JPH0461403A - Offset type antenna - Google Patents

Offset type antenna

Info

Publication number
JPH0461403A
JPH0461403A JP17353190A JP17353190A JPH0461403A JP H0461403 A JPH0461403 A JP H0461403A JP 17353190 A JP17353190 A JP 17353190A JP 17353190 A JP17353190 A JP 17353190A JP H0461403 A JPH0461403 A JP H0461403A
Authority
JP
Japan
Prior art keywords
mirror
antenna
reflecting mirror
whose
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17353190A
Other languages
Japanese (ja)
Inventor
Takenori Masuda
増田 剛徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17353190A priority Critical patent/JPH0461403A/en
Publication of JPH0461403A publication Critical patent/JPH0461403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To reduce the cost of the antenna, to attain effective utilization of a space and to make the antenna compact by replacing an auxiliary reflecting mirror whose mirror surface is to be corrected with a correction dielectric lens. CONSTITUTION:The antenna consists of a main reflecting mirror 1 whose mirror surface is not corrected, a sub reflecting mirror 2 whose mirror surface is corrected to control the amplitude distribution in aperture distributions 6, 7, a primary radiator 3, and a correction dielectric lens 4 placed in the vicinity of the focus of the main reflecting mirror. The phase quantity and the output direction of a radio wave of the correction dielectric lens 4 are corrected by changing the shape and an optical length is controlled so that the phase distribution of the aperture is uniformized to obtain the aperture efficiency. Thus, the compact offset antenna whose manufacture cost is low and whose space is utilized effectively is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は衛星通信や電波天文の分野に供される地球局
アンテナにおいて、高い開口能率と低いサイドローブ特
性を得るオフセット形アンテナに間するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is an earth station antenna used in the fields of satellite communication and radio astronomy, which is an offset type antenna that obtains high aperture efficiency and low sidelobe characteristics. It is.

〔従来の技術〕[Conventional technology]

第5図は特開昭49−52953などに示された従来の
オフセラI・形アンテナを示す断面Zであり、図におい
て、 (11)は回転二次曲面を鏡面修整した主反射鏡
、 (2)回転二次曲面を鏡面修整した副反射鏡、 (
3)は−次放射器である。
Figure 5 is a cross section Z showing a conventional off-cellar I-type antenna shown in Japanese Patent Application Laid-Open No. 49-52953, etc. In the figure, (11) is a main reflecting mirror whose rotational quadric surface has been mirror-finished, (2) ) Sub-reflector with mirror-finished rotational quadratic surface, (
3) is a −order radiator.

次に動作について説明する。Next, the operation will be explained.

このような副反射鏡アンテナにおいては、高い開口能率
と低いサイドローブ特性を得るために、−次放射器(3
)の放射パターンを与えた時に最適な開口分布が得られ
るよう2fflの回転二次曲面鏡(主反射鏡(11)と
副反射鏡(2))を鏡面修整している。
In such a sub-reflector antenna, in order to obtain high aperture efficiency and low sidelobe characteristics, a -order radiator (3rd
) The 2ffl rotating quadratic curved mirrors (the main reflecting mirror (11) and the sub-reflecting mirror (2)) are mirror-finished so that an optimal aperture distribution can be obtained when a radiation pattern of 2 ffl is given.

鏡面修整の方法は幾つかあるが、−数的には幾何光学の
原理に基づいており、第一に一つの光束内のエネルギー
が不変であること、第二に一次放射器の位相中心から開
口までの光路長が等しいこと、第三には各反射鏡で反射
の法則を溝足することの三つの条件から2組の反射鏡の
鏡面座標を決定している。
There are several methods for mirror surface modification, but they are numerically based on the principles of geometric optics: firstly, the energy within a single beam remains unchanged; secondly, the aperture is adjusted from the phase center of the primary radiator. The mirror coordinates of the two sets of mirrors are determined based on three conditions: that the optical path lengths up to the mirrors are equal, and thirdly, that the law of reflection is added for each mirror.

〔発明が解決しようとする課厄〕[The problem that the invention attempts to solve]

従来の鏡面修整系のオフセット形アンテナは以上のよう
に構成されているので主反射鏡が大きくなると鏡面の製
造コストが問題となる。一般に直径5m以上の大きさの
アンテナでは、鏡面を周方向に分割(鏡面が大きくなる
と径方向にも分割が必要となる)した反射鏡パネルで鏡
面を構成している。鏡面修整した主反射鏡は、オフセッ
ト形アンテナのため非回転対称であり、分割したパネル
は全て異なった鏡面となる。この結果、パネルの製造コ
ストが非常に高くなる。一方、鏡面修整せずに回転二次
曲面を用いた主反射鏡は、一つの型を作れば周方向に全
て同じパネル鏡面で構成することができ5 パネルの製
造コストも安くすむことになる。
Since the conventional mirror surface modification type offset antenna is constructed as described above, the manufacturing cost of the mirror surface becomes a problem when the main reflecting mirror becomes large. Generally, in an antenna having a diameter of 5 m or more, the mirror surface is formed by a reflecting mirror panel that is divided in the circumferential direction (as the mirror surface becomes larger, it is necessary to divide it in the radial direction as well). The mirror-modified main reflecting mirror is non-rotationally symmetrical because it is an offset antenna, and each divided panel has a different mirror surface. This results in very high panel manufacturing costs. On the other hand, the main reflecting mirror that uses a rotating quadratic curved surface without mirror surface modification can be constructed with the same panel mirror surface in the circumferential direction if one mold is made, and the manufacturing cost of the five panels can be reduced.

このような問題点を解決するオフセット形アンテナとし
て、例えば第6国、第7図に示すように補助反射鏡(5
)と副反射鏡(2)とを鏡面修整するアンテナが考えら
れているが、副反射鏡と同程度の大きさの補助反射鏡を
配置するスペースが必要で、また、□ 構造が複雑にな
るなどの問題があった。
As an offset type antenna that solves these problems, for example, in the 6th country, as shown in Figure 7, an auxiliary reflector (5
) and the auxiliary reflector (2) are being considered, but this would require space to place an auxiliary reflector that is about the same size as the auxiliary reflector, and the structure would be complicated. There were other problems.

この発明は上記のような問題点を解消するためになされ
たもので、スペースの有効利用を図り、コンパクトなオ
フセット形アンテナを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to effectively utilize space and obtain a compact offset antenna.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わるオフセット形アンテナは、主反射鏡は
鏡面修整せずに副反射鏡のみを鏡面修整して開口面分布
における振幅分布を制御し、修整誘電体レンズで位相の
補正を行うようにしたものである。
In the offset antenna according to the present invention, the main reflecting mirror is not mirror-finished, but only the sub-reflecting mirror is mirror-modified to control the amplitude distribution in the aperture distribution, and the phase is corrected by the modified dielectric lens. It is something.

〔作用〕[Effect]

この発明における修整誘電体レンズは、その形状を変え
ることにより位相量と電波の出力方向が補正され、高い
開口能率を得るために開口面の位相分布が一様になるよ
うに光FI8長を制御する。
In the modified dielectric lens of this invention, the phase amount and radio wave output direction are corrected by changing its shape, and the optical FI8 length is controlled so that the phase distribution of the aperture surface is uniform in order to obtain high aperture efficiency. do.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
区において、 (1)は鏡面修整していない主反射鏡、
 (2)は開口面分布における振幅分布を制御するため
に鏡面修整した副反射鏡、 (3)は−次放射器、 (
4)は主反射鏡の焦点付近に置かれた修整Mt体レンズ
で、 (6ンは開口面上の振幅分布、 (7)は開口面
上の位相分布である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the district, (1) is the main reflector that has not been mirror-finished;
(2) is a sub-reflector whose mirror surface has been modified to control the amplitude distribution in the aperture distribution, (3) is a -order radiator, (
4) is a modified Mt body lens placed near the focal point of the main reflecting mirror, (6) is the amplitude distribution on the aperture surface, and (7) is the phase distribution on the aperture surface.

次に動作について説明する。高い開口能率と低いサイド
ローブ特性を得るためには、従来技術と同じように、−
次放射器(3)の放射パターンを与えた時に最適な開口
分布が得られるような鏡面系を構成する必要がある。従
来は2組の回転二次曲面鏡(主反射鏡(11)と副反射
鏡(2))を鏡面修整しているが、一実施例のアンテナ
では、主反射鏡(1)を鏡面fs整しないため、鏡面修
整した副反射鏡からの電波の方向を変え、かつ、光路長
を一定にするために位相量を補正することが必要であり
、その変換器として修整誘電体レンズ(4)を用いて構
成した。
Next, the operation will be explained. In order to obtain high aperture efficiency and low sidelobe characteristics, −
It is necessary to construct a mirror system that can obtain an optimal aperture distribution when given the radiation pattern of the secondary radiator (3). Conventionally, two sets of rotating quadratic curved mirrors (main reflector (11) and sub-reflector (2)) are mirror-finished, but in one embodiment of the antenna, the main reflector (1) is mirror-finished with fs adjustment. Therefore, it is necessary to change the direction of the radio waves from the mirror-modified sub-reflector and correct the phase amount in order to keep the optical path length constant.The modified dielectric lens (4) is used as a converter for this purpose. It was constructed using

この修整誘電体レンズ(4)は主反射R(1)の焦点位
置の付近に置くことにより、小さいサイズですみ、コン
パクトなオフセット形アンテナが構成できる。
By placing this modified dielectric lens (4) near the focal point of the main reflection R(1), the size can be reduced and a compact offset antenna can be constructed.

なお、上記実施例では主反射鏡(1)と副反射鏡(2)
との間に修整誘電体レンズ(4)を置いたものを示した
が、第2図に示すように回転二次曲面の主反射鏡(1)
と副反射鏡(21)と回転二次曲面の鏡面をfs整した
補助反射M(5)と−次放射器(3)より構成される副
反射鏡アンテナにおいて、副反射鏡(21)と補助反射
鏡(5)との間に修整誘電体レンズ(4)を入れても上
記実施例と同様の効果が得られる。
In addition, in the above embodiment, the main reflecting mirror (1) and the sub-reflecting mirror (2)
The modified dielectric lens (4) is placed between the main reflector (1), which has a rotating quadratic curved surface, as shown in Figure 2.
In a sub-reflector antenna consisting of a sub-reflector (21), an auxiliary reflector M (5) whose mirror surface is adjusted to fs as a rotating quadratic curved surface, and a -order radiator (3), the sub-reflector (21) and the auxiliary Even if a modified dielectric lens (4) is inserted between the reflecting mirror (5), the same effect as in the above embodiment can be obtained.

また、マルチビーム地球局の一つである第3[N、第4
区に示すような、回転二次曲面の主反射鏡(1)と副反
射鏡(21)と2Mの鏡面修整した補助反射鏡(5a)
、 (5b)と−次放射器(3a)、 (3b)より構
成されるデュアルビームアンテナにおいて、副反射鏡(
21)と補助反射鏡(5a)、(5b)との間に修整誘
電体レンズ(4a)、(4b)を入れることによって2
つのビームとも高能率で低サイドローブ特性が得られる
Also, the 3rd [N, 4th], which is one of the multi-beam earth stations,
The main reflecting mirror (1), the sub-reflecting mirror (21), and the auxiliary reflecting mirror (5a) with a 2M mirror surface, as shown in Fig.
, (5b) and -order radiators (3a), (3b), the sub-reflector (
By inserting modifying dielectric lenses (4a) and (4b) between 21) and the auxiliary reflecting mirrors (5a) and (5b), 2
Both beams have high efficiency and low sidelobe characteristics.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば鏡面修整すべき補助反
射鏡を修整誘電体レンズで置き換えて椹成しなので、装
置が安価にでき、また、スペースの有効利用が区れると
ともにコンパクトなものが得られる効果がある。
As described above, according to the present invention, since the auxiliary reflecting mirror that needs to be mirror-finished is replaced with a repairing dielectric lens, the device can be made at low cost, space can be used effectively, and the device can be compact. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるオフセット形アンテ
ナを示す型面側面図、第2図はこの発明の他の実施例に
よるオフセット形アンテナを示す断面側面図、第3図は
他の実施例によるデュアルビームアンテナを示す断面側
面図、第4図はデュアルビームアンテナを示す断面平面
図、第5図、゛第6区、第7図は従来のオフセット形ア
ンテナを示す断面側図である。 図において、 (1)は鏡面修整していない主反射鏡、
 (11)は鏡面修整した主反射鏡、 (2)は鏡面修
整した副反射鏡、 (21)は鏡面修整していない副反
射鏡、 (3)は−次放射器、 (4)は修整誘電体レ
ンズ、 (5)は鏡面修整した補助反射鏡、 (6)は
開口面上の振幅分布、 (7)は開口面上の位相分布。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a mold side view showing an offset antenna according to one embodiment of the present invention, FIG. 2 is a sectional side view showing an offset antenna according to another embodiment of the invention, and FIG. 3 is another embodiment. FIG. 4 is a cross-sectional plan view showing the dual beam antenna, and FIGS. 5, 6, and 7 are cross-sectional side views showing a conventional offset antenna. In the figure, (1) is the main reflecting mirror that has not been mirror-finished;
(11) is the mirror-treated main reflector, (2) is the mirror-treated sub-reflector, (21) is the non-specular sub-reflector, (3) is the -order radiator, and (4) is the modified dielectric body lens, (5) is the auxiliary reflector with mirror finishing, (6) is the amplitude distribution on the aperture plane, and (7) is the phase distribution on the aperture plane. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 回転二次曲面の主反射鏡と回転二次曲面の鏡面を修整し
た副反射鏡と一次放射器より構成される副反射鏡アンテ
ナにおいて、主反射鏡と副反射鏡との間に電波の方向及
び位相を変える修整誘電体レンズを入れて構成したこと
を特徴とするオフセット形アンテナ。
In a sub-reflector antenna consisting of a main reflector with a rotating quadratic surface, a sub-reflector whose mirror surface is modified with a rotating quadratic surface, and a primary radiator, the direction of radio waves and An offset antenna characterized by being constructed by including a modified dielectric lens that changes the phase.
JP17353190A 1990-06-28 1990-06-28 Offset type antenna Pending JPH0461403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17353190A JPH0461403A (en) 1990-06-28 1990-06-28 Offset type antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17353190A JPH0461403A (en) 1990-06-28 1990-06-28 Offset type antenna

Publications (1)

Publication Number Publication Date
JPH0461403A true JPH0461403A (en) 1992-02-27

Family

ID=15962261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17353190A Pending JPH0461403A (en) 1990-06-28 1990-06-28 Offset type antenna

Country Status (1)

Country Link
JP (1) JPH0461403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301504B2 (en) 2004-07-14 2007-11-27 Ems Technologies, Inc. Mechanical scanning feed assembly for a spherical lens antenna
JP2015089109A (en) * 2013-09-27 2015-05-07 日産自動車株式会社 Antenna device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301504B2 (en) 2004-07-14 2007-11-27 Ems Technologies, Inc. Mechanical scanning feed assembly for a spherical lens antenna
JP2015089109A (en) * 2013-09-27 2015-05-07 日産自動車株式会社 Antenna device

Similar Documents

Publication Publication Date Title
US4638322A (en) Multiple feed antenna
US4855751A (en) High-efficiency multibeam antenna
US3821746A (en) Antenna system with distortion compensating reflectors
JPH0352682B2 (en)
US5459475A (en) Wide scanning spherical antenna
JPH0417482B2 (en)
JPH0461403A (en) Offset type antenna
US4783664A (en) Shaped offset-fed dual reflector antenna
EP1207584B1 (en) Integrated dual beam reflector antenna
Rappaport et al. Multifocal bootlace lens design concepts: a review
Von Hoerner et al. Improved efficiency with a mechanically deformable subreflector
KR100351091B1 (en) A reflector antenna
JP2889084B2 (en) Modification method of double reflector antenna device
JPH02209003A (en) Antenna system
Stadt Optimum location of the wobble axis of secondary mirrors in Cassegrain-type telescopes
JP3131347B2 (en) Multi-beam antenna
JPS5892106A (en) Multibeam antenna
SU1730704A1 (en) Mirror antenna
JP2605939B2 (en) Multi-beam antenna
Prata et al. A compact high-performance dual-reflector millimeter-wave imaging antenna with a 20/spl times/20 degrees square field of view
JPS61117906A (en) Antenna system
JPS63109603A (en) Multi-beam antenna
JP2687412B2 (en) Reflector antenna
JPH05304410A (en) Variable beam width antenna
JPS61218205A (en) Offset antenna system