JPH0461976B2 - - Google Patents

Info

Publication number
JPH0461976B2
JPH0461976B2 JP59271144A JP27114484A JPH0461976B2 JP H0461976 B2 JPH0461976 B2 JP H0461976B2 JP 59271144 A JP59271144 A JP 59271144A JP 27114484 A JP27114484 A JP 27114484A JP H0461976 B2 JPH0461976 B2 JP H0461976B2
Authority
JP
Japan
Prior art keywords
reinforcing fiber
leaf spring
fiber bundle
fiber bundles
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59271144A
Other languages
Japanese (ja)
Other versions
JPS61149631A (en
Inventor
Shuji Hiromoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP59271144A priority Critical patent/JPS61149631A/en
Publication of JPS61149631A publication Critical patent/JPS61149631A/en
Publication of JPH0461976B2 publication Critical patent/JPH0461976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
    • F16F1/368Leaf springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば車両懸架用ばねなどに用いら
れるFRPテーパー板ばねに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an FRP tapered leaf spring used, for example, in a vehicle suspension spring.

[従来の技術] FRP製の板ばねは軽量なことが大きな長所で
ある。しかし板ばねの全長にわたつて幅を同じに
し、かつ等厚にした場合、長さ方向各部の応力が
不均等になつて材料使用効率が低下するため、充
分な軽量化が図れない。
[Prior Art] A major advantage of FRP leaf springs is that they are lightweight. However, if the width and thickness are made the same over the entire length of the leaf spring, the stress at each part in the length direction becomes uneven, reducing the efficiency of material usage, and therefore, sufficient weight reduction cannot be achieved.

そこで、長さ方向中央部の板厚が厚く、板端側
の板厚がテーパー状に薄くなるような形状にする
ことにより、応力の均等化を図るのが望ましい。
従来、鋼製のばねでは以上のような観点からテー
パー板ばねの開発が行われている。しかしFRP
製のテーパー板ばねを開示している先行技術は少
ない。
Therefore, it is desirable to equalize stress by creating a shape in which the thickness of the plate is thick at the central portion in the length direction, and the thickness of the plate is tapered and thinned at the end sides.
Conventionally, tapered leaf springs have been developed for steel springs from the above viewpoints. But FRP
There is little prior art disclosing tapered leaf springs made by.

例えば第3図および第4図に例示した先行技術
において、板ばね1は外層部2とコア3とからな
る。この板ばね1の場合、外層部2を構成する複
数枚の一方向強化繊維束4と、コア3を構成する
複数枚の強化繊維束5とにそれぞれ樹脂を含浸さ
せて重ねることにより、テーパー板ばね1が得ら
れる。また上記強化繊維束4,5は型に巻取られ
たのち、硬化前に厚み方向に押えつつ、しごかれ
て余分な樹脂が取除かれる。
For example, in the prior art illustrated in FIGS. 3 and 4, the leaf spring 1 consists of an outer layer 2 and a core 3. In the case of this leaf spring 1, the plurality of unidirectional reinforcing fiber bundles 4 constituting the outer layer portion 2 and the plurality of reinforcing fiber bundles 5 constituting the core 3 are impregnated with resin and stacked on each other, so that the tapered plate Spring 1 is obtained. Further, after the reinforcing fiber bundles 4 and 5 are wound up in a mold, they are pressed down in the thickness direction and squeezed to remove excess resin before hardening.

[発明が解決しようとする課題] 第4図に示される先行技術のように、コアを構
成する複数枚の強化繊維束5をまとめて重ねた場
合、コア用の短い強化繊維束5の両端部が板厚方
向中央部に集まるため、余分な樹脂を取除くため
に強化繊維束をしごく工程において、コアの端部
3aなどにおいて繊維束が移動し易いなどの理由
から充分に樹脂を絞り取れず、局部的に樹脂分の
多い箇所が生じたり気泡が混入するなどして、板
ばねの強度低下の原因となることが本発明者らの
研究により判明した。
[Problems to be Solved by the Invention] When a plurality of reinforcing fiber bundles 5 constituting a core are stacked together as in the prior art shown in FIG. Because the reinforcing fiber bundles are squeezed in the process of squeezing the reinforcing fiber bundles to remove excess resin, the resin cannot be squeezed out sufficiently because the fiber bundles tend to move at the ends 3a of the core. Through research conducted by the present inventors, it has been found that this causes a decrease in the strength of the leaf spring due to the formation of local areas with a high resin content or the inclusion of air bubbles.

なお、第5図に示されるように、複数の繊維束
6と、互いに長さの異なる複数枚の中間繊維束7
を交互に重ねることも考えられるが、この場合、
図示下側の板ばね表面層8の近傍に、板ばね全長
よりも極端に短い繊維束7aが存在するため、こ
の板ばねが負荷を受けて変形した時に、大きな撓
みが生じる表面層8の近くに埋設されている最短
の繊維束7aの端部が浮上がりやすくなり、層間
剥離を生じる傾向があつて強度低下を招く。
In addition, as shown in FIG. 5, a plurality of fiber bundles 6 and a plurality of intermediate fiber bundles 7 having mutually different lengths
It is also possible to alternately overlap, but in this case,
Near the leaf spring surface layer 8 on the lower side of the figure, there is a fiber bundle 7a that is extremely shorter than the entire length of the leaf spring, so when the leaf spring is deformed under load, a large deflection occurs near the surface layer 8. The ends of the shortest fiber bundles 7a embedded in the fiber bundles 7a tend to lift up, which tends to cause delamination, resulting in a decrease in strength.

従つて本発明の目的は、局部的に樹脂分の多い
箇所が生じることを防止できるとともに、層間剥
離が生じにくく強度の高いFRPテーパー板ばね
を提供することにある。
Accordingly, an object of the present invention is to provide an FRP tapered leaf spring that can prevent the formation of local areas with a high resin content, is resistant to delamination, and has high strength.

[課題を解決するための手段] 上記目的を果たすために開発された本発明は、
板ばねの全長にわたる長さを有していて互いに長
さが等しくかつ樹脂を含浸させた第1の連続一方
向強化繊維束と、この強化繊維束よりも全長が短
くしかも長さが互いに異なるとともに各々が板ば
ねの長手方向中央部を通つて板ばねの一端側から
他端側にわたつて連続しかつ樹脂を含浸させた複
数枚の第2の一方向強化繊維束とを、板厚方向に
交互にかつ上記第2の一方向強化繊維束の両端の
位置が板厚方向各部において階段状にずれるよう
に重ねてこれら第1および第2の強化繊維束を一
体に硬化させたFRPテーパー板ばねであつて、
上記第2の強化繊維束は、長さが最も短いものを
板厚方向中央部に配しかつ板ばねの上面側表面層
および下面側表面層に近いものほど長さが長くな
るような配置としている。
[Means for Solving the Problems] The present invention, which was developed to achieve the above object, has the following features:
A first continuous unidirectional reinforcing fiber bundle having a length spanning the entire length of the leaf spring, having equal lengths and impregnated with a resin; A plurality of second unidirectional reinforcing fiber bundles, each of which is continuous from one end side of the leaf spring to the other end side through the longitudinal center portion of the leaf spring and impregnated with resin, are inserted in the thickness direction of the leaf spring. An FRP tapered leaf spring in which the first and second reinforcing fiber bundles are integrally hardened by stacking them alternately and such that the positions of both ends of the second unidirectional reinforcing fiber bundles are staggered in each part in the plate thickness direction. And,
The second reinforcing fiber bundles are arranged such that the shortest length is arranged at the center in the thickness direction, and the length of the second reinforcing fiber bundle becomes longer as it is closer to the upper surface layer and the lower surface layer of the leaf spring. There is.

[作用] 上記FRPテーパー板ばねは、第1および第2
の一方向強化繊維束によつて樹脂が強化される。
本発明のFRP板ばねにおいては、長さ繊維から
なる第1の一方向強化繊維束と、短い繊維からな
る第2の一方向強化繊維束とが板厚方向に交互に
重ねられており、短い繊維が板厚方向に分散した
状態になつているため、各一方向強化繊維束を型
に巻付けたのち余分な樹脂を除去する際に、樹脂
を含浸した繊維束をしごく作業を確実に行うこと
ができ、余分な樹脂や気泡などを除くことができ
る。このためFRPテーパー板ばねの強度低下を
防止する上で効果がある。
[Function] The above FRP tapered leaf spring has the first and second
The resin is reinforced by the unidirectional reinforcing fiber bundle.
In the FRP leaf spring of the present invention, the first unidirectional reinforcing fiber bundles made of long fibers and the second unidirectional reinforcing fiber bundles made of short fibers are alternately stacked in the plate thickness direction. Since the fibers are dispersed in the board thickness direction, when removing excess resin after wrapping each unidirectional reinforcing fiber bundle around a mold, make sure to squeeze the resin-impregnated fiber bundles. This allows you to remove excess resin and air bubbles. Therefore, it is effective in preventing a decrease in strength of the FRP tapered leaf spring.

また本発明では、第2の強化繊維束のうち最も
短いものが板厚方向中央部に配されており、この
部位は板ばねが荷重を受けて変形しても撓みと剪
断応力等が小さいから、短い強化繊維束が浮上が
るようなことがなくなり、層間剥離の発生が回避
される。
Furthermore, in the present invention, the shortest reinforcing fiber bundle among the second reinforcing fiber bundles is arranged at the center in the plate thickness direction, and even if the plate spring deforms under load, the deflection and shear stress in this area are small. , short reinforcing fiber bundles no longer float up, and the occurrence of delamination is avoided.

[実施例] 第1図および第2図に示された一実施例におい
て、FRPテーパー板ばね10は、その長さ方向
中央部付近の板厚が最も厚く、板端側に向つて板
厚が漸減するテーパー形状をなしている。この板
ばね10の板幅は全長にわたつて一様である。
[Example] In an example shown in FIGS. 1 and 2, the FRP tapered leaf spring 10 has the thickest plate thickness near the central part in the length direction, and the plate thickness decreases toward the plate ends. It has a tapered shape that gradually decreases. The plate width of this plate spring 10 is uniform over the entire length.

上記板ばね10は、板ばねの全長にわたつて連
続しかつ互いに同じ長さの第1の連続一方向強化
繊維束11を、この連続一方向強化繊維束11よ
りも全長が短くかつ板ばね10の長手方向中央部
を通つて板ばね10の一端側から他端側にわたつ
て連続する第2の一方向強化繊維束12を用いて
成形される。
The leaf spring 10 has a first continuous unidirectional reinforcing fiber bundle 11 that is continuous over the entire length of the leaf spring and has the same length as that of the leaf spring 10. It is formed using a second unidirectional reinforcing fiber bundle 12 that continues from one end side of the leaf spring 10 to the other end side through the longitudinal center portion of the leaf spring 10 .

第2図に示されるように第2の強化繊維束12
は、長さが最も短いものが板厚方向中央部に配置
され、かつ板ばね10の上面側と下面側に近いも
のほど長さが長くなるような配置で第1の強化繊
維束11に重ねられている。
A second reinforcing fiber bundle 12 as shown in FIG.
are stacked on the first reinforcing fiber bundle 11 in such a way that the shortest length is placed at the center in the plate thickness direction, and the length becomes longer as the fibers are closer to the top and bottom sides of the leaf spring 10. It is being

これら一方向強化繊維束11,12は、いずれ
も板ばね10の長手方向に沿う例えばガラス繊維
束に、マトリツクス樹脂を含浸させたものであ
り、これらを板厚方向に交互に重ねて硬化させる
ことにより、テーパー状のFRP板ばね10が得
られる。すなわち第2の強化繊維束12はコアと
なる。第2の強化繊維束12に用いる繊維と樹脂
は第1の強化繊維束11のものと同じであつてよ
いが、第2の強化繊維束12は予め所定の長さに
切断されている。これら一方向強化繊維束11,
12は、ガラス繊維以外の素材を用いてもよい。
These unidirectional reinforcing fiber bundles 11 and 12 are both made by impregnating, for example, glass fiber bundles along the longitudinal direction of the leaf spring 10 with a matrix resin, and these are alternately stacked in the thickness direction and cured. As a result, a tapered FRP leaf spring 10 is obtained. That is, the second reinforcing fiber bundle 12 becomes a core. The fibers and resin used in the second reinforcing fiber bundle 12 may be the same as those in the first reinforcing fiber bundle 11, but the second reinforcing fiber bundle 12 is cut into a predetermined length in advance. These unidirectional reinforcing fiber bundles 11,
12 may be made of a material other than glass fiber.

上記構成のFRPテーパー板ばね10は、フイ
ラメントワインデイング法によつて成形すること
ができる。例えば第1図において図示上側に位置
する型(図示せず)に、第1の連続一方向強化繊
維束11を所定量巻付けたのち、予め切断されて
いる第2の一方向強化繊維束12を重ねる。次
に、再び第1の連続一方向強化繊維束11を巻重
ねたのち、予め切断されている第2の一方向強化
繊維束12を重ねる。こうして交互に強化繊維束
11,12を重ねてゆく。これら強化繊維束1
1,12に予め樹脂が含浸されていることは言う
までもない。そして型に巻取つたのち、外側から
しごいて余分な樹脂を取除き、硬化させる。
The FRP tapered leaf spring 10 having the above structure can be formed by a filament winding method. For example, in FIG. 1, a predetermined amount of the first continuous unidirectional reinforcing fiber bundle 11 is wound around a mold (not shown) located on the upper side of the drawing, and then the second unidirectional reinforcing fiber bundle 12 is cut in advance. Overlap. Next, the first continuous unidirectional reinforcing fiber bundle 11 is wound again, and then the second unidirectional reinforcing fiber bundle 12, which has been cut in advance, is overlapped. In this way, reinforcing fiber bundles 11 and 12 are alternately stacked. These reinforcing fiber bundles 1
It goes without saying that 1 and 12 are impregnated with resin in advance. After it is rolled up into a mold, it is squeezed from the outside to remove excess resin and allowed to harden.

上記構成のFRPテーパー板ばね10は、一般
の板ばねと同様に、例えば板端部が車両の車体側
に、また長手方向中間部が車軸側に取付けられて
使用に供される。
The FRP tapered leaf spring 10 having the above configuration is used, like a general leaf spring, with the leaf end portion attached to the vehicle body side and the longitudinally intermediate portion attached to the axle side, for example.

しかして上記構成によれば、板ばね10の本体
部となる第1の連続一方向強化繊維束11と、コ
アとなる第2の一方向強化繊維束12とを交互に
重ねているから、従来のもの(第4図参照)に比
べて、端部を押えた時などに余分な樹脂を押出し
易い。このため局部的に樹脂分の多い箇所が生じ
たり気泡が形成されることを回避ないし軽減させ
ることができ、強度低下を防止する上で有効とな
る。
According to the above configuration, the first continuous unidirectional reinforcing fiber bundles 11 that form the main body of the leaf spring 10 and the second unidirectional reinforcing fiber bundles 12 that form the core are alternately stacked, which is different from the conventional method. Compared to the (see Figure 4), it is easier to extrude excess resin when pressing the end. Therefore, it is possible to avoid or reduce the occurrence of local areas with a large resin content or the formation of bubbles, which is effective in preventing a decrease in strength.

また、板ばね10の板厚方向中央部に最も短い
強化繊維束が配されており、板ばね10の上面側
および下面側表面層の近傍に比較的長い第2の強
化繊維束12が埋設されているから、板ばね10
が荷重を受けて変形しても、撓みが少ない板厚方
向中央部に埋設されている短い繊維束が層間剥離
するような不具合が生じない。
Further, the shortest reinforcing fiber bundle is disposed at the center in the thickness direction of the leaf spring 10, and relatively long second reinforcing fiber bundles 12 are buried near the upper and lower surface layers of the leaf spring 10. Therefore, leaf spring 10
Even if it deforms under load, problems such as delamination of the short fiber bundles buried in the central part in the thickness direction, where there is less deformation, do not occur.

[発明の効果] 本発明によれば、FRP製の板ばねをテーパー
化するために短い繊維束を埋設させたものにおい
て、短い繊維束の両端部が板厚方向中央部に集ま
ることがなくなり、樹脂の硬化前に実施される余
分な樹脂を除く工程を効果的に行えるとともに、
局部的に樹脂分の多い箇所が生じることを防止で
きる。また、板ばねが繰返し撓んでも層間剥離等
の不具合を生じることがなく、強度低下を防止で
きる。
[Effects of the Invention] According to the present invention, in an FRP leaf spring in which short fiber bundles are embedded in order to taper it, both ends of the short fiber bundles are no longer gathered at the center in the thickness direction. In addition to effectively performing the process of removing excess resin before curing the resin,
It is possible to prevent localized areas with a large resin content from occurring. Further, even if the leaf spring is repeatedly bent, problems such as delamination between layers will not occur, and a decrease in strength can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す板ばねの断面
図、第2図は第1図の板ばねに用いる一方向強化
繊維束の配置関係を概略的に示す側面図、第3図
は従来のFRPテーパー板ばねを示す断面図、第
4図は第3図に示された強化繊維束の配置関係を
概略的に示す側面図、第5図は短い繊維束を板ば
ねの片側に配した場合の側面図である。 10…FRPテーパー板ばね、11…第1の連
続一方向強化繊維束、12…第2の一方向強化繊
維束。
FIG. 1 is a sectional view of a leaf spring showing an embodiment of the present invention, FIG. 2 is a side view schematically showing the arrangement of unidirectional reinforcing fiber bundles used in the leaf spring of FIG. 1, and FIG. A cross-sectional view showing a conventional FRP tapered leaf spring, Fig. 4 is a side view schematically showing the arrangement of the reinforcing fiber bundles shown in Fig. 3, and Fig. 5 shows a short fiber bundle arranged on one side of the leaf spring. FIG. DESCRIPTION OF SYMBOLS 10... FRP taper leaf spring, 11... First continuous unidirectional reinforcing fiber bundle, 12... Second unidirectional reinforcing fiber bundle.

Claims (1)

【特許請求の範囲】 1 板ばねの全長にわたる長さを有していて互い
に長さが等しくかつ樹脂を含浸させた第1の連続
一方向強化繊維束と、この強化繊維束よりも全長
が短くしかも長さが互いに異なるとともに各々が
板ばねの長手方向中央部を通つて板ばねの一端側
から他端側にわたつて連続しかつ樹脂を含浸させ
た複数枚の第2の一方向強化繊維束とを、板厚方
向に交互にかつ上記第2の一方向強化繊維束の両
端の位置が板厚方向各部において階段状にずれる
ように重ねてこれら第1および第2の強化繊維束
を一体に硬化させたFRPテーパー板ばねであつ
て、 上記第2の強化繊維束は、長さが最も短いもの
を板厚方向中央部に配しかつ板ばねの上面側表面
層および下面側表面層に近いものほど長さが長く
なるような配置としたことを特徴とするFRPテ
ーパー板ばね。
[Scope of Claims] 1. A first continuous unidirectional reinforcing fiber bundle having a length spanning the entire length of the leaf spring and having equal lengths and impregnated with resin; and a first continuous unidirectional reinforcing fiber bundle having a length shorter than that of the reinforcing fiber bundle. Moreover, the plurality of second unidirectional reinforcing fiber bundles are different in length from one another and are continuous from one end side of the leaf spring to the other end side through the longitudinal center portion of the leaf spring, and are impregnated with resin. These first and second reinforcing fiber bundles are integrated by stacking them alternately in the thickness direction and such that the positions of both ends of the second unidirectional reinforcing fiber bundle are staggered in each part in the thickness direction. In a hardened FRP tapered leaf spring, the second reinforcing fiber bundle has its shortest length arranged at the center in the thickness direction and close to the upper surface layer and the lower surface layer of the leaf spring. An FRP tapered leaf spring characterized by an arrangement in which the length becomes longer.
JP59271144A 1984-12-22 1984-12-22 Frp tapered leaf spring Granted JPS61149631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59271144A JPS61149631A (en) 1984-12-22 1984-12-22 Frp tapered leaf spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59271144A JPS61149631A (en) 1984-12-22 1984-12-22 Frp tapered leaf spring

Publications (2)

Publication Number Publication Date
JPS61149631A JPS61149631A (en) 1986-07-08
JPH0461976B2 true JPH0461976B2 (en) 1992-10-02

Family

ID=17495931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59271144A Granted JPS61149631A (en) 1984-12-22 1984-12-22 Frp tapered leaf spring

Country Status (1)

Country Link
JP (1) JPS61149631A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005054376A1 (en) * 2005-11-12 2007-05-24 Ifc Composite Gmbh Leaf spring made of a fiber composite material
DE102010050065B4 (en) 2010-10-29 2015-10-01 Ifc Composite Gmbh Leaf spring made of a fiber composite material with different lengths of fiber layers and process for their preparation
JP5665573B2 (en) * 2011-01-28 2015-02-04 三菱重工業株式会社 Fiber-reinforced plastic plate and method for manufacturing the same
JP5735826B2 (en) 2011-03-10 2015-06-17 日本発條株式会社 Fiber reinforced plastic spring
CN104963978B (en) * 2015-06-13 2017-03-08 吉林大学 A kind of composite material plate spring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732917A (en) * 1980-08-07 1982-02-22 Toyota Motor Corp Manufacture of fiber-reinforced plastic leaf spring
JPH0319413A (en) * 1989-06-15 1991-01-28 Matsushita Electric Ind Co Ltd Current output type differential amplifier circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132442U (en) * 1979-03-13 1980-09-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732917A (en) * 1980-08-07 1982-02-22 Toyota Motor Corp Manufacture of fiber-reinforced plastic leaf spring
JPH0319413A (en) * 1989-06-15 1991-01-28 Matsushita Electric Ind Co Ltd Current output type differential amplifier circuit

Also Published As

Publication number Publication date
JPS61149631A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
US5108810A (en) Composite element
US6013341A (en) Carrying (bearing) pipe-casing made of composite materials, the method and the setting (straightening device) for its manufacturing
US5727357A (en) Composite reinforcement
EP0005916A1 (en) Spring manufacture
Portnov et al. FRP Reinforcing bars—designs and methods of manufacture (Review of Patents)
US3673058A (en) Honeycomb having laminates of unidirectional strands
US4457500A (en) Bending spring made of fiber compound material
US3238690A (en) Composite beam
DE2234090A1 (en) COMPONENT AND PROCESS AND EQUIPMENT FOR ITS MANUFACTURING
CA2390468C (en) A pultruded part reinforced by longitudinal and transverse fibers and a method of manufacturing thereof
US5238716A (en) Composite beam having a hollow cross section
US4786033A (en) Leaf spring of composite fibre plastics material
JPH0461976B2 (en)
EP0134617A1 (en) Fibre-reinforced automotive spring
JPH01313660A (en) Rocket motor, in which fin is integrated and which is made of composite material, and manufacture thereof
US6403179B1 (en) Fiberglass boom and method of making same
JPS6112467A (en) Structure for transmitting turning moment and core for winding and molding said structure
JPS6116170A (en) Fiber reinforced resin construction having forked part
JPH0115755B2 (en)
CN112469551B (en) Method for producing a component made of composite material
JPH07113390B2 (en) FRP leaf spring and manufacturing method thereof
JPH0160706B2 (en)
JPH0331832B2 (en)
JP3278097B2 (en) Tubular body
JPS61144436A (en) Frp tapered leaf spring