JPH0461110B2 - - Google Patents

Info

Publication number
JPH0461110B2
JPH0461110B2 JP63284004A JP28400488A JPH0461110B2 JP H0461110 B2 JPH0461110 B2 JP H0461110B2 JP 63284004 A JP63284004 A JP 63284004A JP 28400488 A JP28400488 A JP 28400488A JP H0461110 B2 JPH0461110 B2 JP H0461110B2
Authority
JP
Japan
Prior art keywords
strength
weight
agent
component
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63284004A
Other languages
Japanese (ja)
Other versions
JPH02145867A (en
Inventor
Takamitsu Kondo
Haruo Nokubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP63284004A priority Critical patent/JPH02145867A/en
Publication of JPH02145867A publication Critical patent/JPH02145867A/en
Publication of JPH0461110B2 publication Critical patent/JPH0461110B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、高匷力ポリ゚ステル繊維に関する。
曎に詳しくは、撚糞埌レゟルシン・ホルマリン・
ラテツクス液RFL液ず称すで凊理する際の
発煙が少なく、たた埗られる凊理コヌドの匷力が
高いゎム補匷甚高匷力ポリ゚ステル繊維に関する
ものである。 埓来技術 近幎、タむダの品質の向䞊およひ生産性向䞊の
必芁性が以前よりたしお叫ばれるようになり、ポ
リ゚ステル繊維に察し、高匷力化、耐熱性の向䞊
がより匷く芁求され぀぀ある。このため、ポリ゚
ステル繊維は高い匷床を埗る目的で、より高枩で
より高い倍率で延䌞されるこずから、高枩高接圧
時の油膜匷床がすぐれ、発煙性も優れおいる凊理
剀が芁求されおいる。 たた、撚糞埌RFL液で凊理し、也燥、熱凊理
を行な぀お凊理コヌドを埗るが、これの匷床が高
く、熱凊理時の発煙が少ないこずも芁求されおい
る。 これらの芁求を満足させるために、埓来より、
硫黄元玠を導入した平滑剀、䟋えば、チオゞプロ
ピオン酞ず䞀䟡アルコヌルのゞ゚ステル特開昭
52−103590号公報や、チオゞプロピオン酞ず䞀
䟡アルコヌルのEO付加物のモノ及びゞ゚ステル
特開昭55−148216号公報などが、提案されお
いる。 たた、特に高接圧時の繊維間の摩擊を䞋げる目
的で、高分子量の掻性剀、䟋えば、倚䟡アルコヌ
ルずヒドロキシモノカルボン酞ずの゚ステルのア
ルキレンオキシド付加物ず、マレむン酞を必須成
分ずするカルボン酞成分ずの゚ステル特開昭59
−223368号公報なども提案されおいる。 しかしながら、フむラメントの匷床が8.5
をこえるものを埗るためには、玡糞延䌞時の糞
匵力を著しく増加させたり、加熱枩床を著しく高
くする必芁があり、油膜匷床、発煙性ぞの芁求も
より厳しくな぀お、今たでの平滑剀及び高分子量
の掻性剀だけの組み合わせでは、所定の効果が埗
られなくなる。即ち、フむラメントの匷床を増加
させおも、最終的に埗られる凊理コヌド匷力の増
加が芋られなくなり、発煙も増加する。 かかる問題を解決する手段ずしおは、平滑剀の
比率を倧きくしたり、高分子掻性剀を甚いたり、
たたは非含氎油剀の絊油特開昭60−9919号公
報などの方法が提案されおいるが、これらはい
ずれも再乳化性繊維䞊の油剀がRFL液䞭ぞ入
぀た時の溶解性に劣るずいう問題があ぀た。こ
の再乳化性が䜎䞋するず、RFL液の粘性が倉化
したり、RFL液の乳化バランスがくずれおラテ
ツクス郚分が分離したりするため奜たしくないの
である。そしお、このような凊理剀の再乳化性を
向䞊させようずするには、平滑剀の比率の䜎䞋、
分子量の䜎䞋が考えられるが、これらは、発煙性
の増加、平滑性の䜎䞋の方向にあるため奜たしく
ない。 発明の目的 本発明の目的は、フむラメントの匷床が8.5
においおも、フむラメント匷床の䞊昇に぀
れお凊理コヌド匷力の増加が芋られ、か぀発煙性
も䜎い高匷力ポリ゚ステル繊維を提䟛するこずに
ある。 発明の構成 本発明者らは、前蚘目的を達成するため鋭意怜
蚎した結果、特定分子量の硫黄含有゚ステル系
以䞋含有゚ステル系ず称すこずがあるの平
滑剀、非硫黄含有゚ステル系高分子掻性剀及び非
むオン掻性剀を組み合わせお甚いるず、発煙性ず
RFL浞透性を同時に満足するポリ゚ステル繊維
が安定しお埗られるこずを知り本発明に到達し
た。 すなわち本発明は、 (a) 分子量が600以䞊の硫黄含有゚ステル化合物
を䞻成分ずする平滑剀成分を62重量以
䞊、 (b) 分子量が5000以䞊でか぀15℃で液状の非硫黄
含有゚ステル系高分子掻性剀成分を重
量以䞊、 (c) 分子量が800以䞊の非むオン掻性剀成分
を20重量以䞋含有し、か぀が90重量
以䞋である 凊理剀が付䞎されたポリ゚ステル繊維であ぀
お、該ポリ゚ステル繊維は䞋蚘〜を
同時に満足するこずを特城ずする高匷力ポリ゚ス
テル繊維である。 () フむラメント匷床≧8.5 () 発煙性≊1500 () RFL浞透性≊cm 本発明は、補糞埌の最終的に埗られる繊維のフ
むラメント匷床が8.5以䞊のポリ゚ステル
繊維を察象ずする。該繊維が8.5未満の堎
合にあ぀おは、本発明に甚いる凊理剀を付䞎した
ものであ぀おも、たた埓来公知の凊理剀を付䞎し
たものであ぀おも、凊理コヌド匷力の差はほずん
ど発珟しない。ずころが、8.5以䞊特に9.0
以䞊の堎合には、埌述するように本発明の
ポリ゚ステル繊維から埗られる凊理コヌドの匷力
は増倧するずいう事実が刀明した。 本発明で付䞎される凊理剀を構成する平滑剀
性分は、分子量が600以䞊の硫黄含有゚ステ
ル系の平滑剀を䞻成分ずする必芁があるここで
䞻成分ずは成分䞭の50重量以䞊であるこずを
いう。硫黄含有゚ステルの分子量が600未満もし
くは成分䞭の割合が50未満の堎合には、凊理
剀の平滑性が劣り延䌞熱凊理時の糞切れ発生、凊
理コヌドの匷力䜎䞋が起り、さらには凊理コヌド
補造時の発煙が倧きいため奜たしくない。たた、
成分は凊理剀に察しお62重量以䞊である必芁
がある。62重量未満の堎合にも、凊理剀の平滑
性が䜎䞋するため奜たしくない。 ここで硫黄含有゚ステル系の平滑剀ずしおは、
分子内に硫黄原子を有する化合物で、䟋えばチオ
ゞプロピオン酞ず高玚アルコヌルのゞ゚ステル類
をあげるこずができる。高玚アルコヌルずしお
は、倩然たたは合成アルコヌルの盎鎖たたは偎鎖
を有する飜和たたは䞍飜和アルコヌル、および芳
銙栞を含有するアルコヌルをあげるこずができ、
これらのうち特に奜たしいのは盎鎖の䞍飜和脂肪
族アルコヌルである。具䜓的には、ゞオレむルチ
オゞプロピオネヌトが奜適に甚いられる。 非硫黄含有゚ステル系高分子掻性剀成分
ずしおは、通垞公知の倚䟡アルコヌルずヒドロキ
シカルボン酞ずからなる゚ステルのアルキレンオ
キシド付加物ずマレむン酞を重合しお埗られるア
ルキレンオキシド倉性ポリ゚ステル、ポリアルキ
レングリコヌル類ず二塩基酞から埗られるポリ゚
ステル等をあげるこずができ、特に末端などに぀
いおは䜕ら限定する必芁はない。すなわち、ポリ
アルキレングリコヌル類を䞻鎖、偎鎖䜕れかに有
する高分子量ポリ゚ステルであれば良い。具䜓的
には、䟋えば、゚チレンオキシドを付加したひた
し油ずマレむン酞又は無氎マレむン酞からのポリ
゚ステル、゜ルビトヌルずリシノヌル酞ずマレむ
ン酞又は無氎マレむン酞からのポリ゚ステル、お
よびアルキレンオキシド付加のポリテトラメチレ
ングリコヌルずマレむン酞又は無氎マレむン酞か
らのポリ゚ステル等があげられる。 かかる成分は、分子量が5000以䞊で、か぀15
℃で液状を瀺す必芁が有り、䜿甚比率は重量
以䞊ずする必芁がある。分子量が5000未満の堎合
では凊理剀の平滑性が劣り、固状では平滑性のば
ら぀きが倧きくなるず同時にゎムずの接着が䜎䞋
し、たた䜿甚比率が重量未満の堎合には平滑
性が劣るずずもに凊理剀の再乳化性が悪化するた
め奜たしくない。 なお、本凊理剀䞭では、の䜿甚比率を90
重量以䞋ずする必芁がある。90重量を越える
ず凊理剀の再乳化性が悪くなるので奜たしくな
い。 非むオン掻性剀成分ずしおは、乳化䜜甚
を有するずずもに発煙性、平滑性に優れる倚䟡ア
ルコヌルの誘導䜓、䟋えばヒマシ油、硬化ヒマシ
油、トリメチロヌルプロパン、グリセリン等の倚
䟡アルコヌルに゚チレンオキシドを〜40モル付
加したもの、およびこれらの゚チレンオキシド付
加倚䟡アルコヌルず脂肪族カルボン酞の゚ステル
等があげられる。具䜓的には、ポリオキシ゚チレ
ン硬化ヒマシ油゚ヌテル、ポリオキシ゚チレン゜
ルビタントリオレヌト等があげられる。かかる非
むオン掻性剀成分の分子量は800以䞊で、
その䜿甚割合は20重量以䞋である必芁がある。
分子量が800未満の堎合には凊理剀の発煙性が倚
くなるし、䞀方䜿甚割合が20重量を越えるず平
滑性が損われるため奜たしくない。 本発明の凊理剀は、䞊蚘、、成分の他
に、制電剀、乳化補助剀、酞化安定剀等を少量添
加しおも䜕ら差し支えない。䟋えば制電剀ずしお
は、オレむルフオスプヌト及びその塩Na、
、アミン等、ポリオキシ゚チレンオレむルフ
オスプヌト及びその塩Na、、アミン等、
ゞオクチルスルフオサクシネヌトNa塩、アルカ
ンスルフオネヌト及びその塩Na、、アミン
等があげられる。 かかる凊理剀をポリ゚ステル繊維に付䞎するに
は、非含氎型たたは氎で乳化した゚マルゞペンの
圢で、玡糞工皋においお、ロヌラヌ絊油、ノズル
絊油など埓来より公知の方法をずりうるが、フむ
ラメント匷床を8.5以䞊ずするには高速補
糞、高枩熱凊理が必芁なため、非含氎型凊理剀を
ノズル絊油法で行うこずが奜たしい。 凊理剀の付着量は、繊維に察し0.1〜2.0重量
、奜たしくは0.2〜1.0重量ずするのが望たし
い。 かくしお埗られるポリ゚ステル繊維は、埌述す
る230℃で枬定した発煙補が1500以䞋およびRFL
浞透性がcm以䞋に維持されるずいう効果も呈す
る。発煙性が1500を越える堎合には、RFL液で
浞挬凊理しお凊理コヌドずなす際発煙が倚くな
る。たたRFL浞透性がcmを越えるず、凊理コ
ヌドの内郚たでRFL液が浞透し、コヌドを構成
する各フむラメントの動きを拘束するためず考え
られるが、凊理コヌドの匷力が䜎䞋する。 なお、本発明で甚いるポリ゚ステル繊維は、ポ
リ゚チレンテレフタレヌトたたはこれを䞻䜓ずす
るポリ゚ステルを、垞法に埓い゚クストルヌダに
お溶融埌、盎接玡糞延䌞しお埗られるものであ
る。 䜜甚 フむラメント匷床が8.5以䞊の堎合に、
䜕故本発明の効果が珟れるかは定かではないが、
珟状では次のように考えられる。 フむラメント匷床を8.5以䞊にするため
には、ポリ゚ステル繊維の結晶化床及び配向床を
極めお高くする必芁が有り、繊維衚面の状態が倉
わり繊維間の摩擊等が倉わる、たた䌞床も䜎
めの方向になる。その結果、コヌドの匕぀匵り挙
動が倉わ぀おくるために、凊理コヌドの匷力をあ
げるには繊維間の平滑性をより䞀局向䞊させる必
芁がでおくる。 この必芁を達成するために本発明で甚いる凊理
剀は前蚘構成をず぀おおり、耐熱性が高く、たた
凊理剀の衚面匷床が高くな぀おいるフむラメン
ト間の接圧が高くな぀おも凊理剀の膜がフむラメ
ント衚面に匷固に被着しおいる。そのため、フ
むラメント匷床が8.5以䞊のポリ゚ステル
繊維を埗るために採甚される厳しい補糞条件高
枩熱凊理、高玡糞匵力、高延䌞匵力に耐え、フ
むラメント衚面に十分な凊理剀が残存し、フむラ
メント間の摩擊を䜎䞋させお延䌞性を向䞊させ
る。 たた本発明で埗られたポリ゚ステル繊維を撚糞
しおコヌドずなす堎合でも、凊理剀の衚面匷床が
高いので、撚糞時にフむラメント間に倧きな圧力
がかか぀おも、フむラメント間に凊理剀が十分残
存する。そのため、RFL液ず本発明の凊理剀ず
の盞溶性の関係よりRFLの浞透性がcm以䞋ず
なり、凊理コヌドの内郚にRFL液があたり浞透
せず、コヌドを構成する各フむラメントの動きが
自由ずなる。その結果凊理コヌドの匷力が向䞊す
る。 たた本発明で甚いる凊理剀は分子量が倧きく耐
熱性が高いので、凊理コヌド補造時の高枩熱凊理
に耐え、発煙性も䜎䞋する。 以䞊の効果が同時に発珟されるので、本発明の
凊理剀を甚いた時に限぀おのみ、所期の目的が達
成できるものず考えられる。 発明の効果 本発明のポリ゚ステル繊維は、発煙性が䜎いの
で、凊理コヌドずなす際の䜜業環境が改善され
る。たた、RFL浞透性も䜎いので匷力の倧きい
凊理コヌドが埗られ、その工業的効果は極めお倧
である。 実斜䟋 以䞋、実斜䟋及び比范䟋によ぀お、本発明を曎
に説明するが、本発明はこれに限定されるもので
はない。 評䟡方法は、以䞋によ぀た。 詊料固有粘床0.95近蟺のポリ゚チレンテレフタ
レヌトを溶融し盎接玡糞延䌞法によ぀お補造す
る際、別蚘凊理剀を非含氎型油剀の圢で、ノズ
ル絊油法を甚い付着量0.5重量の糞条
1500De250filをえた。 これを、タむダコヌド甚リング撚糞機を甚
い、撚数40×40T10cmの本撚りコヌド生
コヌドを䜜成した。 ぀いで、この生コヌドをシングルコヌドデむ
ツピングマシヌンを甚い、RFL液で浞挬凊理
し130℃で分間の也燥埌、240℃で分間の熱
凊理をおこな぀お凊理コヌドを埗た。 ここで、RFL液ずしおは衚に瀺す組成の
PEXUL系接着剀を、垞法にしたが぀お熟成し
たものを甚いた。
(Industrial Application Field) The present invention relates to high strength polyester fibers.
For more details, please refer to resorcin, formalin,
The present invention relates to high-strength polyester fibers for rubber reinforcement that generate less smoke when treated with a latex liquid (referred to as RFL liquid) and that provide high strength treated cords. (Prior art) In recent years, the need to improve tire quality and productivity has become more important than ever, and polyester fibers are increasingly required to have higher strength and improved heat resistance. . For this reason, polyester fibers are stretched at higher temperatures and higher ratios in order to obtain high strength, so there is a need for processing agents that have excellent oil film strength at high temperatures and high contact pressures and also have excellent smoke generation properties. . Furthermore, after twisting, the cord is treated with RFL liquid, dried, and heat treated to obtain a treated cord, which is required to have high strength and generate little smoke during heat treatment. In order to satisfy these demands, conventionally,
Smoothing agents containing sulfur elements, such as diester of thiodipropionic acid and monohydric alcohol (JP-A-Show)
52-103590) and mono- and diesters of EO adducts of thiodipropionic acid and monohydric alcohol (Japanese Patent Application Laid-open No. 148216/1982). In addition, in order to reduce the friction between fibers especially at high contact pressures, a high molecular weight activator such as an alkylene oxide adduct of an ester of a polyhydric alcohol and a hydroxymonocarboxylic acid and maleic acid are used as essential components. Esters with carboxylic acid components (Unexamined Japanese Patent Publication No. 1983
-223368) have also been proposed. However, the strength of the filament is 8.5g/
In order to obtain a product exceeding d, it is necessary to significantly increase the yarn tension during spinning and drawing, and to raise the heating temperature significantly.The requirements for oil film strength and smoke generation properties have also become more stringent, and the conventional smoothness has become more difficult. A combination of only the active agent and the high molecular weight active agent will not produce the desired effect. That is, even if the strength of the filament is increased, the strength of the final treated cord does not increase, and smoke generation also increases. As a means to solve this problem, increasing the proportion of the smoothing agent, using a polymer activator,
Alternatively, methods have been proposed such as lubricating with non-water-containing oil (Japanese Patent Application Laid-open No. 60-9919), but these methods all have re-emulsifying properties (solubility when the oil on the fiber enters the RFL liquid). There was a problem that it was inferior to If this re-emulsifying property is reduced, the viscosity of the RFL liquid will change, the emulsification balance of the RFL liquid will be disrupted, and the latex portion will separate, which is undesirable. In order to improve the re-emulsifying properties of such processing agents, it is necessary to reduce the proportion of the leveling agent,
A decrease in molecular weight can be considered, but this is not preferable because it tends to increase smoke generation and decrease smoothness. (Object of the invention) The object of the invention is to provide a filament with a strength of 8.5.
The object of the present invention is to provide a high-strength polyester fiber that exhibits an increase in treated cord strength as the filament strength increases in terms of g/d and also has low smoke-emitting properties. (Structure of the Invention) As a result of intensive studies to achieve the above object, the present inventors have found that a smoothing agent based on a sulfur-containing ester (hereinafter sometimes referred to as an S-containing ester) with a specific molecular weight, and a smoothing agent based on a non-sulfur-containing ester. When used in combination with polymeric activators and nonionic activators, smoke generation and
The inventors discovered that it is possible to stably obtain polyester fibers that simultaneously satisfy RFL permeability, and arrived at the present invention. That is, the present invention includes (a) 62% by weight or more of a smoothing agent (component A) mainly composed of a sulfur-containing ester compound with a molecular weight of 600 or more, and (b) a non-sulfur smoothing agent with a molecular weight of 5000 or more and liquid at 15°C. Contains an ester polymer activator (component B) of 8% by weight or more, (c) a nonionic activator with a molecular weight of 800 or more (component C)
Contains 20% by weight or less, and A+B is 90% by weight
It is a polyester fiber to which the following processing agent has been applied, and the polyester fiber is a high-strength polyester fiber characterized by simultaneously satisfying the following () to (). () Filament strength≧8.5g/d () Smoke generation≩1500 () RFL permeability≩5cm The present invention targets polyester fibers whose filament strength is 8.5g/d or more after spinning. do. If the fiber is less than 8.5 g/d, there will be no difference in the strength of the treated cord, whether it is treated with the treatment agent used in the present invention or a conventionally known treatment agent. is rarely expressed. However, more than 8.5 g/d, especially 9.0
g/d or more, it has been found that the strength of the treated cord obtained from the polyester fiber of the present invention increases as described below. The smoothing agent (property A component) constituting the treatment agent applied in the present invention must have a sulfur-containing ester smoothing agent with a molecular weight of 600 or more as the main component (here, the main component refers to the component A). 50% or more by weight). If the molecular weight of the sulfur-containing ester is less than 600 or the proportion of the sulfur-containing ester in component A is less than 50%, the smoothness of the treatment agent will be poor, resulting in yarn breakage during drawing heat treatment, a decrease in the strength of the treated cord, and even worse. Unfavorable because it generates a lot of smoke during manufacturing. Also,
Component A needs to be at least 62% by weight based on the processing agent. If it is less than 62% by weight, it is also not preferred because the smoothness of the processing agent decreases. Here, as a sulfur-containing ester smoothing agent,
Compounds having a sulfur atom in the molecule include, for example, diesters of thiodipropionic acid and higher alcohols. Higher alcohols include saturated or unsaturated alcohols with straight or side chains of natural or synthetic alcohols, and alcohols containing aromatic nuclei;
Among these, particularly preferred are linear unsaturated aliphatic alcohols. Specifically, dioleylthiodipropionate is preferably used. Non-sulfur-containing ester polymer activator (component B)
Examples include alkylene oxide-modified polyester obtained by polymerizing an alkylene oxide adduct of an ester consisting of a polyhydric alcohol and a hydroxycarboxylic acid and maleic acid, a polyester obtained from polyalkylene glycols and a dibasic acid, etc. There is no need to particularly limit the terminal end. That is, any high molecular weight polyester having polyalkylene glycols in either the main chain or the side chain may be used. Specifically, for example, polyesters made from castor oil and maleic acid or maleic anhydride added with ethylene oxide, polyesters made from sorbitol, ricinoleic acid, and maleic acid or maleic anhydride, and polytetramethylene glycol added with alkylene oxide and maleic acid. Or polyester from maleic anhydride, etc. can be mentioned. Such B component has a molecular weight of 5000 or more and 15
It must be liquid at ℃, and the usage ratio is 8% by weight.
It is necessary to do more than that. If the molecular weight is less than 5000, the smoothness of the treatment agent will be poor, and in solid form, the variation in smoothness will increase and at the same time the adhesion to rubber will decrease, and if the usage ratio is less than 8% by weight, the smoothness will be poor. At the same time, the re-emulsifying property of the processing agent deteriorates, which is not preferable. In addition, in this treatment agent, the usage ratio of A + B is 90
It is necessary to keep it below % by weight. If it exceeds 90% by weight, the re-emulsifying properties of the processing agent will deteriorate, which is not preferable. As the nonionic activator (component C), derivatives of polyhydric alcohols that have an emulsifying effect and are excellent in smoke generation and smoothness, such as castor oil, hydrogenated castor oil, trimethylolpropane, glycerin, and other polyhydric alcohols in which ethylene oxide is added are used. Examples include those with 5 to 40 moles added, and esters of these ethylene oxide-added polyhydric alcohols and aliphatic carboxylic acids. Specific examples include polyoxyethylene hydrogenated castor oil ether and polyoxyethylene sorbitan triolate. The molecular weight of such nonionic activator (component C) is 800 or more,
The proportion used must be 20% by weight or less.
If the molecular weight is less than 800, the processing agent will generate more smoke, while if the proportion exceeds 20% by weight, smoothness will be impaired, which is not preferable. In addition to the above-mentioned components A, B, and C, a small amount of an antistatic agent, an emulsifying agent, an oxidation stabilizer, etc. may be added to the processing agent of the present invention without any problem. For example, as an antistatic agent, oleyl phosphate and its salts (Na,
K, amine, etc.), polyoxyethylene oleyl phosphate and its salts (Na, K, amine, etc.),
Examples include dioctyl sulfosuccinate Na salt, alkanesulfonates and their salts (Na, K, amines, etc.). In order to apply such a treatment agent to polyester fibers, conventionally known methods such as roller oiling or nozzle oiling can be used in the spinning process in the form of a water-free type or an emulsion emulsified with water. /d or more requires high-speed spinning and high-temperature heat treatment, so it is preferable to use a nozzle oiling method with a non-hydrous treatment agent. The amount of the treatment agent deposited on the fiber is preferably 0.1 to 2.0% by weight, preferably 0.2 to 1.0% by weight. The polyester fiber thus obtained has a smoke production value of 1500 or less and an RFL measured at 230°C as described below.
It also has the effect of maintaining permeability below 5 cm. If the smoke-emitting property exceeds 1500, a lot of smoke will be emitted when it is immersed in RFL liquid to form a treated code. Furthermore, when the RFL permeability exceeds 5 cm, the strength of the treated cord decreases, presumably because the RFL liquid penetrates into the inside of the treated cord and restricts the movement of each filament that makes up the cord. The polyester fiber used in the present invention is obtained by directly spinning and drawing polyethylene terephthalate or a polyester mainly composed of polyethylene terephthalate after melting it in an extruder according to a conventional method. (Function) When the filament strength is 8.5g/d or more,
Although it is not clear why the effects of the present invention appear,
At present, it can be considered as follows. In order to increase the filament strength to 8.5 g/d or more, it is necessary to have extremely high crystallinity and orientation of the polyester fibers, which changes the fiber surface condition (changes in friction between fibers, etc.) and increases the elongation. will also be on the lower side. As a result, the tensile behavior of the cord changes, and it becomes necessary to further improve the smoothness between the fibers in order to increase the strength of the treated cord. In order to achieve this requirement, the processing agent used in the present invention has the above-mentioned structure, and has high heat resistance and high surface strength (even if the contact pressure between the filaments is high, the processing agent film is firmly adhered to the filament surface). Therefore, it can withstand the strict spinning conditions (high-temperature heat treatment, high spinning tension, high drawing tension) adopted to obtain polyester fibers with a filament strength of 8.5 g/d or more, and has sufficient treatment agent remaining on the filament surface, allowing the filament to Improves stretchability by reducing friction between Furthermore, even when the polyester fibers obtained according to the present invention are twisted to form a cord, the treating agent has a high surface strength, so even if a large pressure is exerted between the filaments during twisting, the treating agent remains sufficiently between the filaments. Therefore, due to the compatibility between the RFL liquid and the treatment agent of the present invention, the permeability of RFL is 5 cm or less, and the RFL liquid does not penetrate much into the treated cord, allowing each filament that makes up the cord to move freely. Become. As a result, the processing code becomes more powerful. Furthermore, since the processing agent used in the present invention has a large molecular weight and high heat resistance, it can withstand high-temperature heat treatment during production of the processing cord, and its smoke-emitting properties are also reduced. Since the above effects are simultaneously expressed, it is considered that the intended purpose can be achieved only when the processing agent of the present invention is used. (Effects of the Invention) Since the polyester fiber of the present invention has a low smoke-emitting property, the working environment when making it into a treated cord is improved. In addition, since the RFL permeability is low, a highly powerful processing cord can be obtained, and its industrial effects are extremely large. (Examples) Hereinafter, the present invention will be further explained with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The evaluation method was as follows. Sample: When polyethylene terephthalate with an intrinsic viscosity of around 0.95 is melted and produced by the direct spinning/drawing method, a treatment agent mentioned above is applied in the form of a non-water-containing oil and a yarn (1500De /250fil). A two-strand cord (raw cord) with a twist count of 40 x 40 T/10 cm was created using a ring twisting machine for tire cord. Next, this raw cord was immersed in an RFL solution using a single cord dipping machine, dried at 130°C for 2 minutes, and then heat-treated at 240°C for 1 minute to obtain a treated cord. Here, the RFL liquid has the composition shown in Table 1.
A PEXUL adhesive that had been aged in a conventional manner was used.

【衚】 RFL液の付着量は、2.5重量ずした。 各特性に぀いおは、䞋蚘方法に埓぀お枬定し
た。 延䌞性5000分でたきず぀た10Kgのボビン衚
面0.45m2の長さmm以䞊の毛矜の数をも぀
お延䌞性ずした。 発煙性瞊長幅cm、長さ50cmの熱板ヒヌタ
ヌ䞊に、ほが接するように糞条に250の荷重
をかけおたらし、カバヌをする。そしお、ヒヌ
タヌ䞋郚ずカバヌの間に蚭けたスリツト幅
cm、奥行きcmを通しお䞊が぀おくる空気䞭
の煙の量をヒヌタヌ䞊郚に蚭けた小孔埄
mmを通しお10分の速床で排気し、デゞタ
ル粉塵蚈柎田化孊噚械工業瀟補タむプ−
で枬定し、分間の环積倀を煙濃床ずし
た。ヒヌタヌ枩床は230℃ずした。 コヌド匷力むンテスコ瀟補匕匵詊隓機で詊隓長
25cmで凊理コヌドの匷力を求め凊理コヌド匷力
ずした。 再乳化性RFL液ず凊理剀各20氎溶液を
の割合混ぜ20cm×20cm角のガラス板䞊
に、固圢分の厚さが0.4mmずなる量入れ、垞枩
のドラフト䞭で颚也させながら、衚局の也燥状
態を肉県で日間芳察した。 ○ 党䜓に均䞀な皮膜を圢成 △ 郚分的に硬い皮膜を圢成党衚面積の20
以内 × 郚分的に硬い皮膜を圢成党衚面積の20
以䞊 RFL浞透性200の匵力をかけた30cmのダヌン
を垂盎にし、䞋端を20氎溶液のRFL液に浞
挬し、分埌に液面より䞊昇したRFL液の高
さずした。20℃RH65の雰囲気䞋で行぀た。 実斜䟋〜及び、比范䟋〜 フむラメント匷床が9.0ずなるよう玡糞
延䌞条件を蚭定し、たた凊理剀ずしおは衚に瀺
すものを䜿甚した。その結果を衚に瀺す。
[Table] The amount of RFL liquid adhered was 2.5% by weight. Each characteristic was measured according to the following method. Stretchability: Stretchability was defined as the number of fluffs with a length of 1 mm or more on the surface of a 10 kg bobbin (0.45 m 2 ) that was wound at 5000 m/min. Smoke generation: Place a load of 250 g on the yarn so that it is almost touching it on a vertically long (width 5 cm, length 50 cm) hot plate heater, and cover it. Then, make a slit (width 5mm) between the bottom of the heater and the cover.
A small hole (diameter 5cm, depth 1cm) installed at the top of the heater measures the amount of smoke in the air that rises through the heater.
mm) at a rate of 10/min.
3), and the cumulative value for 3 minutes was taken as the smoke density. The heater temperature was 230°C. Cord strength: Test length with Intesco tensile tester
The processing cord was determined to be strong at 25cm. Re-emulsifying property: Mix RFL liquid and processing agent (each 20% aqueous solution) at a ratio of 6:1, place on a 20cm x 20cm square glass plate in an amount such that the solid content is 0.4mm thick, and place in a fume hood at room temperature. While air drying, the dry state of the surface layer was visually observed for 2 days. ○
Forms a uniform film over the entire surface △ Forms a hard film in some areas (20% of the total surface area)
(within) × forms a partially hard film (20% of total surface area)
(above) RFL permeability: A 30 cm yarn with a tension of 200 g was held vertically, the lower end was immersed in a 20% aqueous RFL solution, and after 5 minutes the height of the RFL solution rose above the liquid level. The test was carried out in an atmosphere of 20°C and RH65%. Examples 1 to 7 and Comparative Examples 1 to 8 The spinning and drawing conditions were set so that the filament strength was 9.0 g/d, and the treatment agents shown in Table 2 were used. The results are shown in Table 3.

【衚】【table】

【衚】 衚の結果から明らかなように、本発明実斜
䟋〜によれば、凊理コヌドの匷力が高く、
発煙性も少ない高匷力ポリ゚ステル繊維を埗るこ
ずができる。 しかし、成分の分子量が600未満、成分の
割合が62重量未満、成分の分子量が5000未
満、成分の割合が重量未満、が90重
量を越える、成分の分子量が800未満、たた
は成分の割合が20重量を越えるずきは、延䌞
性、発煙性、コヌド匷力、再乳化性、RFL浞透
性の䜕れかが満足されず䞍充分である。
[Table] As is clear from the results in Table 3, according to the present invention (Examples 1 to 7), the strength of the processing code is high;
High strength polyester fibers with low smoke generation can be obtained. However, the molecular weight of component A is less than 600, the proportion of component A is less than 62% by weight, the molecular weight of component B is less than 5000, the proportion of component B is less than 8% by weight, A+B exceeds 90% by weight, and the molecular weight of component C is is less than 800, or when the proportion of component C exceeds 20% by weight, the stretchability, smoke-emitting property, cord strength, re-emulsifying property, and RFL permeability are unsatisfactory.

【衚】 実斜䟋、及び、比范䟋〜11 フむラメント匷床が8.0〜9.5ずな
るよう玡糞延䌞条件を倉曎した。たた、凊理剀ず
しおは実斜䟋もしくは比范䟋で甚いたものを
䜿甚した。結果を衚に瀺す。なお、実斜䟋ず
比范䟋の結果もあわせお瀺す。 この結果から明らかなように、本発明実斜䟋
、、によれば、凊理コヌドの匷力が高
く、発煙性も少なく、RFL浞透性の䜎い高匷力
ポリ゚ステル繊維を埗るこずができる。 しかし、他の条件は満たしおいるが、成分の
分子量が小さく本発明の条件を満たさない比范䟋
、〜11は、フむラメント匷床が増加しおも、
凊理コヌドの匷力がほずんど増加せず、満足な結
果は埗られない。たた、凊理剀が本発明の条件を
満たしおも、フむラメント匷床が䜎い堎合は、凊
理コヌドの匷力が䜎いため奜たしくない。
[Table] Examples 8 and 9 and Comparative Examples 8 to 11 The spinning and drawing conditions were changed so that the filament strength was 8.0 g/d to 9.5 g/d. In addition, the treatment agent used in Example 1 or Comparative Example 1 was used. The results are shown in Table 4. Note that the results of Example 1 and Comparative Example 1 are also shown. As is clear from these results, according to the present invention (Examples 1, 8, and 9), it is possible to obtain high-strength polyester fibers with high strength treated cords, low smoke generation, and low RFL permeability. However, in Comparative Examples 1 and 9 to 11, which satisfy the other conditions but have a small molecular weight of component A and do not satisfy the conditions of the present invention, even if the filament strength increases,
The power of the processing code is hardly increased and the results are not satisfactory. Further, even if the treatment agent satisfies the conditions of the present invention, if the filament strength is low, this is not preferable because the strength of the treated cord is low.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (a) 分子量が600以䞊の硫黄含有゚ステル化
合物を䞻成分ずする平滑剀成分を62重量
以䞊、 (b) 分子量が5000以䞊でか぀15℃で液状の非硫黄
含有゚ステル系高分子掻性剀成分を重
量以䞊、 (c) 分子量が800以䞊の非むオン掻性剀成分
を20重量以䞋含有し、か぀が90重量
以䞋である 凊理剀が付䞎されたポリ゚ステル繊維であ぀
お、該ポリ゚ステル繊維は䞋蚘〜を
同時に満足するこずを特城ずする高匷力ポリ゚ス
テル繊維。 () フむラメント匷床≧8.5 () 発煙性≊1500 () RFL浞透性≊cm
[Scope of Claims] 1 (a) 62% by weight or more of a smoothing agent (component A) mainly composed of a sulfur-containing ester compound with a molecular weight of 600 or more, (b) a smoothing agent with a molecular weight of 5000 or more and liquid at 15°C. 8% by weight or more of a non-sulfur-containing ester polymer activator (component B), (c) a nonionic activator with a molecular weight of 800 or more (component C)
Contains 20% by weight or less, and A+B is 90% by weight
A high-strength polyester fiber to which the following processing agent has been applied, characterized in that the polyester fiber satisfies the following conditions () to () at the same time. () Filament strength≧8.5g/d () Smoke generation≩1500 () RFL permeability≩5cm
JP63284004A 1988-11-11 1988-11-11 High-tenacity polyester yarn Granted JPH02145867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284004A JPH02145867A (en) 1988-11-11 1988-11-11 High-tenacity polyester yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284004A JPH02145867A (en) 1988-11-11 1988-11-11 High-tenacity polyester yarn

Publications (2)

Publication Number Publication Date
JPH02145867A JPH02145867A (en) 1990-06-05
JPH0461110B2 true JPH0461110B2 (en) 1992-09-29

Family

ID=17673048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284004A Granted JPH02145867A (en) 1988-11-11 1988-11-11 High-tenacity polyester yarn

Country Status (1)

Country Link
JP (1) JPH02145867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186545A1 (en) * 2014-06-06 2015-12-10 束本油脂補薬株匏䌚瀟 Synthetic fiber treatment agent, and use thereof
CN110952318A (en) * 2018-12-13 2020-04-03 竹本油脂株匏䌚瀟 Treating agent for synthetic fiber and synthetic fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4217757B2 (en) * 2006-03-17 2009-02-04 束本油脂補薬株匏䌚瀟 Textile treatment agent and its application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186545A1 (en) * 2014-06-06 2015-12-10 束本油脂補薬株匏䌚瀟 Synthetic fiber treatment agent, and use thereof
JPWO2015186545A1 (en) * 2014-06-06 2017-04-20 束本油脂補薬株匏䌚瀟 Treatment agent for synthetic fibers and use thereof
CN110952318A (en) * 2018-12-13 2020-04-03 竹本油脂株匏䌚瀟 Treating agent for synthetic fiber and synthetic fiber

Also Published As

Publication number Publication date
JPH02145867A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
JP4386963B2 (en) Synthetic fiber treatment agent and method for producing synthetic fiber using the same
JPH0461110B2 (en)
JPH0770819A (en) Production of polyester fiber
US4670343A (en) Wholly aromatic polyamide fiber
US3925588A (en) Production of polyester yarn
JPS589192B2 (en) Oil composition for thermoplastic fibers
JPH07252727A (en) High speed-spun polyamide multifilament
US4390591A (en) Stabilized finish composition
JPH0461111B2 (en)
KR102249081B1 (en) Spinning oil composition for polyester industrial yarns, Spinning oil using the same and Manufacturing method thereof
US2234722A (en) Yarn conditioning process and composition therefor
JPH07173768A (en) Treating agent for synthetic fiber
JPS6224526B2 (en)
JPH02145869A (en) High-tenacity polyester yarn
US3218222A (en) Rubber article reinforced with nylon filaments
KR20080108812A (en) Cellulose fiber and method of preparing the same
JPH05140870A (en) Polyester fiber for industrial material
JP5302739B2 (en) High strength polyhexamethylene adipamide fiber
JPH06173169A (en) Treating agent for synthetic fiber
US3887749A (en) Stabilization of polyester filamentary material
JPS5843510B2 (en) Oil composition for thermoplastic synthetic fibers
JPS5836110B2 (en) Polyester Senino Seizouhou
JPH10325074A (en) Treating agent for synthetic fiber
KR960004189B1 (en) Composition for polyester fiber
KR940000573B1 (en) Composition for thermoplastic synthetic fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070929

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees