JPH046237B2 - - Google Patents
Info
- Publication number
- JPH046237B2 JPH046237B2 JP59083781A JP8378184A JPH046237B2 JP H046237 B2 JPH046237 B2 JP H046237B2 JP 59083781 A JP59083781 A JP 59083781A JP 8378184 A JP8378184 A JP 8378184A JP H046237 B2 JPH046237 B2 JP H046237B2
- Authority
- JP
- Japan
- Prior art keywords
- burner
- gasifier
- fuel
- temperature
- flow pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 claims description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 27
- 238000002309 gasification Methods 0.000 claims description 27
- 239000003245 coal Substances 0.000 claims description 19
- 239000000919 ceramic Substances 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 10
- 239000012159 carrier gas Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 3
- 239000003034 coal gas Substances 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000002826 coolant Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 210000004907 gland Anatomy 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 2
- 240000002853 Nelumbo nucifera Species 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Description
〔発明の利用分野〕
本発明は微粉炭のガス化用バーナに係り、特に
無冷却で使用可能な石炭ガス化バーナに関する。
〔発明の背景〕
微粉炭(含炭素固体燃料)を含酸素ガスにより
高温度でガス化する噴流層ガス化方式は、H2,
COガスを製造するのに極めて好適で、各種方式
の開発が行われている。これらの方式では、微粉
炭を搬送ガス又はスラリー化媒体液で輸送し、バ
ーナにより、噴霧してガス化炉内に供給する。ガ
ス化炉内は1200〜1800℃であり、火炎近傍の温度
は2000℃を越す場合もある。このためバーナ先端
部はガスから輻射熱を受け高温になる。また、ガ
ス化炉壁からの熱伝導によつても熱を受ける。し
たがつて、従来のバーナは冷却機構を有してい
る。特開昭58−213089号公報には石炭−水−懸濁
液用のバーナが記述されている。バーナ先端部を
水又は水蒸気を導く導管で囲い、火炎に相対する
面にも冷却路を設けている。また米国Bi−gasパ
イロツトプラントのバーナは多重管にし、外側の
管に冷却水を流し冷している(8th Annual
International Conference on COGLAC)。
本発明者らの経験によれば冷却機構付のバーナ
では、冷却剤の流量管理を極めて慎重に行う必要
があつた。すなわち特願昭58−92451号明細書に
記述したように、原料供給ノズルの冷却系に圧力
と温度の検出端を設け、それぞれの指示値及び指
示値の時間変化率から冷却系を適切に制御し、制
御の限界を逸脱した場合に、ガス化原料及びガス
化剤を低減ないし停止させる。
上記出願によれば、ガス化炉への原料、ガス化
剤,冷却水等の変動に対して、原料・ガス化剤の
供給装置の過熱を防止できる。
以上のような冷却機構付バーナでは冷却系統の
トラブルが発生した場合、最悪の事態として、バ
ーナの先端が溶融し、大量の冷却剤がガス化炉内
に噴出し炉が破損するか又は冷却剤の圧力がガス
化炉圧力より低い場合はガス化炉内のガスが炉外
に噴出するケースが想定される。
一方、ガス化炉のガス化効率は種々の要因で変
化するが、ガス化剤温度の影響も受ける。ガス化
剤の温度が高いと、ガス化炉へ持込まれる熱量が
増大するため、ガス化反応温度が高くなり、ガス
化効率が向上する。しかし冷却機構付バーナでは
高温のガス化剤を通すことは、ガス化剤温度の低
下、冷却剤温度の上昇を招くことになり、ガス化
剤をガス化効率向上からみて好しい温度までに加
熱することができない。
以上のように水冷構造付バーナはガス化炉の安
全性及び効率向上の点で限界があつた。
〔発明の目的〕
本発明は上記事情に鑑みなされたもので、その
目的とするところは、冷却剤を用いることなく安
全かつ効率よく使用できる石炭ガス化バーナを得
ることにある。
〔発明の概要〕
即ち、本発明の特徴とするところは、石炭ガス
化炉の炉壁に備えられる石炭ガス化用バーナであ
つて、該炉壁を貫通してガス化炉内に微粉炭と搬
送ガスとの混合物及びガス化剤を噴出するセラミ
ツクス製棒状部材よりなる流通管と、該流通管を
炉外壁のフランジに固定する金属製取付け部と、
該流通管と該金属製取付け部との間をシールする
熱吸収性のシール部材とを具備し、前記セラミツ
クス製棒状部材よりなる流通管の中央部に軸方向
に前記混合物を搬送する円形断面形状に開口した
燃料流通孔を有し、該燃料流通孔の円形断面積を
軸方向で一定とし、該燃料流通孔近傍の周囲に円
形断面形状を有し軸方向に開口していてその断面
積が一定であるガス化剤流通孔を複数個備えたこ
とにある。
微粉炭をガス(空気,窒素ガス,二酸化炭素
等)で搬送してガス化炉に供給する場合、搬送速
度は5〜10m/sである。又、ガス化剤の流速は
30〜150m/sである。一例として、圧力20Kg/
cm2Gのガス化炉に1本のバーナで10t/dの微粉
炭を供給しようとすると、微粉炭のノズル径は6
〜8mmφ、ガス化剤のノズル径は1個の場合6〜
12mmφ、6個の場合で2.5〜5mmφである。これ
らのノズル径は石炭の供給量の平方根に比例して
太くなる。一方前記棒状部材の長さはガス化炉
の反応領域の内壁と圧力容器外壁の距離で決ま
り、一般には断熱層の厚みに近い。前記処理量の
ガス化炉でも=300〜400mm程度で、スケールア
ツプしても、この値から極端に長くなることはな
い。前記直径の穴が、断面積を変えることなく、
真直ぐ開いた前記棒状部材には特殊な方法によら
ず可能である。したがつて、本発明よりなるバー
ナは、例えばれんこんあるいはレンタンのような
形状のものとする。このような単純な形状にする
ことにより、応力集中による割れを防ぐことがで
きる。
次に熱的な変形に対する吸収法があるが、金属
との接合や、バーナ両端の固定等は避ける必要が
ある。本発明では、耐圧を持たせる部材を金属と
し、高温になる所をセラミツクスとし、金属とセ
ラミツクはグランドパツキン等のシール材により
熱による延びの吸収を行う。
ガス化炉への取り付けは、前記金属部材をガス
化炉のバーナ取り付けフランジに固定する。セラ
ミツクス部は、圧力容器内に全部納まるように
し、それ自身には圧力がかからないようにする。
セラミツクスの材料としては、静的な状態で使
用するので熱応力はほとんど無視できることか
ら、耐熱性,耐食性,耐摩耗性が特に強く要求さ
れる。バーナ先端部は酸化雰囲気になることか
ら、Al2O3系等の酸化物系セラミツクが良い。
〔発明の実施例〕
本発明を実施するバーナを第1図乃至第3図に
示し、以下図面に従い本発明を説明する。本バー
ナは、耐圧容器7を断熱、耐火材6よりなるガス
化炉のフランジ12に取り付ける。バーナは基本
的に微粉炭等の燃料導入管16、酸素ガス等のガ
ス化剤導入管17、バーナ取り付け部13及び流
通管5で構成される。取り付け部13は金属製、
流通管5はセラミツクス製である。流通管5はグ
ランドパツキン10を介して取り付け部13に固
定されている。グランドパツキン10はねじ9を
締付けることによりパツキン押え8により、固定
される。
燃料導入管16から流れてきた燃料1は、連結
管11を通つて流通管5の燃料流通孔3に入る。
連結管11は取り付け部13には溶接により固定
されているが、流通管5とは、すり合せにより接
続されており、流通管5又は連結管11の延びを
吸収できる。
ガス化剤2はガス化剤導入管17を通り、取り
付け部13のガス室15に入り、ここから、流通
管5のガス化剤流通孔4に入る。燃料1とガス化
剤2は流通管5の先端、ガス化反応室14で反応
する。
第2図及び第3図に流通管の断面を示す。本実
施例では燃料流通孔3を流通管5の中央に開け、
その周囲に6個のガス化剤流通孔4を同心円上等
間隔で開けた。ガス化剤流通孔4の位置は製作で
きる範囲でできるだけ燃料流通孔3に近づけ、流
通管5の径を小さくすることにより、流通管5の
先端が受ける輻射熱量を低減できる。
本バーナにはバーナ温度監視用の測定装置を設
ける。第1図に示したごとく、熱電対19を、熱
電対固定端子18を介して流通管5にとりつけ
る。流通管5には、第2図に示したように、熱電
対挿入孔20を開け、流通管先端の温度を測定す
る。
本発明なるバーナを設けたガス化炉の運転方法
を説明する。常温,常圧状態のガス化炉を起動す
るには、通常ガス化炉予熱器(図示せず)で、ま
ずガス化炉を昇温する。本発明では、これに先立
ちバーナの燃料導入管16から、燃料搬送用のガ
スを流通させ、その後ガス化炉予熱器を作動させ
る。予熱器にはプロパンバーナ又は油バーナを使
用する。ガス化炉の昇温は予熱バーナの性能によ
り、加圧下で開始してもよい。昇温の速度はガス
化炉の構造,材質等によるが、平均100〜300℃/
hで行い、ガス化炉の温度を燃料が着火し、その
まま安定なガス化過程に移行できるような温度ま
で昇温する。この間、断熱,耐火材6の表面温度
及びバーナの流通管5温度も上昇するが、流通管
5に燃料搬送用ガスを流しつつ、前記速度で昇温
しているため、熱的変化に伴うセラミツクスの損
傷,破損等はまつたくない。ガス化炉が所定の温
度に達したら、予熱バーナを作動させたまま、燃
料導入管16より、燃料1を供給する。燃料が微
粉炭等の固体であれば、すでに燃料搬送ガスは流
されているので、燃料の供給フイーダ(図示せ
ず)を作動させるだけで、燃料は送られてくる。
ガス化炉に燃料が供給されると、この燃料は予
熱バーナのプロパン又は油の燃焼用空気と反応し
て、燃焼する。その後、ガス化剤導入管17より
ガス化剤2を徐々に流し、流通管5の先端で燃料
と反応させる。ガス化炉の温度を監視しながらガ
ス化剤の流量を徐々に所定値まで増やす。所定値
に達した後、予熱バーナのプロパン又は油及び空
気の供給を停止し、本来のガス化過程に移行す
る。
第1表に本発明なるバーナの使用条件の一例を
示す。Al2O3=99.7%のセラミツクスで製造した
流通管を有するバーナで試験した結果、バーナ近
傍のガス化炉温度1770〜1840℃の時に、バーナ先
端温度は1480〜1510℃を示した。本発明なるバー
ナは、この使用条件で、長時間にわ
[Field of Application of the Invention] The present invention relates to a burner for gasifying pulverized coal, and particularly to a coal gasifying burner that can be used without cooling. [Background of the Invention] The spouted bed gasification method gasifies pulverized coal (carbon-containing solid fuel) with oxygen-containing gas at high temperature .
It is extremely suitable for producing CO gas, and various methods are being developed. In these systems, pulverized coal is transported by a carrier gas or a slurry medium liquid, and is atomized by a burner and fed into a gasifier. The temperature inside the gasifier is 1200-1800°C, and the temperature near the flame can exceed 2000°C. Therefore, the tip of the burner receives radiant heat from the gas and becomes high temperature. It also receives heat through heat conduction from the gasifier wall. Conventional burners therefore have a cooling mechanism. JP-A-58-213089 describes a burner for coal-water suspensions. The tip of the burner is surrounded by a conduit that guides water or steam, and a cooling path is also provided on the side facing the flame. In addition, the burners at the American Big Gas pilot plant are made of multiple tubes, and cooling water is run through the outer tubes to cool them (8th Annual
International Conference on COGLAC). According to the experience of the present inventors, in a burner equipped with a cooling mechanism, it was necessary to manage the flow rate of the coolant extremely carefully. That is, as described in Japanese Patent Application No. 58-92451, pressure and temperature detection ends are provided in the cooling system of the raw material supply nozzle, and the cooling system is appropriately controlled from the respective indicated values and the time rate of change of the indicated values. However, if the control limit is exceeded, the gasification raw material and gasification agent are reduced or stopped. According to the above-mentioned application, it is possible to prevent overheating of the raw material/gasifying agent supply device in response to fluctuations in the raw material, gasifying agent, cooling water, etc. to the gasifier. If a problem occurs in the cooling system of a burner with a cooling mechanism as described above, the worst case scenario is that the tip of the burner will melt and a large amount of coolant will be ejected into the gasifier, damaging the furnace or destroying the coolant. If the pressure in the gasifier is lower than the gasifier pressure, it is assumed that the gas inside the gasifier will blow out of the furnace. On the other hand, the gasification efficiency of a gasifier varies depending on various factors, and is also affected by the temperature of the gasifying agent. When the temperature of the gasification agent is high, the amount of heat carried into the gasification furnace increases, so the gasification reaction temperature becomes high and the gasification efficiency improves. However, with a burner equipped with a cooling mechanism, passing a high-temperature gasifying agent causes a decrease in the temperature of the gasifying agent and an increase in the temperature of the coolant. Can not do it. As described above, water-cooled burners have limitations in improving the safety and efficiency of gasifiers. [Object of the Invention] The present invention was made in view of the above circumstances, and its object is to obtain a coal gasification burner that can be used safely and efficiently without using a coolant. [Summary of the Invention] That is, the present invention is characterized by a coal gasification burner provided in the furnace wall of a coal gasification furnace, which penetrates the furnace wall and injects pulverized coal into the gasification furnace. A flow pipe made of a rod-shaped ceramic member that spouts out a mixture with a carrier gas and a gasification agent, and a metal attachment part that fixes the flow pipe to a flange on the outer wall of the furnace;
A circular cross-sectional shape comprising a heat-absorbing sealing member for sealing between the flow pipe and the metal attachment part, and transporting the mixture in the axial direction to the center of the flow pipe made of the ceramic rod-shaped member. The fuel distribution hole has a circular cross-sectional area that is constant in the axial direction, and the fuel distribution hole has a circular cross-sectional shape around the vicinity of the fuel distribution hole and is open in the axial direction, and the cross-sectional area is constant in the axial direction. The reason is that a plurality of constant gasifying agent flow holes are provided. When pulverized coal is transported by gas (air, nitrogen gas, carbon dioxide, etc.) and supplied to the gasifier, the transport speed is 5 to 10 m/s. Also, the flow rate of the gasifying agent is
It is 30-150m/s. As an example, pressure 20Kg/
When trying to supply 10t/d of pulverized coal with one burner to a cm 2 G gasifier, the nozzle diameter of the pulverized coal is 6
~8mmφ, gasifying agent nozzle diameter is 6~ for one piece
12mmφ, 2.5~5mmφ in case of 6 pieces. The diameter of these nozzles increases in proportion to the square root of the amount of coal supplied. On the other hand, the length of the rod-shaped member is determined by the distance between the inner wall of the reaction region of the gasifier and the outer wall of the pressure vessel, and is generally close to the thickness of the heat insulating layer. Even in a gasification furnace with the above-mentioned throughput, the length is approximately 300 to 400 mm, and even if scaled up, the length will not become extremely long from this value. A hole of the above diameter, without changing the cross-sectional area,
It is possible to make the rod-shaped member open straight without any special method. Therefore, the burner according to the invention is, for example, shaped like a lotus root or a lotus root. By using such a simple shape, cracking due to stress concentration can be prevented. Next, there is a method of absorbing thermal deformation, but it is necessary to avoid joining with metal or fixing both ends of the burner. In the present invention, the pressure-resistant member is made of metal, the parts that become high temperature are made of ceramic, and the elongation caused by heat is absorbed between the metal and ceramic by a sealing material such as a gland packing. For attachment to the gasifier, the metal member is fixed to a burner attachment flange of the gasifier. The ceramic part should be completely contained within the pressure vessel so that no pressure is applied to it. As ceramic materials are used in a static state, thermal stress is almost negligible, so heat resistance, corrosion resistance, and abrasion resistance are particularly required. Since the tip of the burner is in an oxidizing atmosphere, oxide-based ceramics such as Al 2 O 3 -based are preferred. [Embodiments of the Invention] A burner embodying the present invention is shown in FIGS. 1 to 3, and the present invention will be described below with reference to the drawings. In this burner, a pressure vessel 7 is attached to a flange 12 of a gasifier made of an insulating and refractory material 6. The burner basically comprises a fuel introduction pipe 16 such as pulverized coal, a gasification agent introduction pipe 17 such as oxygen gas, a burner attachment part 13, and a flow pipe 5. The mounting part 13 is made of metal,
The flow pipe 5 is made of ceramics. The flow pipe 5 is fixed to a mounting portion 13 via a gland packing 10. The gland packing 10 is fixed by the packing holder 8 by tightening the screw 9. The fuel 1 flowing from the fuel introduction pipe 16 passes through the connecting pipe 11 and enters the fuel flow hole 3 of the flow pipe 5 .
Although the connecting pipe 11 is fixed to the attachment part 13 by welding, it is connected to the flow pipe 5 by grinding, so that the extension of the flow pipe 5 or the connecting pipe 11 can be absorbed. The gasifying agent 2 passes through the gasifying agent introduction pipe 17, enters the gas chamber 15 of the attachment part 13, and from there enters the gasifying agent flow hole 4 of the flow pipe 5. The fuel 1 and the gasification agent 2 react in the gasification reaction chamber 14 at the tip of the flow pipe 5. Figures 2 and 3 show cross sections of the flow pipe. In this embodiment, the fuel flow hole 3 is opened in the center of the flow pipe 5,
Six gasifying agent flow holes 4 were opened concentrically at equal intervals around it. By positioning the gasifying agent flow hole 4 as close to the fuel flow hole 3 as possible and reducing the diameter of the flow tube 5, the amount of radiant heat received by the tip of the flow tube 5 can be reduced. This burner is equipped with a measuring device for monitoring the burner temperature. As shown in FIG. 1, the thermocouple 19 is attached to the flow pipe 5 via the thermocouple fixed terminal 18. As shown in FIG. 2, a thermocouple insertion hole 20 is opened in the flow tube 5 to measure the temperature at the tip of the flow tube. A method of operating a gasifier equipped with a burner according to the present invention will be explained. To start up a gasifier at room temperature and pressure, the temperature of the gasifier is first raised using a gasifier preheater (not shown). In the present invention, prior to this, gas for fuel conveyance is passed through the fuel inlet pipe 16 of the burner, and then the gasifier preheater is operated. Use a propane burner or oil burner for the preheater. The temperature increase of the gasifier may be started under pressure depending on the performance of the preheating burner. The rate of temperature rise depends on the structure and material of the gasifier, but on average it is 100 to 300℃/
The temperature of the gasifier is raised to a temperature at which the fuel can be ignited and the gasification process can proceed directly. During this time, the surface temperature of the heat insulating and refractory material 6 and the temperature of the burner flow pipe 5 also rise, but since the temperature rises at the above rate while the fuel conveying gas is flowing through the flow pipe 5, the temperature of the ceramic due to the thermal change increases. We do not want to prevent any damage or breakage. When the gasifier reaches a predetermined temperature, fuel 1 is supplied from the fuel introduction pipe 16 while the preheating burner is kept operating. If the fuel is a solid such as pulverized coal, the fuel carrier gas is already flowing, so the fuel can be sent simply by operating a fuel supply feeder (not shown). When the gasifier is supplied with fuel, it reacts with the propane or oil combustion air of the preheat burner and burns. Thereafter, the gasifying agent 2 is gradually flowed through the gasifying agent introduction pipe 17 and reacts with the fuel at the tip of the flow pipe 5. Gradually increase the flow rate of the gasifier to a predetermined value while monitoring the temperature of the gasifier. After reaching a predetermined value, the supply of propane or oil and air to the preheating burner is stopped, and the original gasification process begins. Table 1 shows an example of the usage conditions of the burner of the present invention. As a result of testing with a burner having a flow tube made of ceramics containing Al 2 O 3 =99.7%, the burner tip temperature showed a temperature of 1480 to 1510°C when the gasifier temperature near the burner was 1770 to 1840°C. The burner of the present invention can be used for a long time under these conditions of use.
【表】【table】
【表】
たり、微粉炭を安定に供給し続けた。第1表はガ
ス化剤に酸素を用いた場合であるが、ガス化剤に
空気を使用した実施例を第2表に示す。実施例
は従来の多重管式水冷金属バーナで、バーナの安
定性確保から、空気の予熱温度は150〜200℃程度
が限界である。その結果、ガス化炉を、石炭灰が
溶融してスラグとして安定に炉から排出す[Table] The company continued to provide a stable supply of pulverized coal. Table 1 shows the case where oxygen was used as the gasifying agent, but Table 2 shows examples where air was used as the gasifying agent. The example is a conventional multi-tube type water-cooled metal burner, and in order to ensure the stability of the burner, the preheating temperature of the air is limited to about 150 to 200°C. As a result, the coal ash melts and is stably discharged from the gasifier as slag.
本発明によれば、冷却剤を用いずに燃料及びガ
ス化剤を安定にガス化炉に供給できるので、ガス
化炉の安全性及びガス化効率の向上を図れる効果
がある。
According to the present invention, fuel and gasifying agent can be stably supplied to the gasifier without using a coolant, so there is an effect that the safety of the gasifier and the gasification efficiency can be improved.
第1図は本発明石炭バーナの縦断面図、第2図
は第1図のA部詳細縦断面図、第3図は第2図の
B−B断面図である。
3…燃料流通孔、4…ガス化剤流通孔、5…流
通管、1…燃料、2…ガス化剤、14…ガス化反
応室。
1 is a longitudinal sectional view of the coal burner of the present invention, FIG. 2 is a detailed longitudinal sectional view of section A in FIG. 1, and FIG. 3 is a sectional view taken along line BB in FIG. 2. 3...Fuel distribution hole, 4...Gasification agent distribution hole, 5...Flow pipe, 1...Fuel, 2...Gasification agent, 14...Gasification reaction chamber.
Claims (1)
用バーナであつて、該炉壁を貫通してガス化炉内
に微粉炭と搬送ガスとの混合物及びガス化剤を噴
出するセラミツクス製棒状部材よりなる流通管
と、該流通管を炉外壁のフランジに固定する金属
製取付け部と、該流通管と該金属製取付け部との
間をシールする熱吸収性のシール部材とを具備
し、前記セラミツクス製棒状部材よりなる流通管
の中央部に軸方向に前記混合物を搬送する円形断
面形状に開口した燃料流通孔を有し、該燃料流通
孔の円形断面積を軸方向で一定とし、該燃料流通
孔近傍の周囲に円形断面形状を有し軸方向に開口
していてその断面積が一定であるガス化剤流通孔
を複数個備えたことを特徴とする石炭ガス化バー
ナ。1 A coal gasification burner installed on the wall of a coal gasification furnace, which is a rod-shaped ceramic rod that penetrates the furnace wall and spouts a mixture of pulverized coal and carrier gas and a gasifying agent into the gasification furnace. A flow pipe made of a member, a metal attachment part for fixing the flow pipe to a flange on the outer wall of the furnace, and a heat-absorbing seal member for sealing between the flow pipe and the metal attachment part, A fuel flow hole having a circular cross-sectional shape for conveying the mixture in the axial direction is provided in the center of the flow pipe made of the ceramic rod-shaped member, and the circular cross-sectional area of the fuel flow hole is constant in the axial direction. A coal gasification burner comprising a plurality of gasifying agent flow holes having a circular cross-sectional shape around the vicinity of the fuel flow holes, opening in the axial direction, and having a constant cross-sectional area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8378184A JPS60243195A (en) | 1984-04-27 | 1984-04-27 | Burner for gasifying coal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8378184A JPS60243195A (en) | 1984-04-27 | 1984-04-27 | Burner for gasifying coal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60243195A JPS60243195A (en) | 1985-12-03 |
JPH046237B2 true JPH046237B2 (en) | 1992-02-05 |
Family
ID=13812163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8378184A Granted JPS60243195A (en) | 1984-04-27 | 1984-04-27 | Burner for gasifying coal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60243195A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009019125A (en) * | 2007-07-12 | 2009-01-29 | Babcock Hitachi Kk | Gasification method and apparatus |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5415442A (en) * | 1977-05-11 | 1979-02-05 | Steigerwald Strahltech | Method and apparatus for sealing in charged particle beam welding |
JPS54129004A (en) * | 1978-03-30 | 1979-10-06 | Agency Of Ind Science & Technol | Method and device for coal gasification |
JPS5512182A (en) * | 1978-07-07 | 1980-01-28 | Otto & Co Gmbh Dr C | Nozzle brick insertion pipe in coke furnace heated flue |
US4364726A (en) * | 1978-12-09 | 1982-12-21 | Kernforschungsanlage Julich Gmbh | Ceramic burner head with separate fuel and oxidizer passages |
JPS5886316A (en) * | 1981-11-19 | 1983-05-23 | Mitsubishi Heavy Ind Ltd | Burner |
JPS5887193A (en) * | 1981-11-18 | 1983-05-24 | Agency Of Ind Science & Technol | Method for introducing combustion gas for heating |
JPS59180207A (en) * | 1983-03-18 | 1984-10-13 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Method of partially burning burner and solid fuel |
JPS60117081A (en) * | 1983-11-29 | 1985-06-24 | 三菱重工業株式会社 | Fluidized-bed combustion furnace |
-
1984
- 1984-04-27 JP JP8378184A patent/JPS60243195A/en active Granted
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5415442A (en) * | 1977-05-11 | 1979-02-05 | Steigerwald Strahltech | Method and apparatus for sealing in charged particle beam welding |
JPS54129004A (en) * | 1978-03-30 | 1979-10-06 | Agency Of Ind Science & Technol | Method and device for coal gasification |
JPS5512182A (en) * | 1978-07-07 | 1980-01-28 | Otto & Co Gmbh Dr C | Nozzle brick insertion pipe in coke furnace heated flue |
US4364726A (en) * | 1978-12-09 | 1982-12-21 | Kernforschungsanlage Julich Gmbh | Ceramic burner head with separate fuel and oxidizer passages |
JPS5887193A (en) * | 1981-11-18 | 1983-05-24 | Agency Of Ind Science & Technol | Method for introducing combustion gas for heating |
JPS5886316A (en) * | 1981-11-19 | 1983-05-23 | Mitsubishi Heavy Ind Ltd | Burner |
JPS59180207A (en) * | 1983-03-18 | 1984-10-13 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Method of partially burning burner and solid fuel |
JPS60117081A (en) * | 1983-11-29 | 1985-06-24 | 三菱重工業株式会社 | Fluidized-bed combustion furnace |
Also Published As
Publication number | Publication date |
---|---|
JPS60243195A (en) | 1985-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5449286A (en) | Controlled flame fuel jet combustion | |
US5515794A (en) | Partial oxidation process burner with recessed tip and gas blasting | |
US5785721A (en) | Fuel injector nozzle with preheat sheath for reducing thermal shock damage | |
US5411395A (en) | Fuel jet burner | |
US5209656A (en) | Combustion system for high velocity gas injection | |
KR0178058B1 (en) | Composite lance | |
JP2588355B2 (en) | Oxy-fuel combustion equipment | |
JPH028603A (en) | Burner for partial combustion having spiral flow cooling surface | |
JPH02126013A (en) | Tip pf burner nozzle assembly | |
JPS61108694A (en) | Apparatus for gassifying fine powdery coal | |
JPH046237B2 (en) | ||
US7510395B2 (en) | Device for introducing substances into reaction space | |
US5839890A (en) | Condensation free nozzle | |
US11940228B2 (en) | High-temperature fluid transporting pipeline with heat exchange apparatus installed therein, suitable heat exchange apparatus and heat exchange method | |
JP2010106132A (en) | Solid fuel gasification burner and gasification furnace equipped with the same | |
SE462915B (en) | PROCEDURE FOR GASING OF CARBON CONTAINERS | |
EP0367352B1 (en) | Gas burner with a premixing/preheating zone | |
CA3206688A1 (en) | Burner arrangement for synthesis gas production | |
JPS6156270B2 (en) | ||
JPH08157915A (en) | Blowing of pulverized fine coal into blast furnace | |
MXPA99007006A (en) | Fuel injector nozzle with preheat sheath for reducing thermal shock damage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |