JPH0462407A - Tube thickness inspection robot - Google Patents

Tube thickness inspection robot

Info

Publication number
JPH0462407A
JPH0462407A JP2172161A JP17216190A JPH0462407A JP H0462407 A JPH0462407 A JP H0462407A JP 2172161 A JP2172161 A JP 2172161A JP 17216190 A JP17216190 A JP 17216190A JP H0462407 A JPH0462407 A JP H0462407A
Authority
JP
Japan
Prior art keywords
tire
traveling body
pipe
tube
pressing cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2172161A
Other languages
Japanese (ja)
Inventor
Tomoji Fujisawa
藤沢 友二
Ichiro Toma
當麻 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2172161A priority Critical patent/JPH0462407A/en
Publication of JPH0462407A publication Critical patent/JPH0462407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To find a place where wear is large before a dust transportation tube is holed by providing caterpillars before and behind a traveling body in the circumferential direction and pressing them against the inner peripheral surface of the transportation tube by a pressing cylinder. CONSTITUTION:The caterpillars 9 are pressed against the inner peripheral surface of the dust transportation tube 6 by the pressing cylinder 8 at all times. A travel motor (not shown in figure) is fitted to the caterpillars 9, which are rotated by the travel motor to make the travel body 2 travels. A tire type ultrasonic probe 7 has an ultrasonic probe 5 incorporated in a tire 7a. The ultrasonic wave from the ultrasonic probe 5 is made incident on the tube wall 6a (6b: coating film) of the dust transportation tube 6 through the tire 7a. Only echoes from the internal and external surface of the tube are selected and the tube thickness is calculated from the acoustic velocity and time difference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ブロワを使ってゴミを運搬するゴミ収集管
路設備で、ゴミ輸送管の磨耗等による管の穴開きを未前
に防止するために使用される、ゴミ輸送管等の管厚検査
ロボットに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a waste collection pipe equipment that uses a blower to transport waste, and prevents holes in the waste transport pipe due to wear etc. This invention relates to a robot used to inspect the thickness of pipes such as garbage transport pipes.

〔従来の技術〕[Conventional technology]

ゴミ輸送管を主に地中に敷設し、輸送管路としてブロワ
を使ってゴミを吸引して集塵センターに運搬し、前記集
塵センターにおいて運ばれたゴミを処理するゴミ収集管
路設備が近年盛んに建設されている。第5図はゴミ収集
管路設備の全体構成を系統的に示した概略システム図で
ある。集塵センター25まで敷設されたゴミ輸送管6に
は、大容量貯留型投入口26、標準型投入口27が設け
られ、ここからゴミ(廃棄物)が投入される。輸送管6
の途中にはゴミの交通整理を行う遮断弁28、および、
点検口14が設けられている。集塵センター25内にお
いて、地域から運ばれたゴミはゴミ分離機29に入り、
空気と分類されて下部の貯留排出機30に一時貯留され
、次いで、コンパクタ−によってコンテナ31に積み替
えられ、ゴミ焼却施設や埋め立て場へ運搬される。一方
、廃棄物を運んだ空気はゴミ分離機31を経た後、集塵
機32、ブロワ33、脱臭装置34および消音器35を
経て大気に放出される。これらの、集塵センター25内
の機器の運転は地域に分散する投入口26.27や遮断
弁28等の運転も含めて、センター内の操作盤15で中
央制御される。
Garbage collection pipe equipment is constructed in which garbage transport pipes are mainly laid underground, and a blower is used as the transport pipe to suck up the trash and transport it to a dust collection center, and the trash transported at the dust collection center is processed. It has been actively constructed in recent years. FIG. 5 is a schematic system diagram systematically showing the overall configuration of the garbage collection pipe equipment. The waste transport pipe 6 extending to the dust collection center 25 is provided with a large-capacity storage type input port 26 and a standard type input port 27, through which garbage (waste) is input. Transport pipe 6
There is a shutoff valve 28 for regulating garbage traffic, and
An inspection port 14 is provided. Inside the dust collection center 25, garbage transported from the area enters a garbage separator 29.
It is classified as air and temporarily stored in the lower storage/discharge machine 30, then transferred to a container 31 by a compactor and transported to a garbage incineration facility or a landfill. On the other hand, the air carrying waste passes through a garbage separator 31, a dust collector 32, a blower 33, a deodorizer 34, and a muffler 35 before being released into the atmosphere. The operation of these devices in the dust collection center 25, including the operation of the input ports 26, 27, cutoff valves 28, etc., which are distributed throughout the area, is centrally controlled by the operation panel 15 in the center.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記ゴミ収集管路設備で問題となっているのがゴミ輸送
管6の磨耗による穴開きである。スチール管等からなる
ゴミ輸送管に磨耗等によって穴が開いた場合、掘削して
外部から補修しなければならない。特に、ゴミ輸送管に
おいてはペンド部分の磨耗が激しい傾向がある。しかし
ながら、穴が開いてからでは、補修のために比較的長い
期間操業停止しなければならない問題がある。このため
、穴が開(前に管の磨耗状況を把握したいのであるが、
穴開き箇所を未然に発見することは、作業員が管内に入
る必要がある等困難性を伴う問題がある。
A problem with the above-mentioned waste collection pipe equipment is the formation of holes due to wear of the waste transport pipe 6. If a hole develops in a waste transport pipe made of steel pipe or the like due to wear, etc., it must be excavated and repaired from the outside. Particularly, in garbage transport pipes, there is a tendency for the pendant portion to be severely worn. However, once a hole is created, there is a problem in that operations must be shut down for a relatively long period of time for repair. For this reason, I would like to understand the wear status of the pipe before the hole opens.
Detecting holes before they occur is difficult, as it requires a worker to enter the pipe.

従って、この発明は一ヒ述の課題を解決するためになさ
れたものであって、ゴミ輸送管に穴が開く前に、磨耗の
激しい箇所を発見することができるゴミ輸送管等の管厚
検査ロボットを提供することを目的とする。
Therefore, this invention has been made to solve the above-mentioned problem, and is a pipe thickness inspection for waste transport pipes, etc., which can discover areas of severe wear before holes are formed in the waste transport pipe. The purpose is to provide robots.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明においては、輸送管
内を走行自在の、基端が前記走行体に取り付けられた押
し付けシリンダおよび前記押し付けシリンダの先端に軸
着されたキャタピラからなる複数の走行車輪装置を有す
る走行体と、前記走行体の中央部に前記走行体の軸線と
同一軸線上に設けられた、軸線を中心に回動自在の円筒
状の回転胴と、前記回転胴の外周面に取り付けられた、
前記輸送管の内周面を清掃するブラシと前記輸送管の内
周面と当接自在のタイヤを有するタイヤ型探触子とから
なり、前記走行車輪装置は前記走行体の前後に周方向に
複数個設けられ、前記キャタピラは前記押し付けシリン
ダによって前記輸送管の内周面に押し付けられることに
特徴を有するものである。
In order to achieve the above object, the present invention provides a plurality of running wheels, which are movable in a transport pipe and are made up of a pressing cylinder whose base end is attached to the traveling body and a caterpillar pivoted at the tip of the pressing cylinder. a traveling body having a device, a cylindrical rotating body rotatable about the axis, which is provided in the center of the traveling body on the same axis as the axis of the traveling body, and an outer circumferential surface of the rotating body. attached,
The traveling wheel device includes a brush for cleaning the inner circumferential surface of the transport pipe and a tire-shaped probe having a tire that can freely come into contact with the inner circumferential surface of the transport pipe, and the traveling wheel device is arranged in a circumferential direction at the front and rear of the traveling body. A plurality of caterpillars are provided, and the caterpillar is pressed against the inner circumferential surface of the transport pipe by the pressing cylinder.

第1図は本発明の1実施態様を示す側面図、第2図は本
発明のロボットを使用したゴミ収集管路設備の全体構成
を系統的に示した図である。図面に示すように、本発明
のロボット1は、筒状の走行体2と、走行体2の外周面
に設けられた複数の走行車輪装置3と、走行体2の中央
部に設けられた円筒状の回転胴4と、回転胴4の外周面
に取り付けられた、清掃用ブラシ36とタイヤ型超音波
探触子7とからなっている。走行車輪装置3は、基端が
走行体2に取り付けられた押し付けシリンダ8と、押し
付けシリンダ8の先端に軸着されたキャタピラ9とから
なっている。キャタピラ9は押し付けシリンダ8によっ
てゴミ輸送管6の内周面に常時押し付けられている。キ
ャタピラの代わりに車輪を使用してもよい。走行車輪装
置3は、走行体2の前後の各位置においてそれぞれ周方
向に等間隔で4個づつ、合計8個設けられている。キャ
タピラ9には走行モータ(図示せず)が取り付けられ、
走行モータによってキャタピラ9が回転し走行体2を走
行させる。 走行体2の中央部に設けられた回転胴4は
、走行体6の軸線と同一軸線上に設けられ、軸線を中心
に回動自在である。
FIG. 1 is a side view showing one embodiment of the present invention, and FIG. 2 is a diagram systematically showing the overall configuration of garbage collection pipe equipment using the robot of the present invention. As shown in the drawings, the robot 1 of the present invention includes a cylindrical running body 2, a plurality of running wheel devices 3 provided on the outer peripheral surface of the running body 2, and a cylindrical body provided at the center of the running body 2. It consists of a rotary drum 4 having a shape, a cleaning brush 36 and a tire-shaped ultrasonic probe 7 attached to the outer peripheral surface of the rotary drum 4. The traveling wheel device 3 includes a pressing cylinder 8 whose base end is attached to the traveling body 2, and a caterpillar 9 which is pivotally attached to the tip of the pressing cylinder 8. The caterpillar 9 is constantly pressed against the inner peripheral surface of the waste transport pipe 6 by the pressing cylinder 8. Wheels may be used instead of caterpillars. A total of eight traveling wheel devices 3 are provided, four at equal intervals in the circumferential direction at each position on the front and rear of the traveling body 2. A travel motor (not shown) is attached to the caterpillar 9,
The caterpillar 9 is rotated by the traveling motor to cause the traveling body 2 to travel. A rotary drum 4 provided at the center of the traveling body 2 is provided on the same axis as the axis of the traveling body 6, and is rotatable about the axis.

回転胴4の外周面に取り付けられたタイヤ型超音波探触
子7は、ゴミ輸送管6の内周面と当接するタイヤ7aを
有し、タイヤ7aは回転胴4内に設けられたシリンダ(
図示せず)によって、ゴミ輸送管6の内周面に当接自在
に構成されている。従って、シリンダを作動することに
より種々の管径のゴミ輸送管にも適応可能である。また
、タイヤ7aには、図示しないが常時少量の水が供給さ
れている。超音波探触子によって輸送管等の管厚を測定
する技術は既に多数開発されているので詳説はしないが
、本発明においては、例えばローラタイプ(タイヤ型)
の超音波探触子を使用する。第3図は本発明に使用され
る探触子の1例を示す原理図、第4図はモード波形を示
すグラフである。図面に示すように、タイヤ型超音波探
触子7はタイヤ7alノ、’に超音波探触子5が組み込
まれている。超音波探触子5からの超音波はタイヤ7a
を経てゴミ輸送管6の管壁6a (6bは塗膜である)
に入射する。
The tire-type ultrasonic probe 7 attached to the outer circumferential surface of the rotating body 4 has a tire 7a that comes into contact with the inner circumferential surface of the garbage transport pipe 6. The tire 7a is attached to a cylinder (
(not shown) so that it can freely come into contact with the inner circumferential surface of the waste transport pipe 6. Therefore, by operating the cylinder, it is possible to adapt to waste transport pipes of various pipe diameters. Although not shown, a small amount of water is always supplied to the tire 7a. Many techniques for measuring the thickness of transport pipes, etc. using ultrasonic probes have already been developed, so we will not discuss them in detail, but in the present invention, for example, roller type (tire type)
using an ultrasonic probe. FIG. 3 is a principle diagram showing an example of a probe used in the present invention, and FIG. 4 is a graph showing mode waveforms. As shown in the drawings, the tire-type ultrasonic probe 7 has an ultrasonic probe 5 built into a tire 7al. The ultrasonic waves from the ultrasonic probe 5 are transmitted to the tire 7a.
The pipe wall 6a of the garbage transport pipe 6 (6b is a coating film)
incident on .

エコーがタイヤ、管内面、および管外面から反射してく
る。この中の管内・外面からのエコーだけを選択し、音
速と時間差から管厚を算出する。
Echoes are reflected from the tire, inner tube surface, and outer tube surface. Only the echoes from the inside and outside of the tube are selected, and the tube thickness is calculated from the sound speed and time difference.

ただし、図面において: T  送信パルス、 S  管壁表面エコー B1 底面1回反射エコー B2 底面2回反射エコー 【h −出力される板厚値、 !  タイヤゴム厚。However, in the drawing: T Transmission pulse, S Tube wall surface echo B1 Bottom surface single reflection echo B2 Bottom twice reflected echo [h - Output plate thickness value, ! Tire rubber thickness.

走行体2の先端には、管内をモニターするためのTV右
カメラ0および照明11が取り付けられている。
A TV right camera 0 and a light 11 for monitoring the inside of the tube are attached to the tip of the traveling body 2.

走行体2の後方には、ロボット1の動作を制御する制御
袋a 12が走行可能に連結されており、走行体2とと
もに輸送管6内を走行する。制御装置12の後端にはケ
ーブル13が接続されており、ケーブル13は点検口1
4を通って操作盤15に接続されている。16はケーブ
ルのための滑車、17はケーブルトラムである。操作盤
15において輸送管6内をモニターしながらロボット1
を操作することかできまた、管厚計測結果を知ることが
できる。
A control bag a 12 that controls the operation of the robot 1 is movably connected to the rear of the traveling body 2, and travels within the transport pipe 6 together with the traveling body 2. A cable 13 is connected to the rear end of the control device 12, and the cable 13 is connected to the inspection port 1.
4 and is connected to the operation panel 15. 16 is a pulley for the cable, and 17 is a cable tram. While monitoring the inside of the transport pipe 6 on the operation panel 15, the robot 1
You can also operate the pipe and see the pipe thickness measurement results.

〔作用〕[Effect]

次に、本発明のロボットの操作手順を説明する■ 点検
口に組立前のロボットを運搬する。
Next, the operating procedure of the robot of the present invention will be explained. (1) Transport the unassembled robot to the inspection port.

■ 点検口の蓋を開け、ロボット(組立前)を輸送管内
に入れて組立を行う。
■ Open the lid of the inspection port, put the robot (before assembly) into the transport pipe, and perform assembly.

■ 輸送管内をブラシで清掃する。■ Clean the inside of the transport pipe with a brush.

■ モニター映像を見なから管厚の検査を行う■ ベン
ド部では回転胴を回動させ、位置(側面〕を変えて検査
する。
■ Inspect the pipe thickness without looking at the monitor image ■ At the bend, rotate the rotary cylinder and change the position (side) for inspection.

■ 作業終了後、ロボットを点検口まで戻す。■ After completing the work, return the robot to the inspection port.

■ ロボットを分解して点検口から輸送管の外に出し、
点検口の蓋を閉める。
■ Disassemble the robot and take it out of the transport pipe through the inspection port.
Close the inspection port lid.

〔発明の効果〕〔Effect of the invention〕

この発明は上述のように構成されているので下記に示す
有用な効果を奏する。
Since the present invention is configured as described above, it produces the following useful effects.

(1)  作業は操作盤から遠隔で操作することができ
、作業員が輸送管内に入る必要がないので安全性が確保
できる。
(1) Work can be controlled remotely from the control panel, and safety is ensured because there is no need for workers to enter the transport pipe.

(2)  作業状況をTVカメラでモニターすることが
できる。
(2) Work status can be monitored with a TV camera.

(3)  検査は連続計測およびスポット計測のいずれ
を行うことも可能である。
(3) Inspection can be performed by either continuous measurement or spot measurement.

(4)  回転胴により、任意の位置(管の下側あるい
は側面)で計測が可能である。
(4) The rotating cylinder allows measurement at any position (bottom or side of the tube).

(5)  計測結果をその場で直ちに確認可能である(
6)  ロボットが輸送管のベンド部でも容易に通過す
ることができ、計測が可能である。
(5) Measurement results can be checked immediately on the spot (
6) The robot can easily pass through bends in transport pipes and can perform measurements.

(7)  管に穴が開く前に補修することができる。(7) It is possible to repair a hole before it occurs in the pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施態様を示す側面図、第2図は本
発明のロボットを使用したゴミ収集管路設備の全体構成
を系統的に示した図、第3図は本発明に使用される探触
子の1例を示す原理図、第4図はモード波形を示すグラ
フ、第5図はゴミ収集管路設備の全体構成を系統的に示
した概略システム図である。図面において、 1 ロボット      2 3 走行車輪装置   4 5 超音波探触子   6 6a  管壁       6b 7 タイヤ型超音波探触子 8 押し付けンリンダ 9 10、、、TVカメラ    11 12  制御装置     13 14  点検口      15 16  滑車       17 回転胴 ゴミ輸送管 走行体 塗膜 7& タイヤ キャタピラ 照明 ケーブル 操作盤 ケーブルドラム 集塵センター 標準型投入口 ゴミ分離機 コンテナ ブロワ 消音器 大容量貯留型投入口 遮断弁 貯留排出機 集塵機 脱臭装置 ブラシ。
FIG. 1 is a side view showing one embodiment of the present invention, FIG. 2 is a diagram systematically showing the overall configuration of garbage collection pipe equipment using the robot of the present invention, and FIG. FIG. 4 is a graph showing mode waveforms, and FIG. 5 is a schematic system diagram systematically showing the overall configuration of garbage collection pipe equipment. In the drawings, 1 Robot 2 3 Traveling wheel device 4 5 Ultrasonic probe 6 6a Tube wall 6b 7 Tire-shaped ultrasonic probe 8 Pressing cylinder 9 10...TV camera 11 12 Control device 13 14 Inspection port 15 16 Pulley 17 Rotating body Garbage transport pipe Traveling body Coating 7 & Tire Caterpillar Lighting Cable operation panel Cable drum Dust collection center Standard type inlet Garbage separator Container Blower Silencer Large capacity storage type Inlet shutoff valve Storage and discharger Dust collector Deodorizing device Brush.

Claims (1)

【特許請求の範囲】 1 輸送管内を走行自在の、基端が前記走行体に取り付
けられた押し付けシリンダおよび前記押し付けシリンダ
の先端に軸着されたキャタピラからなる複数の走行車輪
装置を有する走行体と、前記走行体の中央部に前記走行
体の軸線と同一軸線上に設けられた、軸線を中心に回動
自在の円筒状の回転胴と、前記回転胴の外周面に取り付
けられた、前記輸送管の内周面を清掃するブラシと前記
輸送管の内周面と当接自在のタイヤを有するタイヤ型超
音波探触子とからなり、前記走行車輪装置は前記走行体
の前後に周方向に複数個設けられ、前記キャタピラは前
記押し付けシリンダによって前記輸送管の内周面に押し
付けられることを特徴とする管厚検査ロボット。 2 前記走行体の先端にモニター用のテレビカメラが取
り付けられた請求項1記載の管厚検査ロボット。
[Scope of Claims] 1. A traveling body that can freely travel within a transport pipe and has a plurality of traveling wheel devices including a pressing cylinder whose base end is attached to the traveling body and a caterpillar pivoted to the tip of the pressing cylinder. , a cylindrical rotating body rotatable about the axis, provided in the center of the traveling body on the same axis as the axis of the traveling body, and the transporting body attached to the outer peripheral surface of the rotating body. It consists of a brush that cleans the inner circumferential surface of the pipe and a tire-type ultrasonic probe that has a tire that can freely come into contact with the inner circumferential surface of the transport pipe, and the running wheel device is arranged circumferentially at the front and back of the traveling body. A pipe thickness inspection robot, characterized in that a plurality of caterpillars are provided, and the caterpillar is pressed against the inner circumferential surface of the transport pipe by the pressing cylinder. 2. The pipe thickness inspection robot according to claim 1, wherein a television camera for monitoring is attached to the tip of the traveling body.
JP2172161A 1990-06-29 1990-06-29 Tube thickness inspection robot Pending JPH0462407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172161A JPH0462407A (en) 1990-06-29 1990-06-29 Tube thickness inspection robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172161A JPH0462407A (en) 1990-06-29 1990-06-29 Tube thickness inspection robot

Publications (1)

Publication Number Publication Date
JPH0462407A true JPH0462407A (en) 1992-02-27

Family

ID=15936708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172161A Pending JPH0462407A (en) 1990-06-29 1990-06-29 Tube thickness inspection robot

Country Status (1)

Country Link
JP (1) JPH0462407A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263579A (en) * 2006-03-27 2007-10-11 Jfe Engineering Kk Intra-pipe inspection device
JP2008122406A (en) * 2003-10-06 2008-05-29 Qi:Kk Thickness measurement instrument for lining layer of pipe or pipe inner face
CN104698088A (en) * 2015-02-28 2015-06-10 浙江省特种设备检验研究院 Method and device for TOFD (Time of Flight Diffraction) detection of pressure pipeline on basis of ultrasonic phased array
CN105465549A (en) * 2016-01-25 2016-04-06 李超 Crawler wheel type pipeline cleaning robot capable of adapting to changes of different pipe diameters

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122406A (en) * 2003-10-06 2008-05-29 Qi:Kk Thickness measurement instrument for lining layer of pipe or pipe inner face
JP2007263579A (en) * 2006-03-27 2007-10-11 Jfe Engineering Kk Intra-pipe inspection device
JP4707595B2 (en) * 2006-03-27 2011-06-22 Jfeエンジニアリング株式会社 In-pipe inspection device
CN104698088A (en) * 2015-02-28 2015-06-10 浙江省特种设备检验研究院 Method and device for TOFD (Time of Flight Diffraction) detection of pressure pipeline on basis of ultrasonic phased array
CN105465549A (en) * 2016-01-25 2016-04-06 李超 Crawler wheel type pipeline cleaning robot capable of adapting to changes of different pipe diameters

Similar Documents

Publication Publication Date Title
JP4232623B2 (en) In-pipe inspection cart and in-pipe inspection device
JPH0462407A (en) Tube thickness inspection robot
JPH0338149B2 (en)
CN211010415U (en) Detection vehicle in pipeline
US20050210619A1 (en) Pipeline surface preparation for inspection with debris collection
KR100383535B1 (en) Robot apparatus for monitoring and repairing a utility pipe
KR101970237B1 (en) Pipeline Scanner Device Maneuverable around Deposit
Ogai et al. Pipe inspection robots for gas and oil pipelines
JP2004125752A (en) Measuring apparatus and measuring method
Ong et al. Design of a semi-autonomous modular robotic vehicle for gas pipeline inspection
Park et al. Design of a mobile robot system for automatic integrity evaluation of large size reservoirs and pipelines in industrial fields
JP2938777B2 (en) Pipeline inspection work vehicle
JP2005181139A (en) Pipe inspection method and pipe inspection device
KR102150411B1 (en) Multi-function pipe cleaning device
JP2002220049A (en) Intra-piping working robot
CN107917309A (en) A kind of pulley gear of oil-gas pipeline robot
JPH06206048A (en) Automatic coating of inner surface of steel pipe on spot and automatic inspection thereof
Singh et al. Pipe Inspection Robot
JP2003170126A (en) Cleaning robot for removing dust
JPS6336247Y2 (en)
JPS6147379B2 (en)
CN213779918U (en) Self-propelled pipeline detection device that detects a flaw
KR102206616B1 (en) Intelligent brush pig and pigging method using the same
JP2519757B2 (en) Traveling robot
KR102298927B1 (en) Cleaning apparatus for pipe line