JPH0462446A - Pressure pulsation analyzing device - Google Patents

Pressure pulsation analyzing device

Info

Publication number
JPH0462446A
JPH0462446A JP17426490A JP17426490A JPH0462446A JP H0462446 A JPH0462446 A JP H0462446A JP 17426490 A JP17426490 A JP 17426490A JP 17426490 A JP17426490 A JP 17426490A JP H0462446 A JPH0462446 A JP H0462446A
Authority
JP
Japan
Prior art keywords
piping
fluid
pressure pulsation
pressure
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17426490A
Other languages
Japanese (ja)
Other versions
JPH06103238B2 (en
Inventor
Takeshi Fujikawa
猛 藤川
Minoru Kato
稔 加藤
Eiko Hirooka
廣岡 栄子
Yoshio Inoue
喜雄 井上
Michiya Kurohashi
道也 黒橋
Kensuke Murai
謙介 村井
Shigetoshi Sato
佐藤 重俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17426490A priority Critical patent/JPH06103238B2/en
Publication of JPH0462446A publication Critical patent/JPH0462446A/en
Publication of JPH06103238B2 publication Critical patent/JPH06103238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To improve the accuracy by finding pressure pulsation from an excitation flow rate Qn based upon the impedance Zn of piping. CONSTITUTION:The (n)th-order complex amplitude Xn of the volume of fluid which flows in and out of a cylinder is found from the pressure pulsation P in the piping in a frequency range based upon the impedance Zn of the piping and the pressure variation Pc in the cylinder in the frequency range of a pressure source. Then the excitation flow rate Qn of the fluid in the piping is found by using Xn in consideration of the successive generation of the fluid. Then Qn is used to find the pressure pulsation P in the piping in consideration of the successive generation of fluid in the frequency range.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、往復圧縮機、ポンプ等の加圧源による圧力変
動に基づく配管内の圧力の脈動を解析する圧力脈動解析
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pressure pulsation analysis device that analyzes pressure pulsations in piping based on pressure fluctuations caused by pressure sources such as reciprocating compressors and pumps. .

〔従来技術〕[Prior art]

上記のような往復圧縮機、ポンプ等の加圧源から間欠的
に吸い込み/吐出される流体が脈動の加振源となって配
管内の流体が振動する。この流体の振動が加圧源の加振
周期と共振して大きくなった場合は配管を振動させて破
損させたり、圧縮機ポンプ等の加圧源の性能低下をもた
らす場合がある。そのため、圧縮機、ポンプ等の加圧源
のシリンダ内の流体と配管の流体との連成を考慮して上
記加圧源による加振と配管内の圧力変動とが共振しない
ような配管の寸法デザインを決定するために、上記流体
連成を考慮した配管内の圧力脈動を解析する必要がある
Fluid intermittently sucked in and discharged from a pressurizing source such as a reciprocating compressor or a pump as described above becomes a source of pulsation, causing the fluid in the piping to vibrate. If this vibration of the fluid resonates with the excitation cycle of the pressure source and becomes large, it may cause piping to vibrate and be damaged, or the performance of the pressure source such as a compressor pump may deteriorate. Therefore, in consideration of the interaction between the fluid in the cylinder of the pressure source such as a compressor or pump and the fluid in the piping, the dimensions of the piping must be determined so that the excitation by the pressure source and pressure fluctuations in the piping do not resonate. In order to determine the design, it is necessary to analyze the pressure pulsations within the piping taking into account the fluid interaction described above.

上記のような流体連成を考慮しない圧力脈動解析法は、
既に(往復圧縮機配管系の圧力脈動解析神戸製鋼技報V
o1.37No、1)等の文献で知られるように長い歴
史と実績があり9周知である。
The pressure pulsation analysis method that does not take fluid interaction into account as described above is
Already (Pressure pulsation analysis of reciprocating compressor piping system Kobe Steel Technical Report V
It has a long history and track record, and is well known in literature such as o1.37 No. 1).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のような従来の圧力脈動解析方法で
は、流体連成が考慮されておらず3脈動解析の精度にお
いて充分なものではなかった。
However, in the conventional pressure pulsation analysis method as described above, fluid interaction is not taken into consideration, and the accuracy of the three-pulsation analysis is not sufficient.

又、圧力脈動解析法としては、上記文献に開示された如
く周波数領域で行うものと1時刻歴で行うものとに大別
されるが、上記時刻歴で行うものは周波数領域における
計算方法と比べて膨大な計算時間がかかり、計算費用等
の点で問題があった。
In addition, pressure pulsation analysis methods are broadly divided into those performed in the frequency domain and those performed using one time history, as disclosed in the above literature, but the methods performed using the above time history are more difficult than calculation methods in the frequency domain. It took a huge amount of calculation time, and there were problems in terms of calculation costs.

従って1本発明は流体連成を考慮した精度の高い圧力脈
動解析を周波数領域において能率良く行うことができる
圧力脈動解析装置を提供することである。
Accordingly, one object of the present invention is to provide a pressure pulsation analysis device that can efficiently perform highly accurate pressure pulsation analysis in the frequency domain, taking fluid interaction into consideration.

〔課題を解決するための手段] 上記目的を連成するために第1の発明は、配管のインピ
ーダンスZ7に基づく周波数5Ulxでの配管内の圧力
脈動ΔPと、カロ圧源の周波数領域でのシリンダ内の圧
力変動ΔPcとより、上記シリンダ内へ流出入する流体
の体積のn吹成分複素振幅χ7を求める手段と、上記X
nを用いて流体の連成を考慮した配管内流体の加振流量
Qゎを求める手段と、上記Qnを用いて周波数領域にお
IJる流体の連成を考慮した配管内の圧力脈動ΔPを求
める手段と、を具備してなる圧力脈動解析装置として構
成されている。
[Means for Solving the Problems] In order to couple the above objects, the first invention provides pressure pulsation ΔP in the pipe at a frequency of 5Ulx based on the impedance Z7 of the pipe and a cylinder in the frequency domain of the Caro pressure source. means for determining the n blowing component complex amplitude χ7 of the volume of fluid flowing in and out of the cylinder from the pressure fluctuation ΔPc in the cylinder;
A means for determining the excitation flow rate Q of the fluid in the pipe considering the fluid coupling using n, and a means for calculating the pressure pulsation ΔP in the pipe considering the fluid coupling in the frequency domain using the above Qn. The pressure pulsation analysis device is configured as a pressure pulsation analysis device comprising a means for determining the pressure pulsation.

また第2の発明は、仮定された配管のインピーダンスZ
nに基づく周波数領域での配管内の圧力脈動ΔPと、加
圧源の周波数頭域でのシリンダ内の圧力変動ΔPcとよ
り、上記シリンダ内へ流出入する流体の体積のn火成分
復素振幅Xイを求める手段と、上記X、を用いて流体の
連成を考慮した配管内流体の加振流量Qカを求める手段
と、上記Q、を用いて周波数領域における流体の連成を
考慮した配管内の圧力脈動ΔPを求める手段と上記修正
された圧力脈動ΔPから修正された配管のインピーダン
スZ1′を求め、該z、1′ と修正前のインピーダン
スz6とを比較し、その差が所定範囲内となるまで上記
各手段の実行を繰り返し所定範囲内となった時点におけ
る修正された配管内の圧力脈動ΔPを求める手段と1を
具備してなる圧力脈動解析装置として構成されている。
Further, the second invention provides that the impedance Z of the assumed piping
Based on the pressure pulsation ΔP in the pipe in the frequency domain based on n and the pressure fluctuation ΔPc in the cylinder in the frequency range of the pressurization source, the n fire component complex amplitude of the volume of fluid flowing in and out of the cylinder is calculated. A means for determining X, a means for determining the excitation flow rate Q of the fluid in the piping considering the fluid coupling using the above X, and a means for determining the excitation flow rate Q of the fluid in the pipe considering the fluid coupling using the above Q. The means for determining the pressure pulsation ΔP in the piping and the corrected impedance Z1' of the piping are determined from the corrected pressure pulsation ΔP, and the impedance Z1' is compared with the impedance z6 before modification, and the difference is determined to be within a predetermined range. The pressure pulsation analysis apparatus is configured as a pressure pulsation analysis apparatus comprising means for repeating the execution of each of the above-mentioned means until the pressure pulsation ΔP in the pipe is within a predetermined range.

(実施例〕 続いて、第1図に示した計算手順を表すフローチャート
を参照して本発明を具体化した実施例につき説明する。
(Example) Next, an example embodying the present invention will be described with reference to a flowchart showing a calculation procedure shown in FIG.

尚、ここで流体連成を考慮しない周波数領域における圧
力脈動の解析手法については前記文献及びその他により
周知であるのその詳しい説明を省略する。
Note that a detailed explanation of the pressure pulsation analysis method in the frequency domain that does not take fluid coupling into account is well known from the above-mentioned literature and others, and will not be described here.

以下に述べる実施例における圧力脈動解析方法は次のよ
うに要約される。即ち、前記流体の連成は流体の比重、
粘性1体積等に関連し、これは配管のインピーダンスZ
、を考慮することにより連成される。このような配管の
インピーダンスZ。
The pressure pulsation analysis method in the examples described below is summarized as follows. That is, the interaction of the fluid is the specific gravity of the fluid,
It is related to the viscosity 1 volume, etc., and this is the impedance Z of the piping
, is coupled by considering . Impedance Z of such piping.

が既知の場合、このZ7に基づく周波数領域での配管内
の圧力脈動へPと、加圧源の周波数領域でのシリンダ内
の圧力変動ΔPcとより、上記シリンダ内へ流出入する
流体の体積のn吹成分複素振幅Xnがまず求められる。
is known, the volume of fluid flowing in and out of the cylinder can be calculated from the pressure pulsation P in the piping in the frequency domain based on Z7 and the pressure fluctuation ΔPc in the cylinder in the frequency domain of the pressurization source. First, the n-blown component complex amplitudes Xn are determined.

続いて、上記Xnを用いて配管内流体の加振流量Qnを
求める。この加振流量Qnは前記配管のインピーダンス
Zゎ基づくものであるから、当然流体の連成が考慮され
ている。
Next, the excitation flow rate Qn of the fluid in the pipe is determined using the above Xn. Since this excitation flow rate Qn is based on the impedance Z of the piping, fluid coupling is naturally taken into account.

次に、上記加振流量Q1を用いて周波数領域における流
体の連成の考慮された配管内の圧力脈ΔPが求められる
Next, using the excitation flow rate Q1, the pressure pulse ΔP in the pipe is determined in consideration of the fluid coupling in the frequency domain.

このように、加圧源が単一である等、比較的簡素な系に
おいては、前記配管のインピーダンスZ。
In this way, in a relatively simple system such as a single pressurization source, the impedance Z of the piping.

を精度良く推定することができるので計算手法としては
比較的簡単である。
It is a relatively simple calculation method because it can be estimated with high accuracy.

しかしながら2例えば加圧源が複数である場合や1前記
インピーダンスZ1が加振流量Q1の関数になっている
ような場合等には、インピーダンスZカが既知でないの
で、これをまず仮定した値として与えた上で修正を繰り
返す必要がある。即ち、この場合、適当に仮定された配
管のインピーダンスZnに基づく周波数領域での配管内
の圧力脈動ΔPと、加圧源の周波数領域でのシリンダ内
の圧力変動ΔP、とより、上記シリンダ内へ流出入する
流体の体積のn吹成分複素振幅X。を求める。次に、上
記Xnを用いて前記同様流体の連成を考慮した配管内の
流体の加振流量Qnを求める。
However, in cases such as 2. where there are multiple pressurizing sources or 1. where the impedance Z1 is a function of the excitation flow rate Q1, the impedance Z is not known, so this is first given as an assumed value. It is necessary to repeat the correction. That is, in this case, pressure pulsation ΔP in the piping in the frequency domain based on the appropriately assumed impedance Zn of the piping, and pressure fluctuation ΔP in the cylinder in the frequency domain of the pressurizing source, n component complex amplitudes of the volume of fluid flowing in and out. seek. Next, using the above Xn, the excitation flow rate Qn of the fluid in the piping is determined, taking into account the fluid coupling as described above.

続いて、上記加振流量Q。を用いて周波数領域における
流体の連成を考慮して修正された配管内の圧力脈動ΔP
を求める。更に、上記修正された圧力脈動ΔPから修正
された配管のインピーダンスz、/を求め、このZn′
と修正前のインピーダンスZ1とを比較し、その差が所
定範囲内となるまで上記計算手順を繰り返して実行し1
上記インピーダンスの差が所定範囲内となった時点にお
ける配管内の圧力脈動ΔPを修正された圧力脈動として
採用する。
Next, the above excitation flow rate Q. The pressure pulsation ΔP in the piping is corrected by considering the fluid coupling in the frequency domain using
seek. Furthermore, the corrected piping impedance z, / is determined from the above corrected pressure pulsation ΔP, and this Zn'
and the impedance Z1 before correction, and repeat the above calculation procedure until the difference is within a predetermined range.
The pressure pulsation ΔP in the pipe at the time when the impedance difference falls within a predetermined range is adopted as the corrected pressure pulsation.

上記の手順を詳細に説明すると以下の通りである。The above procedure will be explained in detail as follows.

まず、第1図におけるステップS1において計算に必要
な定数が入力される。計算に必要な因子は (1)流体特性に関する因子 音速、密度、平均圧力、粘性係数 体積弾性率、状態変化の指数等 (2)配管特性に関する因子 配管長さ、配管直径等 (3)圧縮機等加圧源の特性に関する因子ピストンの動
き、ピストンの直径 回転数等 定数の入力が終わると加圧源のシリンダ内に流出入する
流体の体積のn次数分複素振幅Xnを求める(S2)、
上記複素振幅Xnは次の計算方法に基づき計算される。
First, in step S1 in FIG. 1, constants necessary for calculation are input. Factors required for calculation are (1) Factors related to fluid properties, such as sound velocity, density, average pressure, viscosity coefficient, bulk modulus, index of state change, etc. (2) Factors related to piping characteristics, such as pipe length, pipe diameter, etc. (3) Compressor After inputting the factors related to the characteristics of the constant pressure source, such as the movement of the piston, the diameter of the piston, and the constant number of revolutions, calculate the complex amplitude Xn of the nth order of the volume of the fluid flowing in and out of the cylinder of the pressure source (S2).
The above complex amplitude Xn is calculated based on the following calculation method.

圧縮機、ポンプ等の加圧源のシリンダ内の圧力変動ΔP
eは。
Pressure fluctuation ΔP in the cylinder of a pressurizing source such as a compressor or pump
e is.

 −y ΔP、=γP、         ・・・(1)■ で表される。-y ΔP, = γP, ... (1) ■ It is expressed as

ここで、T・・・流体の状態変化を表す指数P0・・・
配管内流体の平均圧力 V・・・シリンダ室内の体積 X・・・シリンダ室内へ流出入する 流体の体積 y・・・ピストンの体積変位 である。
Here, T... An index representing a change in the state of the fluid P0...
Average pressure of fluid in the piping V: Volume inside the cylinder chamber X: Volume y of fluid flowing in and out of the cylinder chamber: Volume displacement of the piston.

一方、配管内の圧力脈動へPのフーリエ展開の式は ΔP=ΣJ n ωZn  Xn  eコ+′″”  
−(2)で表される。
On the other hand, the formula for the Fourier expansion of P to pressure pulsations in the pipe is ΔP=ΣJ n ωZn
−(2).

ここで1 j・・・虚数 n・・・フーリエ展開の次数 ω・・・圧縮機等加圧源の回転数 zll・・・配管のインピーダンス Xn・・・シリンダ内へ流入する流体の体積のn吹成分
複素振幅 t・・・時刻 である。
Here, 1 j...Imaginary number n...Order of Fourier expansion ω...Rotational speed of pressurizing source such as compressor zll...Piping impedance Xn...N of the volume of fluid flowing into the cylinder Blowing component complex amplitude t... is time.

ここで、上記のような配管と加圧源とが連通状態になつ
いる時は八P、=ΔPであり、Xをフーリエ展開で表す
と X = Σ X、l  e −れlNtであるから、下
記の(3)式が得られる。
Here, when the piping and the pressurization source are in communication as described above, 8P, = ΔP, and when X is expressed in Fourier expansion, X = Σ The following equation (3) is obtained.

■ y −Σ (I           J  n  ω
Z *  )   χfi  e −1γP0 ・・・(3) 上記(+1. (2)、 (3)の各式において用いら
れ配管のインピーダンスZ。は単純な系やZnがQ。の
関数になっていないような場合等には、既・知として扱
うことができるが、加圧源が複数あるような場合やZ、
がQlの関数になっているような場合等には一該に決定
できない。
■ y −Σ (I J n ω
Z*) χfi e -1γP0...(3) Above (+1. The piping impedance Z used in each equation (2) and (3) is not a simple system or Zn is not a function of Q. In such cases, it can be treated as known, but in cases where there are multiple pressure sources, Z,
is a function of Ql, it cannot be determined at once.

そのため、この実施例では前記(2)弐及び(3)式に
用いたインピーダンスZ、は当初適当に仮定した値が採
用される。尚、その他の数値y、v、 ωは加圧機の仕
櫟に応じて決定され、γ、Paは配管流体、運転条件が
決まれば一義的に決定される。
Therefore, in this embodiment, the impedance Z used in equations (2) 2 and (3) above is a value appropriately assumed at the beginning. Note that the other values y, v, and ω are determined according to the specifications of the pressurizing machine, and γ and Pa are uniquely determined once the piping fluid and operating conditions are determined.

上記(3)式が得られると、これより上記シリンダ内へ
流出入する流体の体積のn吹成分複素振幅X。
When the above equation (3) is obtained, the complex amplitude X of the n blowing components of the volume of the fluid flowing in and out of the cylinder.

が求まる。この手順が前記ステップS2である。is found. This procedure is the step S2.

次に配管内流体の加振流量Qnは前記Xの微分値である
から。
Next, the excitation flow rate Qn of the fluid in the pipe is a differential value of the above-mentioned X.

X=ΣjnωX1leJIl#t であり、Qn = J n (11X n ・・・(4
)より加振流量Qnが求められる(S3)。
X = ΣjnωX1leJIl#t, and Qn = J n (11X n ... (4
), the excitation flow rate Qn is determined (S3).

こうして求められた加振2ii量Qnは流体連成に基づ
くものであり5 これを周知の周波数領域における配管
内の圧力脈動値の計算手法に代入することにより、上記
配管の連成を考慮した配管内の圧力脈動値ΔPが演算さ
れる(S4)。
The amount of excitation 2ii obtained in this way Qn is based on fluid interaction. A pressure pulsation value ΔP within is calculated (S4).

ここで、前記仮定されたZ7が適性な値であれば、上記
S4で求めた圧力脈動値ΔP等を(2)式に代入して得
られる修正されたインピーダンスZ、。
Here, if the assumed Z7 is an appropriate value, the corrected impedance Z is obtained by substituting the pressure pulsation value ΔP etc. obtained in the above S4 into equation (2).

(S5)と修正される前のインピーダンスZ7とが等し
いか近位するはずである。
(S5) and the impedance Z7 before being modified should be equal to or close to each other.

従って、配管系の簡単な場合や、ZnがQnの関数にな
っていないような場合等には、上記S4で求めた圧力脈
動値ΔPを最初結果として出力してもよい。
Therefore, in cases where the piping system is simple or where Zn is not a function of Qn, the pressure pulsation value ΔP obtained in S4 above may be output as the first result.

しかしながら、上記Znが既知でない場合には上記最初
に仮定したZoが適性な値とは躍らないので1上記ステ
ツプS5で得られたインピーダンスZn′と修正前のZ
nとを比較しくS6)、両者の差が所定範囲よりも大き
い場合には、修正されたZ。′を新たに仮定された配管
インピーダンスとして前記32〜S6の手順を繰り返す
。こうして仮定された配管のインピーダンスZ。が徐々
に修正され、系に適したものとなった時に修正前後の2
1が一致する。この時の圧力脈動値ΔPが最終結果とし
て出力される。
However, if the above Zn is not known, the initially assumed Zo is not an appropriate value, so the impedance Zn' obtained in step S5 above and the Z before correction are
n and S6), and if the difference between the two is larger than a predetermined range, the corrected Z. The steps 32 to S6 are repeated with ' being the newly assumed piping impedance. The impedance Z of the piping thus assumed. is gradually modified, and when it becomes suitable for the system, the two before and after modification
1 matches. The pressure pulsation value ΔP at this time is output as the final result.

こうして計算の結果、上記圧力脈動値ΔPが所定の基準
よりも大きい場合には例えば配管のレイアウト(配管内
径、配管長さ等)の変更を行ったり、減衰機能(アキュ
ムレーター、オリフィス等)を付与することにより脈動
の減衰が図られる。
As a result of this calculation, if the pressure pulsation value ΔP is larger than a predetermined standard, for example, the piping layout (inner diameter of the piping, piping length, etc.) may be changed or a damping function (accumulator, orifice, etc.) may be added. By doing so, pulsation is attenuated.

〔発明の効果] 本発明は2以上述べたように構成されているので2周波
数領域において連成を考慮した能率の良い高精度の解析
を行うことができる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to perform efficient and highly accurate analysis in consideration of coupling in two frequency regions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る圧力脈動解析装置の処
理手順を示すフローチャートである。 (符号の説明〕 Z、l・・・配管インピーダンス ΔP・・・配管内の圧力脈動 ΔPc・・・シリンダ内の圧力変動 Xn・・・シリンダ内へ吸入する流体の体積のn火成分
複素振幅 Qゎ・・・配管内の流体の加振流量
FIG. 1 is a flowchart showing the processing procedure of a pressure pulsation analysis device according to an embodiment of the present invention. (Explanation of symbols) Z, l... Piping impedance ΔP... Pressure pulsation in the pipe ΔPc... Pressure fluctuation in the cylinder Xn... N fire component complex amplitude Q of the volume of fluid sucked into the cylinderゎ・・・Excitation flow rate of fluid in piping

Claims (2)

【特許請求の範囲】[Claims] (1)配管のインピーダンスZ_nに基づく周波数領域
での配管内の圧力脈動ΔPと、加圧源の周波数領域での
シリンダ内の圧力変動ΔP_cとより、上記シリンダ内
へ流出入する流体の体積のn次成分複素振幅Xnを求め
る手段と、上記X_nを用いて流体の連成を考慮した配
管内流体の加振流量Q_nを求める手段と、上記Q_n
を用いて周波数領域における流体の連成を考慮した配管
内の圧力脈動ΔPを求める手段と、 を具備してなる圧力脈動解析装置。
(1) Based on the pressure pulsation ΔP in the piping in the frequency domain based on the impedance Z_n of the piping and the pressure fluctuation ΔP_c in the cylinder in the frequency domain of the pressurization source, the volume n of the fluid flowing in and out of the cylinder is means for determining the next component complex amplitude Xn; means for determining the excitation flow rate Q_n of the fluid in the piping in consideration of fluid coupling using the X_n; and the Q_n
1. A pressure pulsation analysis device comprising: means for determining pressure pulsation ΔP in a pipe in consideration of fluid coupling in the frequency domain using .
(2)仮定された配管のインピーダンスZ_nに基づく
周波数領域での配管内の圧力脈動ΔPと、加圧源の周波
数領域でのシリンダ内の圧力変動ΔP_cとより、上記
シリンダ内へ流出入する流体の体積のn次成分複素振幅
X_nを求める手段と、 上記X_nを用いて流体の連成を考慮した配管内流体の
加振流量Q_nを求める手段と、上記Q_nを用いて周
波数領域における流体の連成を考慮した配管内の圧力脈
動ΔPを求める手段と、 上記修正された圧力脈動ΔPから修正された配管のイン
ピーダンスZ_n′を求め、該Z_n′と修正前のイン
ピーダンスZ_nとを比較し、その差が所定範囲内とな
るまで上記各手段の実行を繰り返し、所定範囲内となっ
た時点における修正された配管内の圧力脈動ΔPを求め
る手段と、 を具備してなる圧力脈動解析装置。
(2) Based on the pressure pulsation ΔP in the piping in the frequency domain based on the assumed impedance Z_n of the piping and the pressure fluctuation ΔP_c in the cylinder in the frequency domain of the pressurization source, the flow of fluid flowing in and out of the cylinder is determined by means for determining the n-dimensional component complex amplitude X_n of the volume; means for determining the excitation flow rate Q_n of the fluid in the piping in consideration of fluid coupling using the X_n; and means for determining the fluid coupling in the frequency domain using the Q_n A means for determining the pressure pulsation ΔP in the piping considering A pressure pulsation analysis device comprising: repeating the execution of each of the above means until the pressure falls within a predetermined range, and determining the corrected pressure pulsation ΔP in the piping at the time when the pressure falls within the predetermined range.
JP17426490A 1990-06-29 1990-06-29 Pressure pulsation analyzer Expired - Lifetime JPH06103238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17426490A JPH06103238B2 (en) 1990-06-29 1990-06-29 Pressure pulsation analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17426490A JPH06103238B2 (en) 1990-06-29 1990-06-29 Pressure pulsation analyzer

Publications (2)

Publication Number Publication Date
JPH0462446A true JPH0462446A (en) 1992-02-27
JPH06103238B2 JPH06103238B2 (en) 1994-12-14

Family

ID=15975603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17426490A Expired - Lifetime JPH06103238B2 (en) 1990-06-29 1990-06-29 Pressure pulsation analyzer

Country Status (1)

Country Link
JP (1) JPH06103238B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342681A (en) * 2005-06-07 2006-12-21 Chiyoda Corp Pressure pulsation analyzer
JP2007218659A (en) * 2006-02-15 2007-08-30 Toshiba Corp Main steam pipe and method for operating nuclear power generation plant with boiling water reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342681A (en) * 2005-06-07 2006-12-21 Chiyoda Corp Pressure pulsation analyzer
JP2007218659A (en) * 2006-02-15 2007-08-30 Toshiba Corp Main steam pipe and method for operating nuclear power generation plant with boiling water reactor
JP4551875B2 (en) * 2006-02-15 2010-09-29 株式会社東芝 Main steam piping

Also Published As

Publication number Publication date
JPH06103238B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
Van Helvoirt et al. Dynamic model including piping acoustics of a centrifugal compression system
Johnston et al. The impedance characteristics of fluid power components: restrictor and flow control valves
JPH0462446A (en) Pressure pulsation analyzing device
Liu et al. Numerical analysis of gas pulsation attenuation characteristics of a perforated tube in a reciprocating compressor piping system
Lau et al. Impedance characteristics of hydraulic orifices
Peter et al. Consideration of local stiffening and clearance nonlinearities in coupled systems using a generalized harmonic balance method
Elson et al. A review of discharge and suction line oscillation research
Okasha et al. Analysis of pipeline networks using two-ports
Matsuda et al. A method for calculating the pressure pulsations taking dynamic compressor-piping interaction into consideration: Part 1 formulation and experiments in simple piping systems
Albertson et al. Comparison of different methods to couple nonlinear source descriptions in the time domain to linear system descriptions in the frequency domain—Application to a simple valveless one-cylinder cold engine
Cyklis et al. The CFD based estimation of pressure pulsation damping parameters for the manifold element
Sparks et al. Pulsations in liquid pumps and piping systems
Benson et al. Pressure pulsations in pipe systems with multiple reciprocating air compressors and receivers
Brablik Computer simulation of the working process in the cylinder of a reciprocating compressor with piping system
Singh et al. Interpretation of gas oscillations in multicylinder fluid machinery manifolds by using lumped parameter descriptions
Warzyńska et al. Modelling of pressure pulsation in gas compressor station
RU2783855C1 (en) Method for determining the liquid level in the annular space of the well
Warzyńska Experimental research into the influence of operational parameters on the characteristics of pressure pulsation dampers
US10190717B1 (en) Pulsation damping for damping pulsations upstream of a gas flow meter
Pana Dynamic simulation of a reciprocating compressor in LMS Amesim program.
Kovacevic et al. Screw compressor with variable geometry rotors-analysis of designs by CFD
Singh et al. A Review of Compressor Lines Pulsation Analysis and Muffler Design Research-Part II: Analysis of Pulsating Flows
JP3254302B2 (en) Identification method of acoustic characteristics in piping system and container
SPARKS Pulsation in Centrifugal Pumps
Lai A study of the acoustical termination on practical gas pulsation measurement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 16