JPH0461921A - Composite semipermeable membrane - Google Patents

Composite semipermeable membrane

Info

Publication number
JPH0461921A
JPH0461921A JP2168037A JP16803790A JPH0461921A JP H0461921 A JPH0461921 A JP H0461921A JP 2168037 A JP2168037 A JP 2168037A JP 16803790 A JP16803790 A JP 16803790A JP H0461921 A JPH0461921 A JP H0461921A
Authority
JP
Japan
Prior art keywords
membrane
composite semipermeable
copolymer
water
semipermeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2168037A
Other languages
Japanese (ja)
Other versions
JP2855231B2 (en
Inventor
Noboru Masutani
増谷 昇
Isoji Sakai
坂井 五十治
Yoshinao Kitamura
北村 佳直
Yoshihiro Nanzaki
南崎 喜博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2168037A priority Critical patent/JP2855231B2/en
Publication of JPH0461921A publication Critical patent/JPH0461921A/en
Application granted granted Critical
Publication of JP2855231B2 publication Critical patent/JP2855231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a membrane having a high salt removing rate by laminating a semipermeable ultrathin membrane and a membrane composed of a block or graft copolymer having a quarternized polyvinyl pyridine segment to a porous base material. CONSTITUTION:First, an aqueous solution containing a water-soluble polyvalent amino compound, having two or more primary or secondary amino groups in its molecule as a main component, is applied to a porous base material and a polyfunctional crosslinking agent is brought into contact with the coated layer to perform the interfacial polymerization and crosslinking thereof to obtain a composite semipermeable membrane, having a semipermeable ultrathin membrane. Next, a block copolymer, having a quaternized polyvinyl pyridine segment and a monovinyl aromatic polymer segment or a graft copolymer having quaternized polyvinyl pyridine and a water-insoluble polymer, is brought into contact with the composite semipermeable membrane as a membrane according to a water surface developing method to be closely bonded and laminated thereto. By this method, a membrane having a high salt removing rate to treated water containing a slat in low concn. is obtained.

Description

【発明の詳細な説明】 皮果上■■里分国 本発明は複合半透膜に関し、詳しくは、多孔性基材上に
半透性超薄膜を有し、更にその上に、4級化ポリビニル
ピリジンセグメントを有するブロック共重合体又はグラ
フト共重合体からなる膜が積層されてなる塩除去性能に
すぐれる複合半透膜に関する。。
[Detailed Description of the Invention] The present invention relates to a composite semipermeable membrane, and more specifically, it has a semipermeable ultra-thin membrane on a porous base material, and further has a quaternized membrane on it. The present invention relates to a composite semipermeable membrane having excellent salt removal performance, which is formed by laminating membranes made of a block copolymer or a graft copolymer having polyvinylpyridine segments. .

■米皇伎歪 近年、逆浸透膜として多孔性基材上に半透性を有する超
薄膜を形成させた複合半透膜が、後述するように、種々
知られている。
■ Bei Kogi Strain In recent years, various composite semipermeable membranes have been known as reverse osmosis membranes, in which an ultra-thin semipermeable membrane is formed on a porous base material, as described below.

これらの超薄膜を備えた複合半透膜は、従来より逆浸透
膜として広く用いられている酢酸セルロース膜に比較し
て、一般に、塩除去性能や透水性能等の逆浸透性能にす
くれてはいるが、しかし、実用的な脱塩に適用するには
、尚、塩除去率の点で満足できるものではない。特に、
半導体の製造において、LSIの洗浄に用いられる超純
水には、近年のLSI集積密度の一層の高度化に伴って
、高度に脱塩された純水が要求されるに至っており、か
くして、超純水の製造に用いられる逆浸透膜には、従来
に比べて、−層、高い塩除去率を有するものが求められ
ている。しかも、低濃度の塩を含有する処理水に対して
も、−層高い塩除去率を有するものが強く求められてい
る。
Composite semipermeable membranes with these ultra-thin membranes generally have poorer reverse osmosis performance, such as salt removal performance and water permeability, compared to cellulose acetate membranes, which have traditionally been widely used as reverse osmosis membranes. However, the salt removal rate is still not satisfactory for practical desalting. especially,
In the manufacturing of semiconductors, highly desalinated pure water is required as ultrapure water used for cleaning LSIs, as the integration density of LSIs has become more sophisticated in recent years. Reverse osmosis membranes used for producing pure water are required to have a lower salt removal rate than conventional ones. Moreover, there is a strong demand for something that has a higher salt removal rate even for treated water containing low concentrations of salt.

が ° しようとする 本発明は、上記した要望に応えるためになされたもので
あって、塩除去性能にすぐれる複合半透膜、特に、低濃
度の塩を含有する処理水に対して、高い塩除去率を有す
る複合半透膜を提供することを目的とする。
The present invention was made in response to the above-mentioned needs, and is a composite semipermeable membrane with excellent salt removal performance, especially for treated water containing low concentrations of salt. The purpose is to provide a composite semipermeable membrane having a high salt removal rate.

i を”するための 本発明による複合半透膜は、多孔性基材上に半透性超薄
膜を有し、更にその上に、4級化ポリビニルピリジンセ
グメントを有するブロック共重合体又はグラフト共重合
体からなる薄膜が積層されていることを特徴とする。
The composite semipermeable membrane according to the present invention for ``i'' has a semipermeable ultrathin membrane on a porous substrate, and further comprises a block copolymer or graft copolymer having quaternized polyvinylpyridine segments thereon. It is characterized by laminated thin films made of polymers.

本発明において、半透性超薄膜は、分子内に1級及び/
又は2級アミノ基を少なくとも2個有する多価アミノ化
合物が上記アミノ基と反応し得る多官能性架橋剤で架橋
されてなる膜である。このような超薄膜は、多孔性基材
上に、分子内に1級及び/又は2級アミノ基を少なくと
も2個有する水溶性多価アミン化合物を主成分とする水
溶液を塗布した後、この多価アミン化合物にそのアミノ
基と反応し得る多官能性架橋剤を接触させて、界面重合
させ、架橋させることによって形成させることができ、
通常、50〜10000人、好ましくは100〜500
0人の厚みを有する。
In the present invention, the semipermeable ultra-thin film contains primary and/or
Alternatively, it is a membrane in which a polyvalent amino compound having at least two secondary amino groups is crosslinked with a polyfunctional crosslinking agent capable of reacting with the above amino groups. Such an ultra-thin film is produced by coating a porous substrate with an aqueous solution whose main component is a water-soluble polyvalent amine compound having at least two primary and/or secondary amino groups in the molecule, and then applying this polyamine compound as a main component. It can be formed by bringing a polyfunctional amine compound into contact with a polyfunctional crosslinking agent capable of reacting with its amino group to cause interfacial polymerization and crosslinking,
Usually 50 to 10,000 people, preferably 100 to 500 people
It has a thickness of 0 people.

ここに、分子内に1級及び/又は2級アミン基を少なく
とも2個有する水溶性多価アミノ化合物は、分子量が5
0〜500000の範囲の単量体化合物から高分子量重
合体を含み、具体的には、例えば、ポリエチレンイミン
、アミン変性ポリエピクロロヒドリン、エポキシ化合物
とアミノ化合物との重合による水溶性オリゴマー等の重
合体、フェニレンジアミン、ジアミノピリジン、ジアミ
ノジフェニルエーテル、ジアミノジフェニルスルホン、
ピペラジン、2.5−ジメチルピペラジン、ホモピペラ
ジン、エチレンジアミン等を挙げることができる。
Here, the water-soluble polyvalent amino compound having at least two primary and/or secondary amine groups in the molecule has a molecular weight of 5.
It includes monomer compounds ranging from 0 to 500,000 to high molecular weight polymers, specifically, for example, polyethyleneimine, amine-modified polyepichlorohydrin, water-soluble oligomers obtained by polymerizing epoxy compounds and amino compounds, etc. Polymer, phenylenediamine, diaminopyridine, diaminodiphenyl ether, diaminodiphenylsulfone,
Examples include piperazine, 2,5-dimethylpiperazine, homopiperazine, and ethylenediamine.

また、多官能性架橋剤としては、分子内にイソシアネー
ト基、酸ハライド基、N−ハロホルミル基等の前記水溶
性アミノ化合物の有するアミノ基と反応し得る官能基を
少なくとも2個有する化合物が好適に用いられ、具体的
には、塩化イソフタロイル、塩化テレフタロイル、トリ
メソイルクロライド、トリレンジイソシアネート、4.
4゛−ジフェニルエーテルジイソシアネート、4,4゛
−ジフェニルメタンジイソシアネート等を挙げることが
できる。
Further, as the polyfunctional crosslinking agent, a compound having at least two functional groups capable of reacting with the amino group of the water-soluble amino compound, such as an isocyanate group, an acid halide group, or an N-haloformyl group, is preferably used as the polyfunctional crosslinking agent. Specifically, isophthaloyl chloride, terephthaloyl chloride, trimesoyl chloride, tolylene diisocyanate, 4.
Examples include 4'-diphenyl ether diisocyanate and 4,4'-diphenylmethane diisocyanate.

上記のような多価アミノ化合物と多官能性架橋剤を用い
る半透性超薄膜は、通常、上記水溶性多価アミン化合物
の水溶液を多孔性基村上に塗布した後、多官能性架橋剤
と接触させ、界面重合を起こさせ、次いで、加熱硬化さ
せることによって、乾燥膜として得ることができる。上
記多孔性基材としては、特に、限定されるものではない
が、例えば、ポリスルホン膜、ポリエーテルスルホン膜
、ポリアクリロニトリル膜、セルロースエステル膜、ポ
リ塩化ビニル膜等を好適に用いることができる。
A semipermeable ultra-thin film using a polyvalent amine compound and a polyfunctional cross-linking agent as described above is usually produced by applying an aqueous solution of the above-mentioned water-soluble polyvalent amine compound onto a porous substrate, and then applying the polyfunctional cross-linking agent. A dry film can be obtained by contacting them to cause interfacial polymerization and then heating and curing them. The porous base material is not particularly limited, but for example, polysulfone membranes, polyethersulfone membranes, polyacrylonitrile membranes, cellulose ester membranes, polyvinyl chloride membranes, etc. can be suitably used.

このように、多孔性基材上に半透性超薄膜を形成させて
なる複合半透膜は、既に種々のものが知られており、例
えば、ポリスルホン多孔性基村上でポリエチレンイミン
をトリレンジイソシアネートで架橋させた超薄膜を有す
る複合半透膜(特開昭49−133282号公報)、ポ
リエチレンイミンに代えて、アミン変性ポリエピクロロ
ヒドリンを上記と同様の多官能性架橋剤で架橋して超薄
膜を形成してなる複合半透膜(特公昭55−38164
号公報)、エポキシ化合物とアミン化合物との重合によ
り得られる水溶性オリゴマーを上記と同様の架橋剤で架
橋して超薄膜を形成した複合半透膜(特開昭53−14
4844号公報)、ポリエチレンイミン等の水溶性重合
体とアミノ基を分子内に2個以上存する多価アミノ化合
物単量体とを上記と同様の多官能性架橋剤で共架橋して
超薄膜を形成した複合半透膜(特開昭56−13910
5号公報)等を挙げることができる。
As described above, various types of composite semipermeable membranes formed by forming semipermeable ultra-thin membranes on porous substrates are already known. A composite semipermeable membrane having an ultra-thin film cross-linked with (Japanese Unexamined Patent Publication No. 133282/1982), amine-modified polyepichlorohydrin is cross-linked with the same polyfunctional cross-linking agent as above in place of polyethyleneimine. Composite semipermeable membrane formed by forming an ultra-thin film (Special Publication No. 55-38164
(Japanese Unexamined Patent Publication No. 53-14), a composite semipermeable membrane in which an ultra-thin film was formed by crosslinking a water-soluble oligomer obtained by polymerizing an epoxy compound and an amine compound with the same crosslinking agent as above (Japanese Patent Application Laid-Open No. 53-14
4844), a water-soluble polymer such as polyethyleneimine and a polyvalent amino compound monomer having two or more amino groups in the molecule are co-crosslinked using the same polyfunctional crosslinking agent as above to form an ultra-thin film. The composite semipermeable membrane formed (Japanese Patent Application Laid-Open No. 56-13910
5), etc.

上記以外にも、分子内に少なくとも2個の1級アミノ基
を有する芳香族単量体を多官能性アシルハライド置換芳
香族単量体で架橋して超薄膜を形成した複合半透膜(特
開昭55−147106号公報)、ポリビニルアルコー
ルと2級アミノ基を分子中に2個以上有するアミノ化合
物を多官能性架橋剤で架橋して超薄膜を形成した複合半
透膜(特公昭61−27083号公報)等を挙げること
ができる。
In addition to the above, composite semipermeable membranes (specially Japanese Patent Publication No. 147106/1983), a composite semipermeable membrane in which an ultra-thin film was formed by crosslinking polyvinyl alcohol and an amino compound having two or more secondary amino groups in the molecule with a polyfunctional crosslinking agent (Japanese Patent Publication No. 1983-1471- 27083), etc.

本発明による複合半透膜は、このような従来の複合半透
膜の有する半透性超薄膜の上に、更に、4級化ポリビニ
ルピリジンセグメントを有するブロック共重合体又はグ
ラフト共重合体からなる薄膜が積層されている。
The composite semipermeable membrane according to the present invention further comprises a block copolymer or graft copolymer having a quaternized polyvinylpyridine segment on top of the semipermeable ultra-thin membrane of such a conventional composite semipermeable membrane. Laminated thin films.

上記ブロック共重合体としては、4級化ポリビニルピリ
ジンセグメントAとガラス転移点が50℃以上であるモ
ノビニル芳香族系重合体セグメントBとからなるものが
好ましく用いられる。かかる共重合体は、A−Bで表わ
されるダイブロック、B−A−Bで表わされるトリブロ
ック又はこれらの混合からなるもののいずれでもよい。
As the block copolymer, one consisting of a quaternized polyvinylpyridine segment A and a monovinyl aromatic polymer segment B having a glass transition point of 50° C. or higher is preferably used. Such a copolymer may be a diblock represented by AB, a triblock represented by B-A-B, or a mixture thereof.

ブロック共重合体において、4級化ポリビニルピリジン
セグメントの分子量は、4級化前のポリビニルピリジン
セグメントとして、1000〜2oooooの範囲が適
当であり、好ましくは1000〜100000の範囲で
ある。4級化前のポリビニルピリジンセグメントとして
、分子量が2oooooを越えるときは、溶剤に対する
溶解性が低下するので好ましくない。
In the block copolymer, the molecular weight of the quaternized polyvinylpyridine segment is suitably in the range of 1000 to 2ooooo, preferably in the range of 1000 to 100000, as the polyvinylpyridine segment before quaternization. When the molecular weight of the polyvinylpyridine segment before quaternization exceeds 2oooooo, it is not preferable because the solubility in solvents decreases.

また、ブロック共重合体において、4級化前のポリビニ
ルピリジン成分は、10〜90モル%の範囲であること
が好ましい。
Moreover, in the block copolymer, the polyvinylpyridine component before quaternization is preferably in the range of 10 to 90 mol%.

モノビニル芳香族系重合体セグメントBとしては、例工
ば、スチレン、α−メチルスチレン、ビニルトルエン、
ビニルキシレン等のスチレン系単量体を重合させたブロ
ックからなるものが好ましく、特に、ポリスチレンから
なるフロックが好ましい。その分子量は、3000〜1
00000の範囲が適当である。
Examples of the monovinyl aromatic polymer segment B include styrene, α-methylstyrene, vinyltoluene,
It is preferable to use a block formed by polymerizing a styrene monomer such as vinyl xylene, and a floc formed from polystyrene is particularly preferable. Its molecular weight is 3000-1
A range of 00000 is appropriate.

次に、前記グラフト共重合体は、4級化ポリビニルピリ
ジンAと水不溶性重合体Cとからなるものが好ましく、
この場合、いずれが幹成分又は枝成分であってもよい。
Next, the graft copolymer preferably consists of quaternized polyvinylpyridine A and water-insoluble polymer C,
In this case, either may be a trunk component or a branch component.

上記水不溶性重合体Cは、好ましくは、ビニル系単量体
及びアクリル系単量体から選ばれる少なくとも1種のラ
ジカル重合性単量体の単独重合体又は共重合体からなる
The water-insoluble polymer C preferably consists of a homopolymer or copolymer of at least one radically polymerizable monomer selected from vinyl monomers and acrylic monomers.

上記ビニル系単量体としては、例えば、スチレン、α−
メチルスチレン等のスチレン系単量体、酢酸ビニル、プ
ロピオン酸ビニル等のビニルエステル、塩化ビニル等を
挙げることができる。また、上記アクリル系単量体とし
ては、例えば、アクリル酸メチル、アクリル酸エチル、
アクリル酸tブチル、メタクリル酸メチル、メタクリル
酸エチル、メタクリル酸プロピル、メタクリルflit
−ブチルフェニル、アクリル酸ナフチル、4−シアノフ
ェニルアクリレート、アクリルアミド、アクリロニトリ
ル、メタクリロニトリル等を挙げることができる。これ
らは、単量体によっては単独で、また、単量体によって
は、他の単量体と組み合わせて用いられる。
Examples of the vinyl monomer include styrene, α-
Examples include styrenic monomers such as methylstyrene, vinyl esters such as vinyl acetate and vinyl propionate, and vinyl chloride. In addition, examples of the acrylic monomer include methyl acrylate, ethyl acrylate,
t-butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, methacrylic flit
-butylphenyl, naphthyl acrylate, 4-cyanophenyl acrylate, acrylamide, acrylonitrile, methacrylonitrile and the like. Depending on the monomer, these may be used alone, or depending on the monomer, they may be used in combination with other monomers.

グラフト共重合体における枝成分の分子量は、A成分が
枝成分であるときは、500〜100000、好ましく
は1000〜50000の範囲であり、C成分が枝成分
であるときも、500〜1ooooo、好ましくは10
00〜50000の範囲である。枝成分の分子量が10
0000を越えるときは、重合時、末端官能基の濃度が
低下して、重合反応性が損なわれ、目的とするグラフト
共重合体を得ることが困難となる。他方、枝成分の分子
量が1000よりも小さいときは、目的とする本発明の
効果を達成し難い。
The molecular weight of the branch component in the graft copolymer is in the range of 500 to 100,000, preferably 1,000 to 50,000 when component A is a branch component, and also in the range of 500 to 1ooooo, preferably when component C is a branch component. is 10
The range is from 00 to 50,000. The molecular weight of the branch component is 10
When it exceeds 0,000, the concentration of terminal functional groups during polymerization decreases, polymerization reactivity is impaired, and it becomes difficult to obtain the desired graft copolymer. On the other hand, when the molecular weight of the branch component is less than 1000, it is difficult to achieve the desired effects of the present invention.

グラフト共重合体においても、水不溶性の重合体は、ポ
リスチレンが好ましく、また、4級化前のポリビニルピ
リジン成分は、10〜90モル%を占めることが好まし
い。
Also in the graft copolymer, the water-insoluble polymer is preferably polystyrene, and the polyvinylpyridine component before quaternization preferably accounts for 10 to 90 mol%.

本発明において、上記のようなブロック共重合体及びグ
ラフト共重合体は、例えば、以下に述べるような方法に
よって得ることができる。
In the present invention, the above block copolymers and graft copolymers can be obtained, for example, by the methods described below.

先ず、ブロック共重合体については、セグメントの大き
さ及び配列が極めて一定しているという点から、特公昭
56−39648号公報に記載されているようなアニオ
ン重合によるものが好ましい。また、グラフト共重合体
については、既に知られているりピングアニオン重合に
よって、先ず、A成分又はB成分のマクロモノマーを調
製し、その後、ラジカル重合によって、B成分又はA成
分と共重合させることによって得ることができる。
First, as for the block copolymer, it is preferable to use anionic polymerization as described in Japanese Patent Publication No. 56-39648, since the size and arrangement of the segments are extremely constant. In addition, regarding the graft copolymer, firstly, a macromonomer of component A or component B is prepared by the already known lipping anionic polymerization, and then copolymerized with component B or component A by radical polymerization. Obtainable.

かかるブロック共重合体及びグラフト共重合体の4級化
剤としては、炭素数1〜20のアルキルハライドや炭素
数1〜18のアルキルシバライドが好適であり、特に、
反応性の見地から、臭化物又はヨウ化物が好ましい。従
って、例えば、臭化メチル、臭化エチル、臭化n−オク
チル、ヨウ化メチル等のアルキルハライド、三臭化エチ
ル、三臭化n−ノニル、三臭化ラウリル等が好ましく用
いられる。
As the quaternizing agent for such block copolymers and graft copolymers, alkyl halides having 1 to 20 carbon atoms and alkyl cybarides having 1 to 18 carbon atoms are suitable, and in particular,
From a reactivity standpoint, bromides or iodides are preferred. Therefore, for example, alkyl halides such as methyl bromide, ethyl bromide, n-octyl bromide, and methyl iodide, ethyl tribromide, n-nonyl tribromide, and lauryl tribromide are preferably used.

本発明において、前記ブロック共重合体及びグラフト共
重合体における4級化率は10%以上がよい。4級化率
が10%よりも小さいときは、得られる複合半透膜が透
水性に劣り、また、塩の除去効果が認められな(なるの
で好ましくない。
In the present invention, the quaternization rate in the block copolymer and graft copolymer is preferably 10% or more. When the quaternization rate is less than 10%, the resulting composite semipermeable membrane has poor water permeability and no salt removal effect is observed, which is not preferable.

本発明において、上記4級化剤を用いる前記ブロック共
重合体及びグラフト共重合体の4級化方法は、共重合体
と4級化剤を適宜の溶剤に溶解させ、この溶液を後述す
る水面展開法にて薄膜化して、複合半透膜上に密着積層
した後、加熱処理する方法が好ましいが、しかし、その
他の方法を用いることもできる。
In the present invention, the method for quaternizing the block copolymer and graft copolymer using the quaternizing agent is to dissolve the copolymer and the quaternizing agent in an appropriate solvent, and add this solution to the water surface as described below. It is preferable to form a thin film by a spreading method, closely stack it on a composite semipermeable membrane, and then heat treat it, but other methods can also be used.

そのような4級化方法として、第1に、前記共重合体と
4級化剤とを溶剤に溶解させた後、加熱撹拌する方法で
あって、その際、用いる溶剤としては、副反応を引き起
こしたり、反応を阻害したりしないものであって、且つ
、原料及び生成物を溶解させるものが好ましい。従って
、例えば、メタノール、エタノール等のアルコール類、
ジメチルホルムアミド1.ジメチルアセトアミド、N−
メチルピロリドン等の極性溶剤が好ましい。第2の方法
として、前記共重合体からなる薄膜を適宜の方法によっ
て複合半透膜上に形成した後、減圧下に前記4級化剤と
反応させる方法を挙げることができる。
As such a quaternization method, firstly, the copolymer and the quaternization agent are dissolved in a solvent, and then heated and stirred. It is preferable to use a substance that does not cause the reaction or inhibit the reaction, and also dissolves the raw materials and products. Therefore, for example, alcohols such as methanol and ethanol,
Dimethylformamide 1. Dimethylacetamide, N-
Polar solvents such as methylpyrrolidone are preferred. A second method includes forming a thin film made of the copolymer on a composite semipermeable membrane by an appropriate method, and then reacting it with the quaternizing agent under reduced pressure.

前記共重合体の薄膜を半透性超薄膜上に積層被覆するに
は、共重合体を溶融塗布する方法、共重合体を適宜の有
機溶剤に溶解させ、この溶液を塗布し、乾燥させる方法
等を用いることができるが、特に、以下に述べるような
水面展開法は、複合半透膜の多孔性基材が耐熱性に乏し
く、或いは耐溶剤性に乏しい多孔性基材の場合であって
も、採用することができ、また、膜厚の均一な共重合体
薄膜を得ることができることからも、好ましく採用され
る。
In order to coat a thin film of the copolymer on a semi-permeable ultra-thin film, there are two methods: melt-coating the copolymer, dissolving the copolymer in an appropriate organic solvent, coating this solution, and drying it. However, in particular, the water surface development method described below is applicable when the porous base material of the composite semipermeable membrane has poor heat resistance or poor solvent resistance. It is also preferable to use this method because it is possible to obtain a copolymer thin film having a uniform thickness.

水面展開法は、例えば、第1図に示すように、定量ポン
プ(図示せず)にてノズル1から前記共重合体の溶液を
水槽2内の水面3上に放出して、その水溶液が自発的に
展開して、共重合体の薄膜4を形成する。このようにし
て得られた薄膜をロール5.6及び7にて、走行する複
合半透膜8上に接触させて、密着積層する。
In the water surface development method, for example, as shown in FIG. 1, a solution of the copolymer is discharged from a nozzle 1 onto a water surface 3 in a water tank 2 using a metering pump (not shown), and the aqueous solution is spontaneously released. The copolymer is then expanded to form a thin film 4 of the copolymer. The thin film thus obtained is brought into contact with the traveling composite semipermeable membrane 8 using rolls 5, 6 and 7, and laminated in close contact with it.

このような水面展開法に用いる展開溶剤としては、前記
共重合体を溶解する不活性溶剤が好ましく、例えば、メ
タノール、エタノール等のアルコール類、テトラヒドロ
フラン、ジメチルホルムアミド、ジメチルアセトアミド
等の極性溶剤、水又はこれらの混合溶剤が用いられる。
The developing solvent used in such a water surface development method is preferably an inert solvent that dissolves the copolymer, such as alcohols such as methanol and ethanol, polar solvents such as tetrahydrofuran, dimethylformamide, and dimethylacetamide, water or A mixed solvent of these is used.

特に、単一の溶剤を用いても、十分な水面展開性を得る
ことができないときは、展開助剤として、前記第1の展
開溶剤に第2の有機溶剤を加えることが有効である。こ
のような展開助剤としては、例えば、脂肪族、芳香族の
ケトン、エステル、アルコール、アミン、アルデヒド、
パーオキサイド及びこれらの混合物を挙げることができ
る。
Particularly when sufficient water surface developability cannot be obtained even with the use of a single solvent, it is effective to add a second organic solvent to the first developing solvent as a developing aid. Such developing aids include, for example, aliphatic and aromatic ketones, esters, alcohols, amines, aldehydes,
Mention may be made of peroxides and mixtures thereof.

水面展開法に用いる共重合体の溶液の濃度は、0.5〜
50重量%、好ましくは1〜40重量%の範囲である。
The concentration of the copolymer solution used in the water surface development method is 0.5 to
50% by weight, preferably in the range 1-40% by weight.

共重合体濃度が低すぎるときは、均一で連続した薄膜を
得ることができず、他方、共重合体濃度が高すぎるとき
は、水面上で溶液の展開性が低下するので好ましくない
If the copolymer concentration is too low, a uniform and continuous thin film cannot be obtained; on the other hand, if the copolymer concentration is too high, the spreadability of the solution on the water surface decreases, which is not preferable.

複合半透膜上に前記ブロック共重合体又はグラフト共重
合体の薄膜を積層するに際しては、薄膜を単層にて積層
してもよく、また、2層以上の複層に積層してもよい。
When laminating a thin film of the block copolymer or graft copolymer on a composite semipermeable membrane, the thin film may be laminated in a single layer, or may be laminated in a multilayer of two or more layers. .

複層に積層するときは、先に積層した薄膜に付着してい
る水分を十分に乾燥させて後に、積層するのがよい。
When laminating multiple layers, it is preferable to sufficiently dry the moisture adhering to the previously laminated thin film before laminating.

本発明による複合半透膜において、このようなグラフト
共重合体からなる膜の厚さは、通常、30人乃至10μ
mの範囲がよい。グラフト共重合体の膜厚が30人より
も薄いときは、塩の除去性能が向上に効果がなく、他方
、1011mを越えるときは、膜の透水性能が著しく低
下するので好ましくない。
In the composite semipermeable membrane according to the present invention, the thickness of the membrane made of such a graft copolymer is usually 30 to 10 μm.
The range of m is good. When the membrane thickness of the graft copolymer is less than 30 mm, it is not effective in improving the salt removal performance, while when it exceeds 1011 mm, the water permeability of the membrane is unfavorably reduced.

溌1影じ九果 以上のように、本発明による複合半透膜は、半透性超薄
膜の上に、4級化ポリビニルピリジンセグメントを有す
るブロック共重合体又はグラフト共重合体からなる薄膜
を有しており、この4級化ポリビニルピリジンセグメン
トの荷電性によって、塩化ナトリウム等のイオンの透過
を阻害する一方、下層の複合半透膜の透水性を何ら阻害
しないので、特に、低濃度の塩を含有する処理水に対し
て、高い塩除去率を有する。
As described above, the composite semipermeable membrane according to the present invention includes a thin film made of a block copolymer or a graft copolymer having quaternized polyvinylpyridine segments on a semipermeable ultrathin film. The charged nature of this quaternized polyvinylpyridine segment inhibits the permeation of ions such as sodium chloride, but does not inhibit the water permeability of the underlying composite semipermeable membrane. It has a high salt removal rate for treated water containing

実施拠 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

参考例1 ブレイクシール法にて高真空にした反応槽に0゜1 m
ol/ j!の5ec−ブチルリチウムのシクロヘキサ
ン溶液6.’5mlとスチレン15gを仕込み、反応器
を氷水浴上で冷却しつつ、30分間撹拌して、スチレン
のりピングポリマーを得た。
Reference example 1 0゜1 m in a reaction tank made high vacuum by break seal method
ol/j! A solution of 5ec-butyllithium in cyclohexane6. 5 ml and 15 g of styrene were charged, and the reactor was stirred for 30 minutes while being cooled on an ice-water bath to obtain a styrene adhesive polymer.

次いで、この反応器に精製2−ビニルピリジン25gを
加え、氷水浴上で更に30分間撹拌して、ポリスチレン
−ポリ (2−ビニルピリジン)リビングポリマーを得
た。
Next, 25 g of purified 2-vinylpyridine was added to the reactor and stirred for an additional 30 minutes on an ice water bath to obtain a polystyrene-poly(2-vinylpyridine) living polymer.

このダイブロック共重合体を反応器から取り出し、精製
した後、GPC及びプロトンNMRにて分析した結果、
ブロック共重合体は、ポリスチレンブロックが数平均分
子量23000、ポリビニルピリジンブロックが数平均
分子量37000を有するものであった。
This die block copolymer was taken out from the reactor, purified, and analyzed by GPC and proton NMR.
The block copolymer had a polystyrene block having a number average molecular weight of 23,000 and a polyvinylpyridine block having a number average molecular weight of 37,000.

参考例2 参考例1と同様にして、先ず、ポリスチレンポリ (2
−ビニルピリジン)リビングダイブロック共重合体を得
、次いで、この溶液に1,4−ジブロモブタン3.25
 mmolを加え、ポリスチレン−ポリ (2−ビニル
ピリジン)−ポリスチレンからなるトリブロック共重合
体を得た。このブロック共重合体は、GPC分析の結果
、トリブロック率は84%であった。
Reference Example 2 In the same manner as Reference Example 1, first, polystyrene poly(2
-vinylpyridine) living diblock copolymer was obtained, and then 3.25% of 1,4-dibromobutane was added to this solution.
mmol was added to obtain a triblock copolymer consisting of polystyrene-poly(2-vinylpyridine)-polystyrene. As a result of GPC analysis, this block copolymer had a triblock ratio of 84%.

このトリブロック共重合体IOgをジメチルホルムアミ
ド50m1に溶解して、次いで、臭化エチルLogを加
え、60℃の温度で還流下に8時間撹拌し、4級化反応
させた。次いで、ジメチルホルムアミドと過剰の臭化エ
チルを減圧除去して、ポリスチレン−4級化ポリビニル
ピリジン−ポリスチレントリブロック共重合体を得た。
This triblock copolymer IOg was dissolved in 50ml of dimethylformamide, and then ethyl bromide Log was added thereto, and the mixture was stirred under reflux at a temperature of 60°C for 8 hours to cause a quaternization reaction. Next, dimethylformamide and excess ethyl bromide were removed under reduced pressure to obtain a polystyrene-quaternized polyvinylpyridine-polystyrene triblock copolymer.

参考例3 ブレイクシール法にて高真空にした反応槽に0゜1 m
ol/ lの5ec−ブチルリチウムのシクロヘキサン
溶液24m1とスチレン15gを仕込み、反応器を氷水
浴上で冷却しつつ、30分間撹拌して、スチノンのりピ
ングポリマーを得た。
Reference example 3 0゜1 m in a reaction tank made into a high vacuum using the break-seal method
24 ml of a cyclohexane solution of 5ec-butyllithium (ol/l) and 15 g of styrene were charged, and the reactor was stirred for 30 minutes while being cooled on an ice-water bath to obtain a stinone sticking polymer.

次いで、この反応器にエチレンオキサイド2gを加え、
更に、メタクリル酸クロライド3gを加え、30分間撹
拌して、ポリスチレンマクロモノマーを得た。
Next, 2 g of ethylene oxide was added to the reactor,
Furthermore, 3 g of methacrylic acid chloride was added and stirred for 30 minutes to obtain a polystyrene macromonomer.

このマクロモノマーを精製した後、GPC及びプロトン
NMRにて分析した結果、その数平均分子量は6500
であり、末端官能基修飾率は98%であった。
After purifying this macromonomer, it was analyzed by GPC and proton NMR, and the number average molecular weight was 6500.
The terminal functional group modification rate was 98%.

このポリスチレンマクロモノマー1ogと2ビニルピリ
ジン10gをベンゼン30m1に溶解させ、更に、これ
にアブビスイソブチロニトリル0゜1gを加えた後、窒
素雰囲気下、60 ”cで24時間撹拌して、枝部分が
スチレン、幹部分がビニルピリジンのグラフト共重合体
を得た。
1 og of this polystyrene macromonomer and 10 g of 2-vinylpyridine were dissolved in 30 ml of benzene, and 0.1 g of abbisisobutyronitrile was added thereto, and the mixture was stirred at 60"C for 24 hours under a nitrogen atmosphere. A graft copolymer of styrene as a part and vinylpyridine as a trunk was obtained.

得られたグラフト共重合体をGPC及びプロトンNMR
にて分析した結果、その数平均分子量は30000であ
り、重量平均分子量は85000であり、ポリ−2−ビ
ニルピリジン成分の比率は45%であった。
The obtained graft copolymer was subjected to GPC and proton NMR.
As a result of analysis, the number average molecular weight was 30,000, the weight average molecular weight was 85,000, and the proportion of poly-2-vinylpyridine component was 45%.

参考例4 ブレイクシール法にて高真空にした反応槽に0゜1 m
ol/ 1の5ec−ブチルリチウムのシクロヘキサン
溶液25m1と精製2−ビニルピリジン13gを仕込み
、反応器を氷水浴上で冷却しつつ、30分間撹拌して、
2−ビニルピリジンのりピングポリマーを得た。
Reference example 4 0゜1 m in a reaction tank created with a high vacuum using the break-seal method
25 ml of a cyclohexane solution of 5ec-butyl lithium of 1 ol/1 and 13 g of purified 2-vinylpyridine were charged, and the reactor was stirred for 30 minutes while being cooled on an ice-water bath.
A 2-vinylpyridine pasting polymer was obtained.

次いで、この反応器にp−ビニルベンジルクロライド2
gを加え、30分間撹拌して、ポリ (2ビニルピリジ
ン)マクロモノマーを得た。
Next, p-vinylbenzyl chloride 2 was added to this reactor.
g and stirred for 30 minutes to obtain poly(2vinylpyridine) macromonomer.

このマクロモノマーを精製した後、GPC及びプロトン
NMRにて分析した結果、その数平均分子量は5500
であり、末端官能基修飾率は96%であった。
After purifying this macromonomer, it was analyzed by GPC and proton NMR, and the number average molecular weight was 5500.
The terminal functional group modification rate was 96%.

このポリ (2−ビニルピリジン)マクロモノマーLo
gとスチレン10gをヘンゼン30m1に溶解させ、更
に、これにアゾビスイソブチロニトリル0.1gを加え
た後、窒素雰囲気下、60℃で24時間撹拌して、枝部
分がビニルピリジン、幹部骨がスチレンのグラフト共重
合体を得た。
This poly(2-vinylpyridine) macromonomer Lo
g and 10 g of styrene were dissolved in 30 ml of Hensen, and further, 0.1 g of azobisisobutyronitrile was added thereto, and the mixture was stirred at 60°C for 24 hours under a nitrogen atmosphere to dissolve vinylpyridine in the branch portions and trunk bones. obtained a styrene graft copolymer.

得られたグラフト共重合体をGPC及びプロトンNFi
Rにて分析した結果、その数平均分子量は40000で
あり、重量平均分子量は150000であり、ポリ−2
−ビニルピリジン成分の比率は48%であった。
The obtained graft copolymer was subjected to GPC and proton NFi
As a result of analysis using R, the number average molecular weight was 40,000, the weight average molecular weight was 150,000, and poly-2
- The proportion of vinylpyridine component was 48%.

比較例1 特開昭55−147106号公報に記載されている方法
に従って、複合半透膜を調製し、これを比較例1とした
Comparative Example 1 A composite semipermeable membrane was prepared as Comparative Example 1 according to the method described in JP-A-55-147106.

実施例1 参考例1にて調製したブロック共重合体と、そのビニル
ピリジン成分に対して等量の三臭化nラウリルとをテト
ラヒドロフラン/水等量混合溶剤に溶解させ、この溶液
を第1図に示したような水面展開法にて0.05μmの
厚さの薄膜に展開し、前記比較例として示した複合半透
膜上に積層して、本発明による複合半透膜を得た。
Example 1 The block copolymer prepared in Reference Example 1 and n-lauryl tribromide in an equal amount to its vinylpyridine component were dissolved in a mixed solvent of tetrahydrofuran/water in equal amounts, and this solution was prepared as shown in FIG. A thin film having a thickness of 0.05 μm was developed by the water surface development method as shown in 1. The composite semipermeable membrane according to the present invention was obtained by laminating it on the composite semipermeable membrane shown as the comparative example.

ブロック共重合体溶液の共重合体濃度は10重量%、共
重合体溶液の水面への供給量は0.07m1/分、製膜
速度は7m/分とした。
The copolymer concentration of the block copolymer solution was 10% by weight, the amount of copolymer solution supplied to the water surface was 0.07 m1/min, and the film forming speed was 7 m/min.

この後、複合半透膜を110℃で40分間加熱して、ブ
ロック共重合体を4級化架橋させた。
Thereafter, the composite semipermeable membrane was heated at 110° C. for 40 minutes to quaternize and crosslink the block copolymer.

実施例2 参考例2にて調製したブロック共重合体をテトラヒドロ
フラン/水等量混合溶剤に溶解させ、この溶液を前記と
同様にし水面展開法にて0.05μmの厚さの薄膜に展
開し、前記比較例として示した複合半透膜上に積層して
、本発明による複合半透膜を得た。
Example 2 The block copolymer prepared in Reference Example 2 was dissolved in a mixed solvent of tetrahydrofuran/water in equal amounts, and this solution was spread into a thin film with a thickness of 0.05 μm using the water surface spreading method in the same manner as above. A composite semipermeable membrane according to the present invention was obtained by laminating it on the composite semipermeable membrane shown as the comparative example.

ブロック共重合体溶液の共重合体濃度は10重量%、共
重合体溶液の水面への供給量は0.07m1Z分、製膜
速度は7m/分とした。
The copolymer concentration of the block copolymer solution was 10% by weight, the amount of the copolymer solution supplied to the water surface was 0.07 ml/Z, and the film forming speed was 7 m/min.

実施例3 参考例3にて調製したグラフト共重合体と、そのビニル
ピリジン成分に対して等量の三臭化nラウリルとをテト
ラヒドロフラン/水等量混合溶剤に溶解させ、この溶液
を前記と同様に水面展開法にて0.05μmの厚さの薄
膜に展開し、前記比較例として示した複合半透膜上に積
層して、本発明による複合半透膜を得た。
Example 3 The graft copolymer prepared in Reference Example 3 and n-lauryl tribromide in an equal amount to its vinylpyridine component were dissolved in a mixed solvent of tetrahydrofuran/water in equal amounts, and this solution was dissolved in the same manner as above. The membrane was developed into a thin film with a thickness of 0.05 μm using a water surface spreading method, and laminated on the composite semipermeable membrane shown as the comparative example, to obtain a composite semipermeable membrane according to the present invention.

グラフト共重合体溶液の共重合体濃度は10重量%、共
重合体溶液の水面への供給量は0.07m1Z分、製膜
速度は7m/分とした。
The copolymer concentration of the graft copolymer solution was 10% by weight, the amount of copolymer solution supplied to the water surface was 0.07 ml/min, and the film forming speed was 7 m/min.

この後、複合半透膜を110℃で40分間加熱して、グ
ラフト共重合体を4級化架橋させた。
Thereafter, the composite semipermeable membrane was heated at 110° C. for 40 minutes to quaternize and crosslink the graft copolymer.

実施例4 参考例4にて調製したグラフト共重合体と、そのビニル
ピリジン成分に対して等量の三臭化n −ラウリルとを
テトラヒドロフラン/水等量混合溶剤に溶解させ、この
溶液を前記と同様に水面展開法にて0.05μmの厚さ
の薄膜に展開し、前記比較例として示した複合半透膜上
に積層して、本発明による複合半透膜を得た。
Example 4 The graft copolymer prepared in Reference Example 4 and n-lauryl tribromide in an equal amount to its vinylpyridine component were dissolved in a mixed solvent of tetrahydrofuran/water in equal amounts, and this solution was mixed with the above solution. Similarly, it was developed into a thin film with a thickness of 0.05 μm using the water surface spreading method, and laminated on the composite semipermeable membrane shown as the comparative example, to obtain a composite semipermeable membrane according to the present invention.

グラフト共重合体溶液の共重合体濃度は10重量%、共
重合体溶液の水面への供給量は0.07m1/分、製膜
速度は7m/分とした。
The copolymer concentration of the graft copolymer solution was 10% by weight, the amount of copolymer solution supplied to the water surface was 0.07 m1/min, and the film forming speed was 7 m/min.

この後、複合半透膜を110℃で40分間加熱して、グ
ラフト共重合体を4級化架橋させた。
Thereafter, the composite semipermeable membrane was heated at 110° C. for 40 minutes to quaternize and crosslink the graft copolymer.

以上のようにして得たそれぞれの複合半透膜について、
処理水として、塩化ナトリウム水溶液の1 pp111
水溶液をpH6〜7、温度25℃、圧力15kg/cn
fの条件下に複合半透膜に接触させ、そのイオン透過率
を測定して、逆浸透試験を行なった。
Regarding each composite semipermeable membrane obtained as above,
As treated water, 1 pp111 of sodium chloride aqueous solution
Aqueous solution pH 6-7, temperature 25℃, pressure 15kg/cn
A reverse osmosis test was conducted by contacting the composite semipermeable membrane under the conditions of f and measuring its ion permeability.

結果を第1表に示す。ここに、イオン透過率は、次式 で定義される。The results are shown in Table 1. Here, the ion permeability is given by the following formula: Defined by

尚、ナトリウムイオン及びクロライドイオンの濃度値は
、予めイオンクロマトグラフィー分析で作成したそれぞ
れの検量線に基づいて求めた。
Note that the concentration values of sodium ions and chloride ions were determined based on respective calibration curves prepared in advance by ion chromatography analysis.

第  1  表 第1表に示す結果から明らかなように、実施例1〜4に
よる複合半透膜は、比較例による複合半透膜に比べて、
透水度を損なわずに、各イオン透過率を低下させており
、かくして、塩の除去率が向上している。
Table 1 As is clear from the results shown in Table 1, the composite semipermeable membranes according to Examples 1 to 4 had lower performance compared to the composite semipermeable membrane according to the comparative example.
The permeability of each ion is reduced without impairing the water permeability, thus improving the salt removal rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、水面展開法にて薄膜を複合半透膜上に積層す
る方法を示す図である。 ■・・・ノズル、2・・・水槽、3・・・水面、4・・
・共重合体薄膜、訃・・複合半透膜。
FIG. 1 is a diagram showing a method of laminating a thin film on a composite semipermeable membrane using a water surface spreading method. ■...Nozzle, 2...Aquarium, 3...Water surface, 4...
・Copolymer thin film, composite semipermeable membrane.

Claims (1)

【特許請求の範囲】[Claims] (1)多孔性基材上に半透性超薄膜を有し、更にその上
に、水不溶性重合体からなるセグメント又は枝部分と4
級化ポリビニルピリジンセグメントとを有するブロック
共重合体又はグラフト共重合体からなる薄膜が積層され
ていることを特徴とする複合半透膜。
(1) A semi-permeable ultra-thin film is provided on a porous substrate, and a segment or branch portion made of a water-insoluble polymer is further provided on top of the semi-permeable ultra-thin film.
1. A composite semipermeable membrane characterized in that thin films made of a block copolymer or a graft copolymer having graded polyvinylpyridine segments are laminated.
JP2168037A 1990-06-26 1990-06-26 Composite semipermeable membrane Expired - Fee Related JP2855231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2168037A JP2855231B2 (en) 1990-06-26 1990-06-26 Composite semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2168037A JP2855231B2 (en) 1990-06-26 1990-06-26 Composite semipermeable membrane

Publications (2)

Publication Number Publication Date
JPH0461921A true JPH0461921A (en) 1992-02-27
JP2855231B2 JP2855231B2 (en) 1999-02-10

Family

ID=15860651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2168037A Expired - Fee Related JP2855231B2 (en) 1990-06-26 1990-06-26 Composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JP2855231B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504189A (en) * 2006-09-22 2010-02-12 ゲーカーエスエス・フォルシュユングスツェントルウム ゲーエストハフト ゲーエムベーハー Porous membrane and manufacturing method thereof
CN104069753A (en) * 2014-07-15 2014-10-01 哈尔滨工业大学(威海) Preparation method for pollution-resistant polymer membrane
CN114082311A (en) * 2021-10-22 2022-02-25 宁波方太厨具有限公司 Preparation method of hollow fiber ultrafiltration membrane for removing haloacetic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337727C (en) * 2005-10-31 2007-09-19 浙江大学 Microporous polymer film containing cross-linked super branched molecule and its prepn

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504189A (en) * 2006-09-22 2010-02-12 ゲーカーエスエス・フォルシュユングスツェントルウム ゲーエストハフト ゲーエムベーハー Porous membrane and manufacturing method thereof
CN104069753A (en) * 2014-07-15 2014-10-01 哈尔滨工业大学(威海) Preparation method for pollution-resistant polymer membrane
CN114082311A (en) * 2021-10-22 2022-02-25 宁波方太厨具有限公司 Preparation method of hollow fiber ultrafiltration membrane for removing haloacetic acid

Also Published As

Publication number Publication date
JP2855231B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP2947291B2 (en) High flux semi-permeable membrane
JP4297516B2 (en) Microporous membrane and use thereof
JP4989843B2 (en) Asymmetric gel-filled microporous membrane
JP2727087B2 (en) Polyamide reverse osmosis membrane
US4242208A (en) Semipermeable composite membrane and process for preparation thereof
US4812270A (en) Novel water softening membranes
US4859384A (en) Novel polyamide reverse osmosis membranes
US6465050B2 (en) Non-cracking hydrophilic polyethersulfone membranes
EP0355188A1 (en) Process of making and using polyamide membranes useful for water softening
JP3506793B2 (en) Resin composition and film formed therefrom
US5118424A (en) Thin film composite membranes from vinyl and related nomomers
JPH0461921A (en) Composite semipermeable membrane
CN102834167A (en) Composite semipermeable membrane
JPH047026A (en) Composite semi-permeable membrane
EP1301559B1 (en) Modified sulfonamide polymers
JP2866981B2 (en) Composite semipermeable membrane
AU2001264921A2 (en) Modified sulfonamide polymers
JP2769608B2 (en) Complex ion type separation membrane and method for producing the same
EP0532687A1 (en) Semipermeable composite membrane.
JPH04341334A (en) Composite semipermeable membrane
JPH0592129A (en) Composite semipermeable membrane
JP2900184B2 (en) Aromatic copolymer separation membrane
EP0467903B1 (en) Process for the preparation of chlorine-resistant polyester semipermeable membranes
JPS61259707A (en) Separation membrane for pervaporation
JPH0516290B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees