため微
量ヘキサフルオロアセトンの分析方法としては不十分で
あった。しかも、この毒性の強いヘキサフルオロアセト
ンを実質的に含まない2.2−ビスアリールヘキサフル
オロプロパンを製造することは、例えばフルオロエラス
トマーの架橋剤として用いる際の作業環境上、取扱上極
めて強く望まれている。また電子材料として使用する場
合もヘキサフルオロアセトンによる汚染を最大限低減す
る事が性能上不可欠であり、同様に強く求められている
。[Problems to be solved by the invention However, conventional analytical methods have a detection limit of 1 to 2)
I, and there is no reproducibility because the column deteriorates quickly, and since hexafluoroacetone forms a hydrate, there are problems such as the peak not being single. It was insufficient. Moreover, it is extremely desirable to produce 2,2-bisarylhexafluoropropane that is substantially free of this highly toxic hexafluoroacetone, from the viewpoint of the working environment and handling when used, for example, as a crosslinking agent for fluoroelastomers. ing. Furthermore, when used as electronic materials, it is essential for performance to minimize contamination by hexafluoroacetone, and there is a strong demand for this as well.
本発明は、このヘキサフルオロアセトンの微量分析に関
する問題点を解決することを目的とする。The present invention aims to solve the problems related to trace analysis of hexafluoroacetone.
[問題点を解決するための具体的手段]本発明者らは、
ヘキサフルオロアセトンを含有する2、2−ビスアリー
ルヘキサフルオロプロパノの分析法について鋭意検討の
結果本発明に到達したものである。すなわち本発明は、
ヘキサフルオロアセトンを含有する2、2−ビスアリー
ルヘキサフルオロプロパンを塩基性物質と反応させ、ヘ
キサフルオロアセトンをフルオロホルムとし、ヘッドス
ペース法を用いて分析する事を特徴とする2、2〜ビス
アリールヘキサフルオロプロパン中のヘキサフルオロア
セトンの分析方法である。[Specific means for solving the problem] The present inventors
The present invention was arrived at as a result of intensive studies on the analytical method of 2,2-bisarylhexafluoropropano containing hexafluoroacetone. That is, the present invention
2,2-bisaryl characterized by reacting 2,2-bisarylhexafluoropropane containing hexafluoroacetone with a basic substance, converting hexafluoroacetone to fluoroform, and analyzing using a headspace method. This is a method for analyzing hexafluoroacetone in hexafluoropropane.
本発明においては、2.2−ビスアリールへキサフルオ
ロプロパンを溶液状態または溶融状態にすることにより
結晶構造内に取込まれているヘキサフルオロアセトンを
遊離させ、この遊離したヘキサフルオロアセトンをフル
オロホルムに変えることによりその気相をヘッドスペー
スガスクロマトグラフィー法により測定するものである
。In the present invention, the hexafluoroacetone incorporated in the crystal structure is liberated by bringing 2,2-bisarylhexafluoropropane into a solution or melt state, and the liberated hexafluoroacetone is converted into fluoroform. The gas phase is then measured by headspace gas chromatography.
本発明における2、2−ビスアリールヘキサフルオロプ
ロパンとしては、塩基性物質と容易に反応して本質的に
変化しない化合物は実質的に使用可能である。例えば2
.2−ビス(4−ヒドロキンフェニル)ヘキサフルオロ
プロパン、2.2−ビス<3.4−ジメチルフェニル)
へキサフルオロプロパ7.2.2−ビス[4−(4−ニ
トロフェノキン)フェニルコヘキサフルオロブロバン、
2.2−ビス(カルボキシフェニル)へキサフルオロプ
ロパン、2.2−ビス(3−ニトロ−4−ヒドロキシフ
ェニル)へキサフルオロプロパン等の対称ビスへキサフ
ルオロプロパンや2−(4−フロオロフェニル)、2−
(4−ヒドロキンフェニル)へキサフルオロプロパンの
ような非対称ビスアリールヘキサフルオロプロパンがあ
げられる。As the 2,2-bisarylhexafluoropropane in the present invention, substantially any compound that reacts easily with a basic substance and remains essentially unchanged can be used. For example 2
.. 2-bis(4-hydroquinphenyl)hexafluoropropane, 2.2-bis<3.4-dimethylphenyl)
hexafluoropropa7.2.2-bis[4-(4-nitrophenoquine)phenylcohexafluorobroban,
Symmetrical bishexafluoropropanes and 2-(4-fluorophenyl) such as 2.2-bis(carboxyphenyl)hexafluoropropane and 2.2-bis(3-nitro-4-hydroxyphenyl)hexafluoropropane. ), 2-
Examples include asymmetric bisarylhexafluoropropanes such as (4-hydroquinphenyl)hexafluoropropane.
また、2.2−ビスアリールヘキサフルオロプロパンを
溶液状態にする際に必要となる溶媒としては、2.2−
ビスアリールヘキサフルオロプロパンが溶解する溶媒で
ありかつ分析の際にフルオロホルムとピークが重ならな
いものであれば使用可能である。In addition, the solvent required to make 2.2-bisarylhexafluoropropane into a solution state is 2.2-bisarylhexafluoropropane.
Any solvent that can dissolve bisarylhexafluoropropane and whose peaks do not overlap with fluoroform during analysis can be used.
例えば水、メタノール、アセトニトリル、アセトン。For example, water, methanol, acetonitrile, acetone.
エーテルなどおよびそれらの混合溶媒を使用できる。し
かし、溶媒ピークがないことからチャートが簡略化し分
析時間も短くなり、さらにヘキサフルオロアセトンが塩
基性物質と反応して発生するガス状物質であるフルオロ
ホルムが溶液中に溶存しないことからも水を使用する事
が望ましい。Ethers and mixtures thereof can be used. However, since there is no solvent peak, the chart is simplified and the analysis time is shortened, and also because fluoroform, a gaseous substance generated when hexafluoroacetone reacts with a basic substance, is not dissolved in the solution, it is difficult to use water. It is desirable to use it.
塩基性物質としては無機塩基の使用が望ましい。As the basic substance, it is desirable to use an inorganic base.
無機塩基物質としては、水酸化す) IJウム、水酸化
カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナ
トリウム、炭酸水素カリウム、酸化カルンウムなどが挙
げられる。−船釣には、水酸化ナトリウムや水酸化カリ
ウムが望ましい。Examples of the inorganic basic substance include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and potassium oxide. - Sodium hydroxide and potassium hydroxide are preferable for boat fishing.
これら塩基性物質の使用量は2.2−ビスアリールヘキ
サフルオロプロパン中に含まれるヘキサフルオロアセト
ンに対し等モル以上を必要とする。しかし、過剰量の使
用は回答測定に支障はなく、かつヘキサフルオロアセト
ンが確実に分解しフルオロホルムになるので定量性の面
からも塩基性物質は等モル以上が望ましい。例えば2.
2−ビス(4−ヒドロキンフェニル)へキサフルオロプ
ロパンのようにこれら無機塩基と塩を形成して水に溶解
するような場合は、2.2−ビスアリールヘキサフルオ
ロプロパンが塩を形成するに必要な無機塩基の量以上を
使用する事が必要となる。The amount of these basic substances used needs to be equal to or more than the hexafluoroacetone contained in the 2,2-bisarylhexafluoropropane. However, the use of an excessive amount does not interfere with the response measurement, and since hexafluoroacetone is reliably decomposed into fluoroform, it is desirable that the amount of the basic substance be equimolar or more from the viewpoint of quantitative performance. For example 2.
When 2-bis(4-hydroquinphenyl)hexafluoropropane forms a salt with these inorganic bases and dissolves in water, 2-bisarylhexafluoropropane forms a salt. It is necessary to use more than the amount of inorganic base required.
溶液状態または溶融状態の2.2−ビスアリールヘキサ
フルオロプロパンから遊離したヘキサフルオロアセトン
とこれらの塩基性物質との反応は使用した溶媒の沸点以
下で処理を行なう。特にヘキサフルオロアセトンと無機
塩基の反応の比較的緩やかに進行する50℃〜100℃
の範囲で行ない、かつ温度条件を一定にして行なうこと
が必要である。The reaction between hexafluoroacetone liberated from 2,2-bisarylhexafluoropropane in a solution or molten state and these basic substances is carried out at a temperature below the boiling point of the solvent used. In particular, the reaction between hexafluoroacetone and an inorganic base proceeds relatively slowly at 50°C to 100°C.
It is necessary to carry out the test within a range of
本発明においては、ヘッドスペースガスクロマトグラフ
ィ法を用いるものであるがヘッドスペースガスクロマト
グラフィ法とは、気液(固)平衡状態にある試料の気相
の一部を採取しガスクロマトグラフィ分析を行なうこと
である。この測定法は特に液体や固体試料中の揮発成分
、蒸気成分の分析に有用である。また、ヘッドスペース
サンプラーを用いることにより、加圧および加温するこ
とにより気液平衡が保たれた時のガスをサンプルとして
ガスクロマトグラフィに注入するので!t1.度の向上
及び繰返し測定が可能となる。ガスクロマトグラフィの
検出器としては、FID (、水素炎イオン検出器)も
しくはECD (電子捕獲型検出器)の使用が有効であ
り、FIDでは、0. lppm程度の測定が可能であ
り、ECDではその約1000倍のo、 1ppb程度
までの測定が可能である。定量方法としては、絶対検量
線法、11添加法のいずれでもほぼ同等の結果が得られ
るが、データの信頼性からは標準添加法の方がより好ま
しい。In the present invention, a headspace gas chromatography method is used, and the headspace gas chromatography method is a method in which a part of the gas phase of a sample in a gas-liquid (solid) equilibrium state is collected and analyzed by gas chromatography. be. This measurement method is particularly useful for analyzing volatile and vapor components in liquid and solid samples. In addition, by using a headspace sampler, the gas that has been pressurized and heated to maintain gas-liquid equilibrium is injected into the gas chromatography as a sample! t1. This makes it possible to improve the accuracy and repeat measurements. As a gas chromatography detector, it is effective to use FID (Flame Ion Detector) or ECD (Electron Capture Detector). It is possible to measure about 1 ppm, and ECD can measure about 1000 times that amount, about 1 ppb. As a quantitative method, both the absolute calibration curve method and the 11-addition method can give almost equivalent results, but the standard addition method is more preferable in terms of data reliability.
以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.
[実施例]
以下の実施例で使用した試薬・器具・装置は次のとおり
である。[Example] The reagents, instruments, and devices used in the following examples are as follows.
■水酸化ナトリウム:特級試薬
■超純水:比抵抗値が18MΩ/cm(25℃)以上の
超純水を使用。■Sodium hydroxide: Special grade reagent ■Ultra-pure water: Use ultra-pure water with a specific resistance value of 18 MΩ/cm (25°C) or higher.
■バイアルびんガラス製、全容積20− テフロンコー
ティングしたンセブタムを使用。■Vial Made of glass, total volume 20 - Uses Teflon coated ensebutam.
■ヘッドスペースサンプラー・IIEWLETT PA
Ch:ARI)製19395A
■ガスクロマトグラフィ装置: HIJLETT PA
CKARD製5890seriesII (FID)、
柳本製03800 (ECD)■カラムJ&W GS−
Q
逢雅
■試料の作成
バイアルびん4本にそれぞれ2.2−ビス(4−ヒドロ
キシフェニル)へキサフルオワプロパン(BIS−AP
>10gと超純水50m1を正確に一定量計り取る。次
に過剰の水酸化ナトリウム約0.5gを加えBIS−A
Pを完全に溶解した後、バイアルびんのセプタム及びバ
イアルキャブをクリンパ−にて漏れのないようしめる。■Headspace sampler IIEWLETT PA
Ch:ARI) 19395A ■Gas chromatography device: HIJLETT PA
CKARD 5890series II (FID),
Yanagimoto 03800 (ECD) ■Column J&W GS-
Q Aiga■ Preparation of samples Fill four vials with 2,2-bis(4-hydroxyphenyl)hexafluoropropane (BIS-AP).
>10g and 50ml of ultrapure water are accurately weighed out. Next, add about 0.5 g of excess sodium hydroxide and BIS-A
After P is completely dissolved, the septum of the vial and the cap of the vial are sealed with a crimper to prevent leakage.
次に、0.1. O12,0,5pp+mに相当するヘ
キサフルオロアセトン三水和物(HFA・31F)をマ
イクロ7リンジにてバイアルびんにそれぞれ加えて標準
添加法のサンプルとし、それぞれのサンプルを80℃で
6時間加熱したものを測定に用いた。Next, 0.1. Hexafluoroacetone trihydrate (HFA 31F) corresponding to O12.0.5pp+m was added to each vial using a micro 7 ringer to prepare samples for the standard addition method, and each sample was heated at 80°C for 6 hours. was used for measurements.
■測定
ヘッドスペースサンプラー及びガスクロマトグラフィ装
置を接続し、ヘッドスペースサンプラーのオイルバス及
びガスクロマトグラフィのオーブンを恒温にし、加温処
理したサンプルをヘッドスペースサンプラーに設置して
一定温度にした後測定を開始した。■Measurement The headspace sampler and gas chromatography device were connected, the headspace sampler's oil bath and gas chromatography oven were kept at a constant temperature, and the heated sample was placed in the headspace sampler and the temperature was brought to a constant temperature before measurement started. .
測定条件は次のとおりである。The measurement conditions are as follows.
ヘッドスペースサンプラー装置条件
機種 HEWl、ETT PA(JARD
19395A加圧時間 10秒
排出時間 5秒
注入時間 10秒
平衡時間 20分
ハ゛ス温度 40度ハ゛ルフ゛/
ルーフ゛温度 50度号ンフ゛ リンク゛間隔
1分ガスクロマトグラフィ条件
カラム JFJ G
S−Q 30m−05311m注入温度 1
50度
カラム温度 40度流量
1(e 20m1!/min検出器
FID
機種 )IEIIILETT PACKA
RD 5890se1esU
検出温度 150℃
スフ゛リテト比 3・1力゛ス
エアー、水素得られたデータより、
横軸に)IFA添加量を、縦軸にガスクロマトグラフィ
の分析により得られたHFAのカウント数をプロットす
ることにより第1図を作成した。第1図より明らかなよ
うに検量線は極めて高い直線性を示した。Headspace sampler device condition model HEWl, ETT PA (JARD
19395A pressurization time 10 seconds Discharge time 5 seconds Injection time 10 seconds Equilibration time 20 minutes Base temperature 40 degrees high/
Roof temperature 50 degrees Roof link spacing
1 minute gas chromatography condition column JFJ G
S-Q 30m-05311m Injection temperature 1
50 degrees column temperature 40 degrees flow rate
1 (e 20m1!/min detector
FID model) IEIIILETT PACKA
RD 5890se1esU Detection temperature 150℃ Spherite ratio 3.1 force
From the data obtained for air and hydrogen,
Figure 1 was created by plotting the amount of IFA added (on the horizontal axis) and the count number of HFA obtained by gas chromatography analysis on the vertical axis. As is clear from FIG. 1, the calibration curve showed extremely high linearity.
また、HFA添加量を0.1.0.2.0.5ρp!l
lとし、検出器をECD−Nとして同様に検量線を作成
した結果、極めて高い直線性を示した。検出器の条件は
次のとおりである。Also, the amount of HFA added is 0.1.0.2.0.5ρp! l
A calibration curve was prepared in the same manner using ECD-N as the detector, and as a result, extremely high linearity was shown. The detector conditions are as follows.
モチ゛ル 柳本G3110
0検出温度 250℃
力ス COI
テ′イスチ中−プ′力′ス 90m/1n
検出器がFIDの場合、0. lpp+*程度までの測
定が可能であり、ECDの場合、o、 1ppb程度ま
での測定が可能である。Motial Yanagimoto G3110
0 detection temperature 250℃ Force COI Temperature during test 90m/1n
If the detector is FID, 0. It is possible to measure up to about 1pp+*, and in the case of ECD, it is possible to measure up to about 1ppb.
[発明の効果]
フルオロエラストマーの架橋剤や耐熱性に優れた含フツ
素ポリマーおよび電子材料、構造材料の原料として有用
な2.2−ビスアリールヘキサフルオロプロパン中に含
有する極めて毒性の強いヘキサフルオロアセトンを容易
に、かっ極く微量まで定量する事が出来る。[Effect of the invention] Extremely toxic hexafluoro contained in 2,2-bisarylhexafluoropropane, which is useful as a crosslinking agent for fluoroelastomers, a fluorine-containing polymer with excellent heat resistance, and a raw material for electronic materials and structural materials. Acetone can be easily quantified down to extremely small amounts.
第1図はHFA添加量とガスクロマトグラフィ分析によ
り得られたHFAのカウント数をプロットした検量線を
示すものである。FIG. 1 shows a calibration curve in which the amount of HFA added and the number of counts of HFA obtained by gas chromatography analysis are plotted.
Claims (1)
ルヘキサフルオロプロパンを塩基性物質と反応させ、ヘ
キサフルオロアセトンをフルオロホルムとし、ヘッドス
ペースガスクロマトグラフィー法を用いて分析する事を
特徴とする2,2−ビスアリールヘキサフルオロプロパ
ン中のヘキサフルオロアセトンの分析方法。2,2, characterized in that 2,2-bisarylhexafluoropropane containing hexafluoroacetone is reacted with a basic substance, the hexafluoroacetone is converted into fluoroform, and the mixture is analyzed using a headspace gas chromatography method. -A method for analyzing hexafluoroacetone in bisarylhexafluoropropane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17222990A JPH0758286B2 (en) | 1990-06-29 | 1990-06-29 | Method for analyzing hexafluoroacetone in 2,2-bisarylhexafluoropropane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17222990A JPH0758286B2 (en) | 1990-06-29 | 1990-06-29 | Method for analyzing hexafluoroacetone in 2,2-bisarylhexafluoropropane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0462469A true JPH0462469A (en) | 1992-02-27 |
JPH0758286B2 JPH0758286B2 (en) | 1995-06-21 |
Family
ID=15937997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17222990A Expired - Fee Related JPH0758286B2 (en) | 1990-06-29 | 1990-06-29 | Method for analyzing hexafluoroacetone in 2,2-bisarylhexafluoropropane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0758286B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112285227A (en) * | 2020-10-16 | 2021-01-29 | 华润紫竹药业有限公司 | Gas chromatography analysis method for hexafluoroacetone in mifepristone |
-
1990
- 1990-06-29 JP JP17222990A patent/JPH0758286B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112285227A (en) * | 2020-10-16 | 2021-01-29 | 华润紫竹药业有限公司 | Gas chromatography analysis method for hexafluoroacetone in mifepristone |
Also Published As
Publication number | Publication date |
---|---|
JPH0758286B2 (en) | 1995-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kunzler | Absolute sulfuric acid, highly accurate primary standard: constant boiling sulfuric acid and other reference standards | |
CN105784762A (en) | Quick purity testing and analyzing method for low-melting-point materials | |
CN110646456A (en) | Method for quantitatively measuring lithium bistrifluoromethylsulfonyl imide based on nuclear magnetic resonance | |
US3997296A (en) | Primary standards | |
JPH0462469A (en) | Analysis of hexafluoroacetone in 2, 2-bisaryl hexafluoropropane | |
CN106950303B (en) | Method for measuring benzene series in biological sample blood | |
Savickas et al. | Hollow fiber membrane probes for the in situ spectrometric monitoring of nitrogen trichloride formation during wastewater treatment | |
Kerr | Molar Volumes of Liquid Deuterium and of a 1: 1 Mixture of Tritium and Deuterium, 19.5 to 24.5° K. | |
CN106814144B (en) | Method for determining and analyzing content of dimethyl sulfate in dimethyl fumarate | |
Lai et al. | Isotope effects in nucleophilic substitution reactions. VII. The effect of ion pairing on the substituent effects on SN2 transition state structure | |
CN110057934A (en) | A method of with ferrocene and bicyclopentadiene in GC-MS detection soil | |
CN109696496A (en) | A kind of method of hydrogen content in rapid and accurate determination containing hydrogen silicone oil | |
JP6849276B2 (en) | Solution analysis method | |
CN111366660A (en) | Method for measuring content of dimethyl sulfate in Etegravir | |
CN110631874A (en) | Sample pretreatment method for determining content of silicon element in polymer and method for determining content of silicon element in polymer | |
Hansen et al. | Rapid Polarographic Determination of Tetraethyllead in Gasoline | |
Barrall et al. | Microboiling Point Determination at 30 to 760 Torr by Differential Thermal Analysis. | |
CN114113417B (en) | Solid standard curve method suitable for headspace sample injection | |
SU687385A1 (en) | Method of quantitative evaluation of tri- or tetraamines of aromatic series | |
CN110066255B (en) | Synthetic method of stable isotope deuterium-labeled 5-chloro-2-methyl-4-isothiazole-3-ketone | |
Roki et al. | Improvements in the assessment of the thermodynamic properties of condensed and gaseous phases of the CsOH compound | |
JPH06194360A (en) | Diffusion analyzer and vessel therefor | |
CN118225900A (en) | Determination analysis method for phthalic aldehyde content in lacidipine | |
CN118225956A (en) | Determination analysis method for methyl aminocrotonate content in lacidipine | |
Watanabe | Accurate determination of sulfur at trace levels by isotope dilution mass spectrometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |