JPH0462336B2 - - Google Patents

Info

Publication number
JPH0462336B2
JPH0462336B2 JP60164006A JP16400685A JPH0462336B2 JP H0462336 B2 JPH0462336 B2 JP H0462336B2 JP 60164006 A JP60164006 A JP 60164006A JP 16400685 A JP16400685 A JP 16400685A JP H0462336 B2 JPH0462336 B2 JP H0462336B2
Authority
JP
Japan
Prior art keywords
electrode
oil
lead
basicity
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60164006A
Other languages
Japanese (ja)
Other versions
JPS6225250A (en
Inventor
Kenichi Suzuki
Shinya Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP60164006A priority Critical patent/JPS6225250A/en
Publication of JPS6225250A publication Critical patent/JPS6225250A/en
Publication of JPH0462336B2 publication Critical patent/JPH0462336B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、油の酸性、塩基性度検出用電極に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode for detecting acidity and basicity of oil.

[従来の技術] 産業界においては燃料、作動油、焼入れ油、潤
滑油等の各種の油が使用されているが、それらは
貯蔵あるいは使用中において、大気による酸化、
あるいは燃料生成物の蓄積等により次第に酸性度
が増大し、やがて腐蝕性その他、初期性能の低下
をもたらすことが知られている。
[Prior Art] Various types of oils such as fuels, hydraulic oils, quenching oils, and lubricating oils are used in industry, but during storage or use, they undergo oxidation and oxidation in the atmosphere.
Alternatively, it is known that the acidity gradually increases due to accumulation of fuel products, etc., which eventually leads to corrosion and other deterioration in initial performance.

従つて油の変質を迅速適格に検出することは油
剤管理の上で極めて重要なことである。従来この
目的のためにはJIS K2501で規定された石油製品
中和価試験方法に基づき、油の酸性、塩基性を知
る方が一般に用いられてきた。この方法は油の一
定量を採取し、別に用意したトルエン−イソプロ
ピルアルコール−水の混合溶媒で希釈した後酸あ
るいは塩基の標準液で滴定分析し、油に含まれる
酸性、塩基性成分量を知るものである。しかしな
がらこの方法は油の酸性、塩基性を直接検出する
ものではないため操作が煩雑であるばかりでな
く、油の酸性、塩基性度の変化を継続的に検出で
きないのが欠点である。
Therefore, rapid and accurate detection of oil deterioration is extremely important in oil management. Conventionally, for this purpose, it has been generally used to know the acidity and basicity of oil based on the petroleum product neutralization value test method specified in JIS K2501. In this method, a certain amount of oil is collected, diluted with a mixed solvent of toluene, isopropyl alcohol, and water prepared separately, and then titrated and analyzed with an acid or base standard solution to determine the amount of acidic and basic components contained in the oil. It is something. However, since this method does not directly detect the acidity or basicity of oil, it is not only complicated to operate, but also has the disadvantage that it cannot continuously detect changes in the acidity or basicity of oil.

一方、水溶液の酸性、塩基性度を高い信頼性の
下に、直接かつ継続的に検出する唯一の装置とし
てPHメータと呼称される計器が市販されている。
この計器のセンサ部は電気化学的原理に基づくも
ので、水溶液の酸性、塩基性度に感応して電極電
位が変化するPH電極と、電極電位が常に一定の値
を有する基準電極とから構成される。これら一対
の電極を被験水溶液に浸漬した時、電極対にはPH
値に比例した電位差が発生し、これを計器に内蔵
された電位差計で測定することにより、水溶液の
PHすなわち酸性、塩基性度を検出するものであ
る。
On the other hand, an instrument called a PH meter is commercially available as the only device that can directly and continuously detect the acidity and basicity of aqueous solutions with high reliability.
The sensor section of this instrument is based on electrochemical principles and consists of a PH electrode whose electrode potential changes in response to the acidity and basicity of the aqueous solution, and a reference electrode whose electrode potential always remains constant. Ru. When these pairs of electrodes are immersed in the test aqueous solution, the PH
A potential difference proportional to the value is generated, and by measuring this with a potentiometer built into the instrument, the aqueous solution can be measured.
It detects PH, that is, acidity and basicity.

PH電極としてはガラス電極、アンチモン電極、
各種酸化物電極が知られ、一方基準電極としては
カロメル電極、変化銀電極等が公知の電極として
使用される。かような構成のPHメータを油の酸
性、塩基性度の検出に適用することは原理的には
可能であり、たとえばエンジン油の塩基性度検出
用に市販のPHメータを使用する提案がなされてい
る(特開昭56−47614)。
PH electrodes include glass electrodes, antimony electrodes,
Various oxide electrodes are known, while calomel electrodes, variable silver electrodes, and the like are used as reference electrodes. In principle, it is possible to apply a PH meter with such a configuration to detect the acidity and basicity of oil; for example, there has been a proposal to use a commercially available PH meter to detect the basicity of engine oil. (Japanese Unexamined Patent Publication No. 1983-47614).

[従来技術の問題点] しかしながら市販あるいは既に公知の基準電極
を油中で使用した場合にはその構造に起因して電
位安定性に著しく欠けるという問題点があつた。
[Problems with the Prior Art] However, when a commercially available or already known reference electrode is used in oil, there is a problem in that potential stability is significantly lacking due to its structure.

すなわち上記公知の基準電極の構造は、一般に
ガラスもしくは樹脂製の外筒中には塩類の水溶液
を含む電極構成要素が収納され、外筒の末端部に
は少なくともピンホール程度の孔を有する隔膜が
設けられ、被験液との液絡が不可欠の構造となつ
ていることである。かような構造の基準電極が油
中で使用された場合、外筒内部の水溶液は液絡部
を介して油と接触し、液間電位差による電極電位
の誤差発生を招くだけでなく時間の経過と共に内
部水溶液と油が相互拡散する結果電位が初期値か
ら大きく変化し基準電極としての特性が失なわれ
るという問題があつた。
That is, the structure of the above-mentioned known reference electrode is that electrode components containing an aqueous salt solution are generally housed in an outer cylinder made of glass or resin, and a diaphragm having at least a pinhole-sized hole is provided at the end of the outer cylinder. The liquid junction with the test liquid is an essential structure. When a reference electrode with such a structure is used in oil, the aqueous solution inside the outer cylinder comes into contact with the oil through the liquid junction, which not only causes an error in the electrode potential due to the liquid-to-liquid potential difference, but also causes problems over time. At the same time, there was a problem that as a result of mutual diffusion between the internal aqueous solution and the oil, the potential changed greatly from the initial value, and the characteristics as a reference electrode were lost.

さらにまた上記公知電極は100℃以上の温度領
域では使用することができずたとえば100℃以上
の温度を有する焼入れ油等には適用できないとい
う欠点があつた。
Furthermore, the above-mentioned known electrodes have the disadvantage that they cannot be used in a temperature range of 100°C or higher and cannot be applied to, for example, quenching oil having a temperature of 100°C or higher.

本発明は公知基準電極の有する上述の欠点を解
消することを基本的目的とし、特に、内部溶液を
要さず、油中で安定な電位を維持できる油中酸
性、塩基性度検出方法及びそのための基準電極を
提供することを課題とする。
The basic purpose of the present invention is to eliminate the above-mentioned drawbacks of known reference electrodes, and in particular, a method for detecting acidity and basicity in oil that does not require an internal solution and can maintain a stable potential in oil, and a method for detecting acidity and basicity in oil. The objective is to provide a reference electrode for this purpose.

[問題点を解決するための手段および作用] 本発明の油中酸性、塩基性度検出方法は、油中
の酸性、塩基性度に感応して電極電位が変化する
電極と、鉛および硫酸イオンと硫酸鉛との平衡反
応に基づく電位を基準電位とする電極を用いて、
電位差を測定することを特徴とする。
[Means and effects for solving the problems] The method for detecting acidity and basicity in oil of the present invention uses an electrode whose electrode potential changes in response to acidity and basicity in oil, and lead and sulfate ions. Using an electrode whose reference potential is the potential based on the equilibrium reaction between and lead sulfate,
It is characterized by measuring potential difference.

本発明の油中酸性、塩基性度検出用基準電極は
少なくとも油と接触する表層部分が金属鉛からな
る基体に硫酸鉛を担持してなることを特徴とす
る。
The reference electrode for detecting acidity and basicity in oil according to the present invention is characterized in that at least the surface layer that comes into contact with oil is formed by supporting lead sulfate on a base made of metallic lead.

本発明における少なくとも油と接触する表層部
分とは、油中の酸性、塩基性度を検出するために
本発明の基準電極が被験油中に浸漬されることが
予測される表層部分の範囲をさす。本発明におけ
る金属鉛からなる基体とは油中に浸漬された時そ
の表面の鉛および硫酸イオンと硫酸鉛との平衡反
応の場を提供するとともに、反応に基づく平衡電
位を外部検出回路へ伝達する導電体の役割をはた
すものであり、基体の少なくとも油と接触する表
層部分が金属鉛で構成されるものである。具体的
には、棒状、管状、枝状、格子状の金属鉛もしく
は種々の金属あるいは非金属材料を芯材とし、め
つき、クラツド等により表層部分に金属鉛を被覆
した材料が使用できる。本発明に使用される金属
鉛の純度は基準電極を構成した時の電位の安定上
出来るだけ高純度のものが好ましいが純度99%以
上のものであれば特に問題なく使用することがで
きる。本発明における硫酸鉛(PbSO4)は結晶状
もしくは粉末状の固体物質であり、水および油類
には極めて小さな溶解度しか示さない化合物であ
る。
In the present invention, at least the surface layer portion that comes into contact with oil refers to the range of the surface layer portion where the reference electrode of the present invention is expected to be immersed in the test oil in order to detect acidity and basicity in the oil. . In the present invention, the base made of metal lead, when immersed in oil, provides a field for equilibrium reaction between lead and sulfate ions on its surface and lead sulfate, and also transmits the equilibrium potential based on the reaction to an external detection circuit. It serves as a conductor, and at least the surface layer of the base that comes into contact with oil is made of lead metal. Specifically, a rod-shaped, tubular, branch-shaped, or lattice-shaped material in which the core material is made of metallic lead or various metals or non-metallic materials, and the surface layer is coated with metallic lead by plating, cladding, etc., can be used. The purity of the metal lead used in the present invention is preferably as high as possible in order to stabilize the potential when the reference electrode is constructed, but it can be used without any particular problem as long as it has a purity of 99% or more. Lead sulfate (PbSO 4 ) in the present invention is a crystalline or powdery solid substance, and is a compound that exhibits extremely low solubility in water and oils.

本発明で使用される硫酸鉛は特にその製法は問
わないが純度は上記金属鉛と同様の理由により純
度99%以上のものが好ましい。
The manufacturing method of the lead sulfate used in the present invention is not particularly limited, but the purity is preferably 99% or higher for the same reason as the above-mentioned lead metal.

上記硫酸鉛を少なくとも油と接触する表層部分
が金属鉛からなる基体上に担持する方法としては
種々の方法が適用できる。それを例示すると以下
の様である。
Various methods can be used to support the lead sulfate on the substrate, at least the surface layer portion of which comes into contact with oil, which is made of metallic lead. An example of this is as follows.

第1に硫酸鉛の固体粉末を適当なバインダーを
用いて該基体上に担持する方法である。具体的に
は硫酸鉛の粉末を乳鉢等を用いて適当な粒度まで
粉砕した後、これに溶媒に溶かした樹脂を添加
し、ベースト状となつたものを該基体状にフイル
ム状に塗布し、その後溶媒を揮散させる方法であ
る。この方法において使用する樹脂は本発明の電
極を適用する油類には溶解しないものを選択する
必要がある。
The first method is to support solid powder of lead sulfate on the substrate using a suitable binder. Specifically, lead sulfate powder is ground to an appropriate particle size using a mortar or the like, then a resin dissolved in a solvent is added to this, and the resulting base is applied to the base in the form of a film. This is a method in which the solvent is then volatilized. The resin used in this method must be selected from a resin that does not dissolve in the oil to which the electrode of the present invention is applied.

第2方法は微細孔を有するプラスチツクフイル
ムやガラス繊維で編んだかご状もしくは袋状の隔
膜内に本発明の基体を挿入しさらに、隔膜と基体
との間〓に硫酸鉛を充填する方法である。具体的
には、硫酸鉛の粉末を乳鉢等を用いて適当な粒度
まで粉砕した後これに水、アルコール等を添加し
ペースト状としたものを充填しその後乾燥を行
う。この方法において使用する隔膜材料は本発明
の電極を適用する油類には溶解しないことは勿
論、適用温度において、軟化等の機能劣化しない
ものを選択する必要がある。
The second method is to insert the substrate of the present invention into a cage-shaped or bag-shaped diaphragm made of a plastic film or glass fiber having micropores, and then fill the space between the diaphragm and the substrate with lead sulfate. . Specifically, lead sulfate powder is ground to an appropriate particle size using a mortar or the like, and then water, alcohol, etc. are added to the powder to form a paste, which is then filled and dried. The diaphragm material used in this method needs to be selected from a material that not only does not dissolve in the oil to which the electrode of the present invention is applied, but also does not deteriorate in function, such as softening, at the application temperature.

第3の方法は少なくとも油と接触する表層部分
が金属鉛からなるを硫酸イオンと反応させ金属鉛
表面で硫酸鉛を生成、担持させる方法である。
The third method is to react a metal lead, at least the surface layer that comes into contact with oil, with sulfate ions to generate and support lead sulfate on the surface of the metal lead.

具体的には0.1〜5N程度の硫酸水溶液に該基体
を浸漬し、そのまま長時間放置するか、もしくは
金属鉛が陽極となるようにして直流電圧を印加
し、電解処理により金属鉛表面に硫酸鉛の被覆層
を形成し、その後所望量の硫酸鉛が生成した時点
で基体を引き上げ水洗、乾燥する。この方法にお
いて硫酸鉛は金属鉛の被覆層として形成されるた
め均一かつ保持性の良い担持ができる特徴を有し
ているが、予め金属鉛表面を粗面化もしくは多孔
質化しておくことにより保持性は一層向上する。
この方法において電解処理を適用する場合には定
電位電解法を用いると効率よく硫酸鉛を生成させ
ることができる。
Specifically, the substrate is immersed in an aqueous sulfuric acid solution of about 0.1 to 5N and left as is for a long time, or a DC voltage is applied with the metal lead serving as an anode, and lead sulfate is applied to the surface of the metal lead through electrolytic treatment. A coating layer is formed, and when a desired amount of lead sulfate has been produced, the substrate is pulled up, washed with water, and dried. In this method, lead sulfate is formed as a coating layer of metallic lead, so it has the characteristic of being able to be supported uniformly and with good retention. sex will further improve.
When electrolytic treatment is applied in this method, lead sulfate can be efficiently produced by using a constant potential electrolysis method.

またこの担持方法においては金属鉛の一部が硫
酸鉛の生成に消費されるため基体は十分厚みのあ
る金属鉛から構成されているのがよい。油と接触
する表層部分が金属鉛から成る基体とは、前期該
表層部分が鉛層のもの、メツシユ状の鉛、或いは
鉛線材をコイル状に巻いたもの等を含み必ずしも
一様な鉛層である必要はない。また既述の通り金
属鉛の多孔層であつてもよい。
Further, in this supporting method, since a part of the metallic lead is consumed in producing lead sulfate, it is preferable that the substrate is made of sufficiently thick metallic lead. A substrate whose surface layer that comes into contact with oil is made of metallic lead does not necessarily mean that the surface layer is a uniform lead layer, including those in which the surface layer is a lead layer, mesh-shaped lead, or lead wire wound into a coil. It doesn't have to be. Further, as described above, it may be a porous layer of metallic lead.

基体のために用いる鉛以外の材質は導電性材料
であることが必要であるが、使用条件に応じ十分
な耐久性を有するものを選択する。
The material other than lead used for the base body must be conductive, and one that has sufficient durability is selected depending on the conditions of use.

以上の様な方法で少なくとも油と接触する表層
部分が金属鉛からなる基体上に硫酸鉛を保持せし
めた電極は油中において一定の電極電位を有する
基準電極として作用する。本発明の電極が一定の
電極電位を示す詳細な機構は不明であるが以下の
様な原理が働いているものと考えられる。すなわ
ち油中において硫酸鉛は極めてわずかの溶解度し
か示さないものの、それらの一部はイオン化し、
少なくとも油と接触する表層部分が金属塩からな
基体上で以下の平衡反応を起こしていると考えら
れる。
An electrode in which lead sulfate is held on a substrate whose surface layer, at least in contact with oil, is made of lead metal in the manner described above functions as a reference electrode having a constant electrode potential in oil. Although the detailed mechanism by which the electrode of the present invention exhibits a constant electrode potential is unknown, it is thought that the following principle is at work. In other words, although lead sulfate has very little solubility in oil, some of it is ionized,
It is thought that at least the surface layer that comes into contact with the oil is undergoing the following equilibrium reaction on the metal salt substrate.

Pb+SO4 2-PbSO4+2e (1)式 (1)式の平衡反応に基ずく電気化学的な平衡電位
すなわち導電性基体に現れる電極電位はネルンス
トの式より以下の様に与えられる(T=25℃一
定)。
Pb+SO 4 2- PbSO 4 +2e (1) Equation (1) The electrochemical equilibrium potential based on the equilibrium reaction of Equation (1), that is, the electrode potential appearing on the conductive substrate, is given by the Nernst equation as follows (T = 25 (℃ constant).

E=E0−0.0296loga SO2- 4(ボルト) (2)式 (2)式においてE0aは反応に特有の値を示す標準
電極電位、 SO2- 4は硫酸イオンの油中での活量で
ある。
E=E 0 −0.0296loga SO 2- 4 (volts) (2) In equation (2), E 0 a is the standard electrode potential that indicates a value specific to the reaction, and SO 2- 4 is the sulfate ion in oil. It is the activity.

(2)式は導電性基体に現れる電位が油の酸性、塩
基性に依存せず硫酸イオンの活量すなわちイオン
濃度によつて変化することを意味している。しか
し、硫酸鉛は油に難溶であることから油中で存在
できる硫酸イオンの濃度は極めて低く実質的にほ
ぼ一定の濃度を維持するとみなすことができる。
また(1)式の平衡反応はその反応速度が極めて大き
いため外部から硫酸イオンが混入してもそれは速
やかに硫酸鉛として固定され電極近傍の硫酸イオ
ン濃度の大きな変化を招くことはないと考えられ
る。
Equation (2) means that the potential appearing on the conductive substrate does not depend on the acidity or basicity of the oil, but changes depending on the activity of the sulfate ion, that is, the ion concentration. However, since lead sulfate is poorly soluble in oil, the concentration of sulfate ions that can exist in oil is extremely low and can be considered to maintain a substantially constant concentration.
In addition, the reaction rate of the equilibrium reaction in equation (1) is extremely high, so even if sulfate ions are mixed in from the outside, they are quickly fixed as lead sulfate, and it is thought that this will not cause a large change in the sulfate ion concentration near the electrode. .

以上のことから(2)式におけるEの値は一定温度
では事実上一定値を有し、金属鉛上に硫酸鉛を担
持した電極は基準電極として作用することが結論
づけられる。かくて、本発明においては油中にお
いて硫酸鉛が少なくとも油と接触する表層部分が
金属鉛からなる基体の近傍に形成ないし存在する
ことにより基準電極としての作用が生ずるものと
考えられ、硫酸鉛は金属鉛と直接結合していなく
てもその近傍に存在すればよく、「担持」とはこ
のような状態をも含め呼称する。
From the above, it can be concluded that the value of E in equation (2) has a virtually constant value at a constant temperature, and that the electrode with lead sulfate supported on metal lead acts as a reference electrode. Thus, in the present invention, it is thought that the action as a reference electrode occurs because at least the surface layer of lead sulfate in oil that comes into contact with oil is formed or exists in the vicinity of the base made of metal lead, and lead sulfate acts as a reference electrode. Even if it is not directly bonded to the metal lead, it only needs to be present in its vicinity, and the term "supported" includes such a state.

本発明の電極を基準電極として有効に働かせる
ために必要な硫酸鉛の担持量は基体の表面積1cm2
当り100μg程度の少量で十分であるが電極使用
中の多少の損失を考慮すれば1〜100mg/cm2の担
持量が好ましい。
In order for the electrode of the present invention to work effectively as a reference electrode, the amount of lead sulfate supported is 1 cm 2 on the surface area of the substrate.
A small amount of about 100 μg/cm 2 is sufficient, but taking into account some loss during use of the electrode, a supported amount of 1 to 100 mg/cm 2 is preferable.

また本発明の電極を基準電極として使用し、PH
応答電極との間の電位差を測定する場合には公知
の基準電極の場合と同様にできるだけ入力抵抗の
大きな電位差計を用い回路にできるだけ電流を流
さない配慮が要求されるが、導電性基体への微小
電流の流出入により(1)式の平衡状態が乱されるこ
とがある。これらの悪影響をできるだけ小さくす
るためには導電性基体の表面積は出来るだけ大き
くするのが良く具体的には1〜20cm2とするのが好
ましい。
In addition, the electrode of the present invention is used as a reference electrode, and the PH
When measuring the potential difference between the response electrode and the response electrode, it is necessary to use a potentiometer with as large an input resistance as possible, as in the case of a known reference electrode, and to take care to minimize the flow of current into the circuit. The equilibrium state of equation (1) may be disturbed by the inflow and outflow of minute currents. In order to minimize these adverse effects, the surface area of the conductive substrate should be as large as possible, and specifically, it is preferably 1 to 20 cm 2 .

本発明の基準電極が油中で具体的にいかなる電
位を示すかは現時点では理論的に求めることは困
難であるが実験的に求めることは可能である。
At present, it is difficult to theoretically determine what specific potential the reference electrode of the present invention exhibits in oil, but it is possible to determine it experimentally.

具体的には電極電位が既知の公知の電極と組み
合せて、両電極間の電位差を測定すれば良い。し
かし油の酸性、塩基性度検出の基準電極として使
用する目的においては必ずしも基準電極の電位の
絶対値を知る必要はなく電位が被験油の酸性、塩
基性度に影響されることなく一定の値を示すこと
が確認できれば十分である。
Specifically, the electrode may be combined with a known electrode having a known electrode potential, and the potential difference between the two electrodes may be measured. However, for the purpose of using the reference electrode for detecting the acidity and basicity of oil, it is not necessary to know the absolute value of the potential of the reference electrode, and the potential remains at a constant value without being affected by the acidity and basicity of the test oil. It is sufficient to confirm that the

油の酸性、塩基性度検出における本発明電極の
適用法は通常のPHメータと同様の手法で行うこと
ができる。すなわち本発明の基準電極および酸
性、塩基性に応答するPH電極とを組み合せて一対
の電極とし、この電極対を被験油に浸漬した時に
両電極間に現れる電位差を電位差計で検出する。
得られる電位差は被験油の酸性、塩基性度に比例
した値を示す。
The electrode of the present invention can be applied to detect the acidity and basicity of oil in the same manner as a conventional PH meter. That is, the reference electrode of the present invention and a PH electrode that responds to acidity and basicity are combined to form a pair of electrodes, and when this electrode pair is immersed in the test oil, the potential difference that appears between the two electrodes is detected with a potentiometer.
The potential difference obtained is proportional to the acidity and basicity of the test oil.

上記電位差と、別の手法によつて求められる酸
性、塩基性度との関係についてあらかじめ検量線
を作成しておけば検出される電位差から直接被検
油の酸性、塩基性度を知ることが可能である。ま
た電位差の経時変化を検出することにより被験油
の酸性、塩基性度の変化を連続的に知ることも可
能である。本発明の基準電極に用いる導電性基体
の形状は前述の例示のものに特に限定されず、用
途、検出条件、検出対象に応じて適宜適応した形
状とすることができる。さらに本発明の基準電極
は温度的に安定であり常温のみならず例えば100
℃以上の高温でも使用できる。
If you create a calibration curve in advance for the relationship between the above potential difference and the acidity and basicity determined by another method, it is possible to directly know the acidity and basicity of the test oil from the detected potential difference. It is. It is also possible to continuously know changes in acidity and basicity of the test oil by detecting changes in potential difference over time. The shape of the conductive substrate used in the reference electrode of the present invention is not particularly limited to the above-mentioned example, and can be appropriately adapted depending on the application, detection conditions, and detection target. Furthermore, the reference electrode of the present invention is temperature stable, not only at room temperature but also at
Can be used at high temperatures above ℃.

なお、本発明の基準電極と対をなして使用され
るPH電極には特に制限はなく通常のガラス電極は
勿論、アンチモン電極、電極表面が酸化物で被覆
された電極、具体的にはTi上にTiO2を被覆した
電極や不働態な膜を有するステンレス鋼電極を使
用することができる。特にTiO2電極、ステンレ
ス鋼電極は化学的安定性が高くかつ堅牢であるこ
とから好ましい電極である。
Note that there are no particular restrictions on the PH electrode used in pair with the reference electrode of the present invention, and it may be an ordinary glass electrode, an antimony electrode, an electrode whose electrode surface is coated with an oxide, and specifically a Ti-based electrode. TiO 2 coated electrodes or stainless steel electrodes with passive films can be used. In particular, TiO 2 electrodes and stainless steel electrodes are preferred electrodes because they have high chemical stability and are robust.

なお、一般に油中には吸湿、その他の原因によ
つてわずかの水分が混入してくる場合がある。し
かし、それらが油と相溶状態にあれば本発明の基
準電極にほとんど影響を与えない。具体的には、
例えば内燃機関用潤滑油の場合、油中の水分量が
0.05〜1wt%程度では、該基準電極はほとんど影
響を受けない。また、水分が油中に遊離して懸濁
状態となることが予想される場合、本発明の基準
電極を構成する金属鉛および硫酸鉛の量は遊離水
への多少の溶出を考慮して幾分多めにしておくこ
とが好ましい。
Note that, in general, a small amount of water may be mixed into oil due to moisture absorption or other causes. However, if they are in a compatible state with oil, they will have little effect on the reference electrode of the present invention. in particular,
For example, in the case of lubricating oil for internal combustion engines, the amount of water in the oil is
At about 0.05-1 wt%, the reference electrode is hardly affected. Furthermore, if water is expected to be liberated in oil and become suspended, the amount of metallic lead and lead sulfate constituting the reference electrode of the present invention should be determined by taking into account some elution into free water. It is preferable to have a large amount.

[実施例] 実施例 1 試薬の硫酸鉛を乳鉢で十分に粉砕し、更に水を
添加してペーストを調整した。次に純度99.5%大
きさ3×5cm厚さ2mmの鉛製基体1を用意した。
さらに孔径0.1μm大きさ4×10cm厚さ0.2mmの多
孔性ポリエチレンシートを用意し、これを4×5
cmの大きさとなるように二つ折りにし長辺2カ所
の合せ目を超音波溶接して袋状の構造を有する隔
膜2を作成した。この袋状隔膜2の内部へ基体1
を挿入し、さらに前記ペーストを間〓へ詰め込み
硫酸鉛充填体3を形成した後、乾燥させ本発明の
電極を作製した。完成した断面構造を第4図に示
す。
[Examples] Example 1 Lead sulfate as a reagent was thoroughly ground in a mortar, and water was further added to prepare a paste. Next, a lead substrate 1 with a purity of 99.5% and a size of 3×5 cm and a thickness of 2 mm was prepared.
Furthermore, a porous polyethylene sheet with a pore diameter of 0.1 μm and a size of 4 × 10 cm and a thickness of 0.2 mm was prepared, and this was
The diaphragm 2 having a bag-like structure was fabricated by folding it in half to a size of 1 cm and ultrasonically welding the seams at the two long sides. The base 1 is inserted into the inside of this bag-like diaphragm 2.
was inserted, and the paste was further stuffed into the space to form a lead sulfate filling body 3, which was then dried to produce an electrode of the present invention. Figure 4 shows the completed cross-sectional structure.

本作製電極の基準電極としての性能を確認する
ためトルエンおよび2−プロパノールの等量混合
溶媒被験液中で公知の基準電極である飽和カロメ
ル電極を組み合せて電位差の測定を実施した。被
験液は水酸化カリウムおよび塩酸の適量を添加す
ることにより各種の酸性、塩基性度となるよう調
整した。
In order to confirm the performance of the prepared electrode as a reference electrode, potential difference was measured using a saturated calomel electrode, which is a known reference electrode, in a mixed solvent test solution of equal amounts of toluene and 2-propanol. The test solutions were adjusted to various levels of acidity and basicity by adding appropriate amounts of potassium hydroxide and hydrochloric acid.

電位差計は入力抵抗が1011Ωの計器を用い、室
温で電位差を測定した。飽和カロメル電極を基準
として実測された電位差と被験液のPHとの関係を
第1図に示す。
A potentiometer with an input resistance of 10 11 Ω was used to measure the potential difference at room temperature. Figure 1 shows the relationship between the potential difference actually measured using a saturated calomel electrode as a reference and the pH of the test solution.

第1図において本発明の電極と飽和カロメル電
極との電位差は被験液のPHに拘らず10mV以内の
変動で一定値を示し、基準電極としての性能を十
分満足することが認められた。
In FIG. 1, the potential difference between the electrode of the present invention and the saturated calomel electrode showed a constant value with fluctuations within 10 mV regardless of the pH of the test solution, and it was confirmed that the potential difference sufficiently satisfied the performance as a reference electrode.

実施例 2 厚さ1mmの軟鋼板からなる芯材1aを有し、表
層部分に純度99.5%、厚さ1mmの鉛被覆層1bを
有する基体(大きさ30mm×50mm)1を用意した。
この基体をまず1N硫酸水溶液で洗浄し、表面の
汚れを除去した。次に1N硫酸水溶液に浸漬し、
さらに対極として同種の鉛板、基準電極として硫
酸水銀電極を配置し、定電位電解装置を用いて設
定電位−0.43Vにて1時間陽極処理を行つた。そ
の後基体を引き上げ水洗、乾燥した。これら一連
の工程により約1mg/cm2の硫酸鉛の被覆層4を有
する硫酸鉛担持電極を清作した。完成した電極の
断面構造を第5図に示す。
Example 2 A substrate 1 (size: 30 mm x 50 mm) was prepared, which had a core material 1a made of a mild steel plate with a thickness of 1 mm, and a lead coating layer 1b with a purity of 99.5% and a thickness of 1 mm on the surface layer.
This substrate was first washed with a 1N sulfuric acid aqueous solution to remove surface stains. Next, immerse in 1N sulfuric acid aqueous solution,
Furthermore, a lead plate of the same type was placed as a counter electrode and a mercury sulfate electrode was placed as a reference electrode, and anodization was performed for 1 hour at a set potential of -0.43V using a constant potential electrolyzer. Thereafter, the substrate was pulled up, washed with water, and dried. Through these series of steps, a lead sulfate supported electrode having a coating layer 4 of about 1 mg/cm 2 of lead sulfate was prepared. The cross-sectional structure of the completed electrode is shown in FIG.

次に本発明の電極をエンジン油の酸性、塩基性
度検出に適用した。被験油はガソリンエンジン用
のもので新油および使用油3種の計4種を用意し
た。酸性、塩基性応答電極としては大きさ3×5
cm厚さ1mmのSUS310S製電極を使用した。
Next, the electrode of the present invention was applied to detect acidity and basicity of engine oil. The test oils were for gasoline engines, and a total of four types of oil were prepared: new oil and three used oils. Size 3 x 5 for acidic and basic response electrodes
An electrode made of SUS310S with a thickness of 1 mm was used.

被験油中で前記2種の電極を極間距離が1mmと
なるように配置し油温を80℃に保ち、実施例1で
用いた電位差計で両電極間の電位差を測定した。
また被験油はJIS K2501に規定されている方法で
滴定分析を行い全酸価、全塩基価を求めた。
The two types of electrodes were placed in the test oil so that the distance between the electrodes was 1 mm, the oil temperature was maintained at 80°C, and the potential difference between the two electrodes was measured using the potentiometer used in Example 1.
In addition, the test oil was subjected to titration analysis using the method specified in JIS K2501 to determine the total acid number and total base number.

第2図に本発明の電極を基準として実測された
電位差と全酸価の関係をまた第3図には全塩基価
との関係を図示する。
FIG. 2 shows the relationship between the potential difference and the total acid number actually measured using the electrode of the present invention as a reference, and FIG. 3 shows the relationship between the total base number and the total base number.

第2図および第3図のいずれにおいても電位差
と全酸価および全塩基価は極めて妥当な関係を示
しており、本発明の電極及び方法が油の酸性、塩
基性度を直接検出する基準電極として満足すべき
ものがあることが確められた。
In both Figures 2 and 3, the potential difference and the total acid value and total base value show a very valid relationship, and the electrode and method of the present invention are used as reference electrodes for directly detecting the acidity and basicity of oil. It was confirmed that there is something to be satisfied with.

[発明の効果] 本発明によれば、金属鉛および硫酸イオンと硫
酸鉛との平衡反応に基づく基準電極が形成され
る。基準電極は、少なくとも油と接触する表層部
分が金属鉛からなる基体に硫酸鉛を担持すること
により構成できる。従来の基準電極において必要
であつた内部水溶液を全く必要としないため油の
酸性、塩基性度検出において油中に水が含まれて
いても長期的に安定な基準電極として使用するこ
とが可能となり、また温度の制約も大きく解消す
る。
[Effects of the Invention] According to the present invention, a reference electrode is formed based on an equilibrium reaction between lead metal, sulfate ions, and lead sulfate. The reference electrode can be constructed by supporting lead sulfate on a base whose surface layer, at least in contact with oil, is made of lead metal. Since it does not require any internal aqueous solution, which was required with conventional reference electrodes, it can be used as a long-term stable reference electrode for detecting the acidity and basicity of oil even if water is contained in the oil. , temperature constraints are also largely eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は飽和カロメル電極を基準とした本発明
電極の特性図、第2,3図は本発明の電極をエン
ジン油に適用した場合の特性図である。また第4
図は実施例1の硫酸鉛担持電極の断面図、第5図
は実施例2の硫酸鉛処理電極の断面図を示す。 1……電極基体、1a……基体芯材、1b……
鉛被覆層、2……隔膜、3……硫酸鉛充填体、4
……硫酸鉛被覆層。
FIG. 1 is a characteristic diagram of the electrode of the present invention based on a saturated calomel electrode, and FIGS. 2 and 3 are characteristic diagrams when the electrode of the present invention is applied to engine oil. Also the fourth
The figure shows a sectional view of the lead sulfate-supported electrode of Example 1, and FIG. 5 shows a sectional view of the lead sulfate-treated electrode of Example 2. 1... Electrode base, 1a... Base core material, 1b...
Lead coating layer, 2...diaphragm, 3...lead sulfate filling body, 4
...Lead sulfate coating layer.

Claims (1)

【特許請求の範囲】 1 油中の酸性、塩基性度に感応して電極電位が
変化する電極と、鉛および硫酸イオンと硫酸鉛と
の平衡反応に基づく電位を基準電位とする電極と
を用いて、電位差を測定することを特徴とする油
中酸性、塩基性度検出方法。 2 油中の酸性、塩基性度に感応して電極電位が
変化する電極と組み合せて使用される電極であつ
てその電極電位が基準となるある一定値を有する
基準電極において、少なくとも油と接触する表層
部分が金属鉛からなる基体に硫酸鉛を担持してな
ることを特徴とする油中酸性、塩基性度検出用基
準電極。
[Claims] 1. Using an electrode whose electrode potential changes in response to acidity and basicity in oil, and an electrode whose reference potential is the potential based on the equilibrium reaction between lead and sulfate ions and lead sulfate. A method for detecting acidity and basicity in oil, which is characterized by measuring the potential difference. 2 An electrode that is used in combination with an electrode whose electrode potential changes in response to the acidity or basicity of the oil, and whose electrode potential has a certain constant value as a reference, is at least in contact with the oil. A reference electrode for detecting acidity and basicity in oil, characterized by having lead sulfate supported on a base whose surface layer is made of metallic lead.
JP60164006A 1985-07-26 1985-07-26 Detection of acidity and basicity of oil and reference electrode Granted JPS6225250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60164006A JPS6225250A (en) 1985-07-26 1985-07-26 Detection of acidity and basicity of oil and reference electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164006A JPS6225250A (en) 1985-07-26 1985-07-26 Detection of acidity and basicity of oil and reference electrode

Publications (2)

Publication Number Publication Date
JPS6225250A JPS6225250A (en) 1987-02-03
JPH0462336B2 true JPH0462336B2 (en) 1992-10-06

Family

ID=15784970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164006A Granted JPS6225250A (en) 1985-07-26 1985-07-26 Detection of acidity and basicity of oil and reference electrode

Country Status (1)

Country Link
JP (1) JPS6225250A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523692A (en) * 1993-03-23 1996-06-04 Nippondenso Co., Ltd. Oil deterioration detector
JP2001235447A (en) 1999-12-14 2001-08-31 Denso Corp Paired electrode for detecting acidity and basicity of oil

Also Published As

Publication number Publication date
JPS6225250A (en) 1987-02-03

Similar Documents

Publication Publication Date Title
US3957613A (en) Miniature probe having multifunctional electrodes for sensing ions and gases
Yosypchuk et al. Solid amalgam composite electrode as a new sensor for the determination of biologically active compounds
JP2521546B2 (en) Reference electrodes and electrode pairs for detecting acidity and basicity of oil
US5840168A (en) Solid contact ion-selective electrode
Wilke et al. Diffusion effects at microhole supported liquid/liquid interfaces
Navratil et al. Analytical application of silver composite electrode
Navrátil et al. Voltammetry of lead cations on a new type of silver composite electrode in the presence of other cations
Wardak Solid contact Zn2+-selective electrode with low detection limit and stable and reversible potential
US3839178A (en) Potentiometric oxygen sensor
US3794575A (en) Oxygen sensor
JP3751026B2 (en) Analysis cell
NL7908747A (en) ELECTROCHEMICAL ELECTRODE, METHOD FOR MANUFACTURING AN ION SENSITIVE MEMBRANE FOR IT, AND METHOD FOR MANUFACTURING AN ELECTROCHEMICAL ELECTRODE.
Cranny et al. Sensors for corrosion detection: Measurement of copper ions in 3.5% sodium chloride using screen-printed platinum electrodes
Rohm et al. New methods for the preparation of perchlorate ion-selective electrodes
JPH0715450B2 (en) Electrochemical measuring cell for measuring ammonia or hydrazine in gaseous or liquid measuring samples
JP2007046914A (en) Reference electrode for detecting acidity and basicity of oil
JP4005980B2 (en) Potentiometric ion selective electrode
JPH0462336B2 (en)
Kitade et al. Needle-type ultra micro silver/silver chloride reference electrode for use in micro-electrochemistry
US4207162A (en) Chemical detector utilizing an electrolytic gel
US4891124A (en) Reference electrode for strong oxidizing acid solutions
US3856636A (en) Oxygen sensor
Vytřas et al. Studies on potentiometric titrations using simple liquid membrane-based electrodes: Coated wires vs. Carbon pastes
Krista et al. Cathodic stripping voltammetry of thiosulphate at toxic concentrations
JPH0452407B2 (en)