JPH0460923B2 - - Google Patents

Info

Publication number
JPH0460923B2
JPH0460923B2 JP60086203A JP8620385A JPH0460923B2 JP H0460923 B2 JPH0460923 B2 JP H0460923B2 JP 60086203 A JP60086203 A JP 60086203A JP 8620385 A JP8620385 A JP 8620385A JP H0460923 B2 JPH0460923 B2 JP H0460923B2
Authority
JP
Japan
Prior art keywords
sulfur
chamber
tank
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60086203A
Other languages
Japanese (ja)
Other versions
JPS60239306A (en
Inventor
Fuitsushaa Heruberuto
Kuriiberu Manfureeto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6235398&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0460923(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of JPS60239306A publication Critical patent/JPS60239306A/en
Publication of JPH0460923B2 publication Critical patent/JPH0460923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/0232Purification, e.g. degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0047Atomizing, spraying, trickling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

The liquid sulfur which contains H2S is sprayed in a steel vessel and the liberated gases which are rich in H2S are withdrawn. A degasification accelerator is added to the liquid sulfur. The steel vessel contains at least two chambers, which communicate with each other and are connected in series. Sulfur at temperatures in the range from 140 DEG to 160 DEG C. is supplied to the first chamber. Sulfur is withdrawn from the second chamber and is cooled to temperatures of 120 DEG to 135 DEG C. outside the vessel. The liquid sulfur which has been cooled is sprayed in the gas space of the first chamber. The sulfur is caused to remain in the steel vessel for a dwelling time of 12 to 32 hours. The gas spaces of the chambers are scavenged with an oxygen-free inert gas. The sulfur is withdrawn from the vessel and sprayed in the gas space of one of the chambers about 30 to 50 times until the dwelling time of the sulfur in the vessel has expired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、脱気促進剤を混合した硫化水素含有
液体硫黄を噴霧し、放出されたH2S富化気体を
排出させるようにした硫化水素含有液体硫黄の脱
気方法とその装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a sulfurization method in which liquid sulfur containing hydrogen sulfide mixed with a deaeration accelerator is sprayed, and the released H 2 S-enriched gas is discharged. This invention relates to a method and apparatus for degassing hydrogen-containing liquid sulfur.

〔発明の概要〕[Summary of the invention]

本発明は、硫化水素含有液体硫黄の脱気方法と
その装置において、 脱気槽が少なくとも2つの室を有し、各室の液
体硫黄の上方には互いに連絡した気体空間があ
り、第1室に液体硫黄を導入し、第2室から液体
硫黄を抜き出し、槽の外で冷却器により冷却した
後、第1室の気体空間に噴霧し、気体空間内に放
出されたH2S富化気体を酸素を含まない不活性
気体で掃気することにより、 鋼製の槽内で経済的に有利な方法で液体硫黄を
脱気し、爆発の危険を排除して、高純度の硫黄を
得ることができる。
The present invention provides a method and apparatus for degassing liquid sulfur containing hydrogen sulfide, in which a degassing tank has at least two chambers, a gas space communicating with each other is provided above the liquid sulfur in each chamber, and a first chamber has a gas space communicating with the liquid sulfur. Liquid sulfur is introduced into the tank, the liquid sulfur is extracted from the second chamber, and after being cooled by a cooler outside the tank, it is sprayed into the gas space of the first chamber, and the H 2 S-enriched gas released into the gas space is By scavenging with an oxygen-free inert gas, liquid sulfur can be degassed in a steel tank in an economically advantageous manner, eliminating the risk of explosion and obtaining high-purity sulfur. can.

〔従来の技術と問題点〕[Conventional technology and problems]

H2S含有液体硫黄の脱気は西ドイツ特許第
1567791号明細書及び英国特許第1433822号明細書
に記載されている。これらの既知の方法及び装置
では、クラウス法による硫黄生産プラントからの
液体硫黄を問題にしている。この液体硫黄は硫化
水素及び多硫化物(H2Sx)を含有している。こ
れらの硫黄を液状輸送するとなると、輸送車の気
体空間中にH2Sを含む雰囲気が形成され、爆発
性混合気体となりうる危険がある。特に鋼製容器
を用いると、爆発に好都合な発火性鉄を生じるこ
とがある。それ故に、クラウス法プラントから出
る熱い液体硫黄はよく脱気することが必要であ
る。
Deaeration of liquid sulfur containing H 2 S was developed in West German patent no.
1567791 and British Patent No. 1433822. These known methods and devices deal with liquid sulfur from Claus process sulfur production plants. This liquid sulfur contains hydrogen sulfide and polysulfides (H 2 S x ). When these sulfurs are transported in liquid form, an atmosphere containing H 2 S is formed in the gas space of the transport vehicle, and there is a danger that an explosive gas mixture may result. Particularly when steel containers are used, flammable iron may be produced which favors explosions. Therefore, it is necessary that the hot liquid sulfur leaving the Claus process plant be well degassed.

西ドイツ特許第1567791号明細書記載の既知の
方法では、液体硫黄は125〜145℃の温度で噴霧さ
れる。噴霧すべき硫黄には予めアンモニアが脱気
促進剤として加えられる。脱気促進剤は何よりも
多硫化物を揮発性硫化水素へ変化させるためのも
のである。英国特許第1433822号明細書によれば、
脱気促進剤として空気又はジエタノールアミンも
用いられる。前記英国特許の方法は、2つの室を
備えた槽を用い、槽内で処理される硫黄が第1室
から溢流して第2室に到達するようにして操作さ
れる。
In the known method described in DE 1567791, liquid sulfur is atomized at a temperature of 125-145°C. Ammonia is added in advance to the sulfur to be sprayed as a deaeration promoter. The deaeration promoter is primarily used to convert polysulfides into volatile hydrogen sulfide. According to British Patent No. 1433822,
Air or diethanolamine can also be used as deaeration promoters. The process of the British patent uses a tank with two chambers and is operated in such a way that the sulfur treated in the tank overflows from the first chamber and reaches the second chamber.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の基本をなす課題は、鋼製の槽内で経費
的に有利な方法で液体硫黄を脱気し、更にその際
発火性鉄の存在によつて生じる爆発の危険を排除
できるようにすることにある。同時に、処理すべ
き液体硫黄の望ましくない温度上昇も避けなけれ
ばならない。
The object of the invention is to degas liquid sulfur in a steel vessel in a cost-effective manner, while also eliminating the risk of explosion caused by the presence of pyrophoric iron. There is a particular thing. At the same time, undesired temperature increases in the liquid sulfur to be treated must also be avoided.

本発明によれば、本明細書の冒頭に述べた方法
において、 液体硫黄の上方に気体空間のある、互いに連絡
した少なくとも2つの室を有する鋼製の槽内で脱
気を行い、直列に連絡した室を通して硫黄を導く
こと; 硫黄入口を備えた第1室に140〜160℃の範囲の
温度の硫黄を導入し、第2室から硫黄を抜き出
し、槽の外で120〜135℃の温度に冷却し、冷却さ
れた液体硫黄を第1室の気体空間内に噴霧し、各
室の気体空間を酸素を含まない不活性気体で掃気
し、この不活性気体は第1室を経て槽から排出さ
せること:及び 硫黄の槽内での滞留時間を12〜32時間に調節す
ること、 を特徴とする硫化水素含有液体硫黄の脱気方法に
よつて前記課題が達成される。
According to the invention, in the method mentioned at the beginning of the specification, the deaeration is carried out in a steel vessel having at least two chambers communicating with each other, with a gas space above the liquid sulfur, communicating in series. introducing sulfur at a temperature in the range of 140-160°C into the first chamber with a sulfur inlet, withdrawing the sulfur from the second chamber and bringing it to a temperature of 120-135°C outside the tank. The cooled liquid sulfur is sprayed into the gas space of the first chamber, and the gas space of each chamber is purged with an inert gas that does not contain oxygen, and this inert gas is discharged from the tank through the first chamber. The above object is achieved by a method for degassing hydrogen sulfide-containing liquid sulfur, which is characterized by: and adjusting the residence time of sulfur in a tank to 12 to 32 hours.

本発明はまたこの方法を実施するための装置を
提供する。
The invention also provides an apparatus for carrying out this method.

このようにして、H2S及びH2Sxの残留含量を
下げて最高で10ppmにすることができる。この値
及び後に記載されるすべてのppmの値は、特記し
ない限り、重量ppmである。このようなH2S及
びH2Sxの低い残留含量では、最早何等の発火及
び爆発の危険もなく、貯蔵された液体硫黄から立
ち昇るH2Sによる臭気の問題もない。
In this way, the residual content of H 2 S and H 2 S x can be reduced to a maximum of 10 ppm. This value and all ppm values listed below are in ppm by weight unless otherwise specified. With such low residual contents of H 2 S and H 2 S x , there is no longer any risk of fire and explosion, and there are no odor problems due to H 2 S rising from the stored liquid sulfur.

槽内での硫黄の滞留時間は、約18〜26時間に設
定することが適当である。不活性気体としては、
好適には40〜100容積%が窒素から成る気体が用
いられる。このような気体は、例えばクラウス方
法プラントで生ずる廃ガスである。この廃ガスは
窒素の他になおCO2及びH2Oを含むが、酸素は
含んでいない。当然ながら、不活性気体として窒
素又はCO2も用いることができる。脱気促進剤と
してアンモニア、空気、又はアミンを装入するこ
とは既に知られている。液体硫黄に配合される脱
気促進剤の量は、アンモニアの場合では5〜
50ppm、好適には5〜10ppm、空気を用いる場合
は10〜200ppm、好適には20〜50ppm、アミンを
装入する場合には約10〜60ppmである。
The residence time of sulfur in the tank is suitably set to about 18 to 26 hours. As an inert gas,
Preferably a gas consisting of 40 to 100% by volume nitrogen is used. Such gases are, for example, waste gases produced in Claus process plants. In addition to nitrogen, this waste gas also contains CO 2 and H 2 O, but no oxygen. Of course, nitrogen or CO2 can also be used as inert gas. It is already known to introduce ammonia, air or amines as deaeration promoters. The amount of degassing accelerator added to liquid sulfur is 5 to 5 in the case of ammonia.
50 ppm, preferably 5-10 ppm, 10-200 ppm if air is used, preferably 20-50 ppm, about 10-60 ppm if amine is charged.

本発明の方法の重要な一面は、第2室から吸い
上げて第1室内に噴霧する液体硫黄を冷却する冷
却器を用いている点に見ることができる。意図的
に脱気槽の外に置かれる冷却器では、冷媒として
例えば水が用いられる。冷却器により、第1室内
で噴霧される硫黄が120〜135℃、好適には122〜
125℃の範囲の一定温度となる。これらの温度は
硫黄の融点よりごくわずか高く、この温度では硫
黄の粘度は非常に低い。このため、硫黄は噴霧に
際して微細に分割され、したがつて脱気が改善さ
れる。冷却により槽内の硫黄の温度は120〜140℃
の範囲に維持され、この温度範囲を越える温度の
上昇は確実に避けられる。
An important aspect of the method of the invention can be seen in the use of a cooler to cool the liquid sulfur that is drawn from the second chamber and sprayed into the first chamber. In coolers that are intentionally placed outside the degassing tank, water is used as the refrigerant, for example. The cooler allows the sulfur sprayed in the first chamber to reach a temperature of 120-135°C, preferably 122-135°C.
It has a constant temperature in the range of 125℃. These temperatures are only slightly above the melting point of sulfur, and at this temperature sulfur has a very low viscosity. For this reason, the sulfur is finely divided during atomization, thus improving deaeration. Due to cooling, the temperature of sulfur in the tank is 120-140℃
temperature is maintained within the range of 100 to 1000, and any rise in temperature beyond this temperature range is reliably avoided.

普通クラウス法プラントから来て脱気槽に導入
される際の脱気すべき硫黄は、大体140〜160℃の
範囲の温度であり、脱気槽内で自然に冷却するこ
とはなく、むしろ脱気槽内で温度上昇を示す。し
かし、温度の上昇と共に、硫黄の粘度が増加し、
160℃より上では硫黄は非常に粘稠となり、もは
やポンプ輸送ができない脱気槽の外にある冷却器
はこのような温度上昇を防止し、同時になお水蒸
気の発生に用いることができる。
The sulfur to be degassed, which normally comes from a Claus process plant and is introduced into the degassing tank, has a temperature in the range of approximately 140-160°C, and does not naturally cool down in the degassing tank, but rather is degassed. Indicates an increase in temperature within the air tank. However, with the increase in temperature, the viscosity of sulfur increases,
Above 160°C, the sulfur becomes very viscous and can no longer be pumped.A cooler outside the degassing tank prevents such a temperature rise and at the same time can still be used for steam generation.

槽内に滞留している期間内に、硫黄を約30〜50
回抜き出し、噴霧させることが推奨される。本発
明の特に有利な実施態様では、このことは特に容
易にできる。その実施態様では、直列に連結され
た3つの室を有する槽内で脱気が実施される。こ
の場合は第3室からも硫黄が抜き出され、この硫
黄は第2室の気体空間中に噴霧される。格別に強
力な脱気法としては、第3室内の液体硫黄中にも
脱気促進剤を添加することが推奨される。
Approximately 30 to 50% of sulfur is removed during the period of residence in the tank.
It is recommended to remove and spray the product twice. In a particularly advantageous embodiment of the invention, this can be done particularly easily. In that embodiment, deaeration is carried out in a tank with three chambers connected in series. In this case, sulfur is also extracted from the third chamber and is sprayed into the gas space of the second chamber. For a particularly strong degassing method, it is recommended to also add a degassing promoter to the liquid sulfur in the third chamber.

本発明の方法は実施するための装置は2つ又は
3つの室がある鋼製の槽を有する。各室はそれぞ
れ液体の上にある気体空間を1つずつもち、隣り
合つた気体空間は相互に連絡している。
The apparatus for carrying out the method of the invention has a steel vessel with two or three chambers. Each chamber has one gas space above the liquid, with adjacent gas spaces communicating with each other.

本発明の方法と装置の実施態様を、3つの室を
有する脱気槽を略図で示す添付図面を参照しなが
ら以下に説明する。
Embodiments of the method and apparatus of the invention will now be described with reference to the accompanying drawing, which schematically shows a degassing tank with three chambers.

鋼製の脱気槽1には、例えばクラウス法プラン
トから導管2を経てH2SとH2Sxとを含んだ液体
硫黄が供給される。この槽には3つの室3,4及
び5がある。これらの室は仕切り壁6及び7によ
つて形成されている。槽1内で液面8は仕切り壁
6及び7の上縁部より下方にあり、隣り合つた室
の間の流通は各仕切り壁の下方の開口6a及び7
aを通つて行われる。図には1個しか示されてい
ないが、数個のラジエーター9により硫黄は液体
状態に保たれる。
A steel degassing tank 1 is supplied with liquid sulfur containing H 2 S and H 2 S x from, for example, a Claus process plant via a conduit 2 . This tank has three chambers 3, 4 and 5. These chambers are formed by partition walls 6 and 7. In the tank 1, the liquid level 8 is below the upper edges of the partition walls 6 and 7, and communication between adjacent chambers is provided by openings 6a and 7 in the lower part of each partition wall.
This is done through a. Although only one is shown in the figure, several radiators 9 keep the sulfur in a liquid state.

中間の室4にある硫黄には導管10を通して脱
気促進剤が計量して加えられ、同じ室において、
ポンプ用溜め11からポンプ12により上昇管1
3を通して液体硫黄が吸上げられ、導管14を通
して冷却器15に導かれる。冷却器15には冷媒
として水を用いることが適当であり、その際、約
2バールの水蒸気が発生する。冷却器は、導管1
6を通して噴霧器17に導かれる液体硫黄を120
〜135℃、好適には122〜125℃の範囲の温度にす
る。硫黄が噴霧される温度は融点より僅かに高い
温度であり、この温度で硫黄はかなり低い粘度を
有する。
A deaeration promoter is metered into the sulfur in the intermediate chamber 4 through conduit 10, and in the same chamber,
Rising pipe 1 from pump reservoir 11 by pump 12
Liquid sulfur is sucked up through 3 and led through conduit 14 to cooler 15 . It is suitable to use water as the coolant in the cooler 15, with water vapor of approximately 2 bar being generated. The cooler is conduit 1
120 liquid sulfur is introduced into the atomizer 17 through 6.
The temperature is in the range ~135°C, preferably 122-125°C. The temperature at which sulfur is sprayed is slightly above the melting point, at which temperature sulfur has a fairly low viscosity.

噴霧器17は、室3の液面8の上方の気体空間
3a内にある。放出された硫化水素はこの気体空
間3aに集まり、他方硫黄は液体と混合する。
The atomizer 17 is located in the gas space 3a above the liquid level 8 of the chamber 3. The released hydrogen sulfide collects in this gas space 3a, while the sulfur mixes with the liquid.

硫黄は仕切り壁6の開口6aを通つて室3から
室4に流れ、硫黄は更に室4から開口7aを通つ
て室5に到達する。仕切り壁6及び7は、室5の
硫黄が室4へ還流してそこの硫黄と混合したり、
あるいは室4の硫黄が室3へ還流してそこの硫黄
と混合したりすることが実質的に起こらないよう
にしている。この手段により最終に抜き出される
硫黄は可能な最大限の純度が達成される。
Sulfur flows from chamber 3 to chamber 4 through opening 6a in partition wall 6, and sulfur also reaches chamber 5 from chamber 4 through opening 7a. The partition walls 6 and 7 allow the sulfur in the chamber 5 to flow back to the chamber 4 and mix with the sulfur there,
Alternatively, sulfur in chamber 4 is substantially prevented from flowing back to chamber 3 and mixing with sulfur there. By this means the maximum possible purity of the sulfur finally extracted is achieved.

室5にはポンプ用溜め20があり、そこから硫
黄はポンプ22の作用により上昇管21を経て導
管23と開いた弁24を通り、導管25を経て噴
霧器26に圧送される。これにより、室4と5と
の間で硫黄の循環が行われる。この循環の間、弁
27は閉じられている。噴霧器26は室4の気体
空間4a中にあり、この気体空間は気体空間3a
に連通している。これらの気体空間に集まつた気
体を掃気するために、送風機28及び導管29を
経て不活性気体を先ず室5の気体空間5aに導
き、気体空間5a,4a及び3aの気体を液滴分
離器30を通して気体排出管31に圧送する。気
体排出管31は、普通のクラウス法プラントに属
する後燃焼と結びつけるのが適当である。導管2
9に導入される不活性気体はクラウス法プラント
の廃ガスであつてもよい。
In the chamber 5 there is a pump reservoir 20 from which the sulfur is pumped by the action of a pump 22 via a riser 21 through a conduit 23 and an open valve 24 via a conduit 25 to an atomizer 26 . As a result, sulfur is circulated between chambers 4 and 5. During this cycle, valve 27 is closed. The atomizer 26 is located in the gas space 4a of the chamber 4, which gas space 3a
is connected to. In order to scavenge the gases collected in these gas spaces, the inert gas is first introduced into the gas space 5a of the chamber 5 via the blower 28 and the conduit 29, and the gases in the gas spaces 5a, 4a and 3a are separated from the droplet separator. 30 to the gas discharge pipe 31 under pressure. The gas discharge pipe 31 is suitably connected to an after-combustion belonging to a conventional Claus process plant. conduit 2
The inert gas introduced at 9 may be the waste gas of a Claus process plant.

脱気された液体硫黄の取出しは、図面に示され
た実施態様では、弁27を開き同時に弁24を閉
じ、前記供給ポンプ22を用いて、排出導管32
から行われる。液体硫黄を特によく脱気したいと
きは、弁24を開き弁27を閉じ、噴霧器26か
ら硫黄を噴霧させる期間に、追加的に同時に、図
に破線で示された導管33を通して脱気促進剤を
計量して加えることが推奨される。しかし一般に
は、この処置は必要ではない。
The degassed liquid sulfur is removed, in the embodiment shown in the drawings, by opening the valve 27 and simultaneously closing the valve 24 and using the feed pump 22 to drain the discharge conduit 32.
It is carried out from If it is desired to degas the liquid sulfur particularly well, valve 24 is opened and valve 27 is closed, and during the period of time when sulfur is being atomized from the atomizer 26, a deaeration accelerator is additionally and simultaneously introduced through the conduit 33, which is shown in broken lines in the figure. It is recommended to measure and add. However, generally this procedure is not necessary.

〔実施例〕〔Example〕

毎日125トンの液体硫黄を製造しているクラウ
ス法プラントに、図面に示された如き脱気装置を
付設した。鋼製の円筒形脱気槽1は長さ15m、直
径3.2mであつた。脱気槽内の液体硫黄の最大の
高さは2.5mに制限した。脱気槽1の内容物が34
回循環され、脱気槽1内での硫黄の滞留時間が24
時間となるように、ポンプ12及び22はそれぞ
れ100m3/hで輸送を行つた。脱気槽1内の硫黄
の温度は冷却器15によつて130℃に維持された。
脱気促進剤として導管10を通して毎時30gの
NH3を加えた。導管33は用いなかつた。気体
空間5a,4a及び3aを掃気するために、導管
29から窒素を100m3/hの割合で導入した。
A Claus process plant, which produces 125 tons of liquid sulfur daily, was equipped with a degassing device as shown in the drawing. The steel cylindrical deaeration tank 1 had a length of 15 m and a diameter of 3.2 m. The maximum height of liquid sulfur in the degassing tank was limited to 2.5 m. The contents of deaeration tank 1 are 34
The residence time of sulfur in deaeration tank 1 is 24
Pumps 12 and 22 each transported 100 m 3 /h to ensure the same time. The temperature of sulfur in the degassing tank 1 was maintained at 130°C by a cooler 15.
30 g per hour through conduit 10 as a deaeration accelerator.
Added NH3 . Conduit 33 was not used. Nitrogen was introduced through conduit 29 at a rate of 100 m 3 /h in order to scavenge the gas spaces 5a, 4a and 3a.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、噴霧すべき液体硫黄を冷却器
によつて120〜135℃の範囲に冷却するので、硫黄
の粘度が非常に低くなり、噴霧された硫黄は微細
に分割され、脱気が改善される。脱気槽内の各室
の気体空間に放出されたH2Sの富化気体は不活
性気体で掃気され、H2S及びH2Sxの残留含量を
最高で10ppmにすることができるので、発火性鉄
の存在によつて生じる爆発の危険が排除でき、貯
蔵された液体硫黄から立ち昇るH2Sによる臭気
の問題もなくなる。
According to the present invention, the liquid sulfur to be sprayed is cooled to a temperature in the range of 120 to 135°C by a cooler, so that the viscosity of the sulfur becomes very low, the sprayed sulfur is finely divided, and degassed. Improved. The H 2 S enriched gas released into the gas space of each chamber in the degassing tank is scavenged with inert gas, so that the residual content of H 2 S and H 2 S x can be up to 10 ppm. , the risk of explosion caused by the presence of pyrophoric iron is eliminated, and odor problems due to H 2 S rising from stored liquid sulfur are also eliminated.

本発明は次の通り要約することができる。 The invention can be summarized as follows.

硫化水素含有液体硫黄が鋼製の槽内に噴霧さ
れ、放出されたH2S富化気体を排出させる。液
体硫黄に脱気促進剤が混合される。鋼製の槽に
は、直列に連結した少なくとも2つの室がある。
各室の液体硫黄の上方には気体空間が存在する。
第1室に140〜160℃の範囲の温度の硫黄が導入さ
れ、第2室から硫黄が抜き出され、槽の外で120
〜135導入に冷却され、この冷却された液体硫黄
が第1室の気体空間内に噴霧される。槽内での硫
黄の滞留時間は12〜32時間に調節される。各室の
気体空間は酸素を含まない不活性気体で掃気され
る。硫黄が槽内に滞留している間に、硫黄は30〜
50回抜き出され、一つの室の気体空間に噴霧され
る。
Liquid sulfur containing hydrogen sulfide is sprayed into a steel tank and the released H 2 S enriched gas is discharged. A deaeration promoter is mixed with the liquid sulfur. The steel vessel has at least two chambers connected in series.
A gas space exists above the liquid sulfur in each chamber.
Sulfur at a temperature in the range of 140-160°C is introduced into the first chamber, and sulfur is extracted from the second chamber, leaving the tank at 120°C.
The cooled liquid sulfur is then sprayed into the gas space of the first chamber. The residence time of sulfur in the tank is adjusted to 12-32 hours. The gas space of each chamber is purged with an oxygen-free inert gas. While the sulfur remains in the tank, the sulfur
It is extracted 50 times and sprayed into the gas space of one chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、3つの室を持つた本発明の脱気装置の
一実施例態様を略図で示したものである。 なお図面に用いた符号において、1……脱気
槽、3,4,5……室、3a,4a,5a……気
体空間、6,7……仕切り壁、12,22……ポ
ンプ、13,21……上昇管、15……冷却器、
17,26……噴霧器、28……送風機、29…
…導管、31……気体排出管である。
The drawing schematically shows an embodiment of the deaerator according to the invention having three chambers. In addition, in the symbols used in the drawings, 1... Deaeration tank, 3, 4, 5... Chamber, 3a, 4a, 5a... Gas space, 6, 7... Partition wall, 12, 22... Pump, 13 , 21... riser pipe, 15... cooler,
17, 26...Sprayer, 28...Blower, 29...
...conduit, 31... gas discharge pipe.

Claims (1)

【特許請求の範囲】 1 硫化水素含有液体硫黄を脱気促進剤と混合し
て噴霧し、放出されたH2S富化気体を排出させ
るようにした硫化水素含有液体硫黄の脱気方法に
おいて、 液体硫黄の上方に気体空間のある、互いに連絡
した少なくとも2つの室を有する鋼製の槽内で脱
気を行い、直列に連結した室を通して硫黄を導く
こと; 硫黄入口を備えた第1室に140〜160℃の範囲の
温度の硫黄を導入し、第2室から硫黄を抜き出
し、槽の外で120〜135℃の温度に冷却し、冷却さ
れた液体硫黄を第1室の気体空間内に噴霧し、各
室の気体空間を酸素を含まない不活性気体で掃気
し、この不活性気体は第1室を経て槽から排出さ
せること;及び 硫黄の槽内での滞留時間を12〜32時間に調節す
ること を特徴とする硫化水素含有液体硫黄の脱気方法。 2 硫黄の槽内での滞留時間を18〜26時間に調節
することを特徴とする特許請求の範囲第1項記載
の方法。 3 不活性気体として、40〜100容量%が窒素か
ら成る気体を用いることを特徴とする特許請求の
範囲第1項又は第2項記載の方法。 4 脱気促進剤として、アンモニア、空気又はア
ミンを用いることを特徴とする特許請求の範囲第
1項〜第3項のいずれかに記載の方法。 5 直列に連結された3つの室を有する槽内で脱
気が実施され、その際、第2室から抜き出された
硫黄が槽の外で冷却され、120〜135℃の温度で第
1室の気体空間内に噴霧され、第3室から抜き出
された硫黄が第2室の気体空間内に噴霧されるこ
とを特徴とする特許請求の範囲第1項〜第4項の
いずれかに記載の方法。 6 第3室の液体硫黄にも脱気促進剤を添加する
ことを特徴とする特許請求の範囲第5項記載の方
法。 7 硫黄は槽内で滞留の間に30〜50回抜き出され
ることを特徴とする特許請求の範囲第1項〜第6
項のいずれかに記載の方法。 8 硫化水素含有液体硫黄を脱気促進剤と混合し
て噴霧させ、H2S富化気体を排出させるように
した硫化水素含有液体硫黄の脱気装置において、 鋼製の槽を備え、 前記槽が、少なくとも2つの室、前記室内の液
体の上方の気体空間、第2室から硫黄を抜き出す
ポンプ、槽の外にあつて抜き出された硫黄を冷却
するための冷却器、冷却器から来た硫黄を噴霧す
るための噴霧器及び放出されたH2S富化気体を
気体空間から外へ排出させる不活性気体のための
少なくとも1つの導入導管と排出導管とを有する
こと を特徴とする硫化水素含有液体硫黄の脱気装置。 9 槽が3つの室を有し、第3室からの硫黄を噴
霧するための噴霧器が第2室の気体空間内に配置
されていることを特徴とする特許請求の範囲第8
項記載の装置。
[Scope of Claims] 1. A method for degassing hydrogen sulfide-containing liquid sulfur, which comprises spraying hydrogen sulfide-containing liquid sulfur mixed with a deaeration accelerator and discharging the released H 2 S-enriched gas, deaeration in a steel vessel having at least two chambers in communication with each other, with a gas space above the liquid sulfur, and conducting the sulfur through the chambers connected in series; into the first chamber with a sulfur inlet; Sulfur at a temperature in the range of 140-160°C is introduced, the sulfur is extracted from the second chamber, cooled to a temperature of 120-135°C outside the tank, and the cooled liquid sulfur is introduced into the gas space of the first chamber. atomizing and purging the gas space of each chamber with an oxygen-free inert gas, which is discharged from the tank through the first chamber; and the residence time of the sulfur in the tank is 12 to 32 hours. A method for degassing liquid sulfur containing hydrogen sulfide. 2. The method according to claim 1, characterized in that the residence time of sulfur in the tank is adjusted to 18 to 26 hours. 3. The method according to claim 1 or 2, characterized in that a gas containing 40 to 100% by volume of nitrogen is used as the inert gas. 4. The method according to any one of claims 1 to 3, characterized in that ammonia, air, or amine is used as the deaeration promoter. 5. Degassing is carried out in a tank with three chambers connected in series, with the sulfur extracted from the second chamber being cooled outside the tank and entering the first chamber at a temperature of 120-135 °C. According to any one of claims 1 to 4, the sulfur extracted from the third chamber is sprayed into the gas space of the second chamber. the method of. 6. The method according to claim 5, characterized in that a deaeration accelerator is also added to the liquid sulfur in the third chamber. 7. Claims 1 to 6, characterized in that sulfur is extracted 30 to 50 times during residence in the tank.
The method described in any of the paragraphs. 8. A deaerator for hydrogen sulfide-containing liquid sulfur, which mixes hydrogen sulfide-containing liquid sulfur with a degassing accelerator and atomizes it to discharge H 2 S-enriched gas, comprising a steel tank; a gas space above the liquid in said chamber, a pump for extracting the sulfur from the second chamber, a cooler outside the tank for cooling the extracted sulfur, and a gas space above the liquid in said chamber; Hydrogen sulfide-containing, characterized in that it has an atomizer for atomizing sulfur and at least one inlet conduit and outlet conduit for an inert gas for discharging the emitted H 2 S-enriched gas out of the gas space. Liquid sulfur deaerator. 9. Claim 8, characterized in that the tank has three chambers, and the atomizer for atomizing the sulfur from the third chamber is arranged in the gas space of the second chamber.
Apparatus described in section.
JP60086203A 1984-05-10 1985-04-22 Deaeration for hydrogen sulfide-containing liquid sulfur andapparatus therefor Granted JPS60239306A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3417230A DE3417230A1 (en) 1984-05-10 1984-05-10 METHOD AND DEVICE FOR DE-GASIFYING LIQUID SULFUR WITH HYDROGEN
DE3417230.0 1984-05-10

Publications (2)

Publication Number Publication Date
JPS60239306A JPS60239306A (en) 1985-11-28
JPH0460923B2 true JPH0460923B2 (en) 1992-09-29

Family

ID=6235398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086203A Granted JPS60239306A (en) 1984-05-10 1985-04-22 Deaeration for hydrogen sulfide-containing liquid sulfur andapparatus therefor

Country Status (6)

Country Link
US (1) US4612020A (en)
EP (1) EP0164140B1 (en)
JP (1) JPS60239306A (en)
AT (1) ATE50749T1 (en)
DE (2) DE3417230A1 (en)
ZA (1) ZA853564B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581759B1 (en) * 1985-05-07 1987-06-26 Elf Aquitaine PROCESS FOR THE CONTINUOUS PREPARATION OF SAMPLES OF GASES DISSOLVED IN A LIQUID FOR THE ANALYSIS OF SUCH GASES
FR2601351B1 (en) * 1986-07-10 1990-09-14 Elf Aquitaine PROCESS FOR THE RAPID REMOVAL OF HYDROGEN SULFIDE CONTAINED IN LIQUID SULFUR AND CATALYTIC SYSTEM FOR USE IN ITS IMPLEMENTATION.
FR2601350B1 (en) * 1986-07-10 1988-09-30 Elf Aquitaine PROCESS FOR THE RAPID REMOVAL OF SULFURATED HYDROGEN CONTAINED IN LIQUID SULFUR AND CATALYST SYSTEM FOR USE IN ITS IMPLEMENTATION
KR890004163A (en) * 1987-08-12 1989-04-20 고마쯔 신 Dissolved Gas in Water
JPH01171689A (en) * 1987-12-28 1989-07-06 Japan Organo Co Ltd Two stage type reverse osmotic membrane device
US5686056A (en) * 1996-02-05 1997-11-11 Bechtel Group, Inc. Methods and apparatus for purifying hydrogen sulfide
AT405721B (en) * 1997-11-07 1999-11-25 Oemv Ag DEVICE FOR SEPARATING GAS FROM LIQUIDS AND USE OF THE DEVICE FOR SEPARATING SULFUR HYDROGEN FROM LIQUID SULFUR
US6656445B2 (en) * 2000-10-13 2003-12-02 Baker Hughes Incorporated Hydrogen sulfide abatement in molten sulfur
FR2846959B1 (en) * 2002-11-08 2006-06-30 Air Liquide METHOD OF INERTING LIQUID SULFUR
US7081233B2 (en) * 2004-05-18 2006-07-25 Dynamax Engineering Ltd. Method and apparatus for degassing liquid sulfur
ATE479695T1 (en) * 2004-06-24 2010-09-15 Toyo Suisan Kaisha SULFOPYRANOSYLACYLGLYCEROL DERIVATIVES FOR USE IN COMBINATION WITH RADIATION IN TUMOR RADIOTHERAPY
CN101109734B (en) * 2007-08-21 2010-08-25 上海神开石油化工装备股份有限公司 Spraying degasser
EP2607304B1 (en) * 2011-12-23 2015-03-25 Air Liquide Global E&C Solutions Germany GmbH Method and device for removing gas from liquid sulphur
JP5365708B2 (en) * 2012-01-17 2013-12-11 住友金属鉱山株式会社 Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas
US10246328B2 (en) * 2015-03-11 2019-04-02 Worleyparsons Europe Ltd. High efficiency process for degassing of hydrogen sulfide from liquid sulfur
CN106915727B (en) * 2015-12-24 2019-03-15 中国石油天然气股份有限公司 A kind of liquid sulphur degasification technique
US10307695B2 (en) * 2017-08-22 2019-06-04 Strom W. Smith Degassing system and tower for sulfur process
US10836637B2 (en) 2018-07-31 2020-11-17 Controls Southeast, Inc. Contactor apparatus and method of use

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1823188A (en) * 1929-09-03 1931-09-15 Freeport Sulphur Co Method for treating discolored sulphur
US2718275A (en) * 1953-04-27 1955-09-20 Infilco Inc Degasifying apparatus and method
FR1435788A (en) * 1964-07-27 1966-04-22 Aquitaine Petrole Process for degassing liquid sulfur and spraying devices for carrying out this process
SE308657B (en) * 1965-06-02 1969-02-17 Mo Och Domsjoe Ab
US3920424A (en) * 1971-02-16 1975-11-18 Texas Gulf Inc Liquid sulphur gas scrubber apparatus
CA964040A (en) * 1971-04-30 1975-03-11 Reginald S. Anderson Removal of h2sx from molten sulfur
BE790718A (en) * 1971-11-09 1973-02-15 Erap LIQUID SULFUR DEGASING PROCESS
NL173735C (en) * 1972-05-24 1988-06-16 Shell Int Research METHOD FOR REMOVING HYDROGEN SULFIDE FROM MOLED SULFUR.
DE2233377C3 (en) * 1972-07-07 1980-08-14 Davy International Ag, 6000 Frankfurt Process and device for the purification of industrial waste water with proportions of di-isopropylamine
NL7304868A (en) * 1973-04-06 1974-10-08
DE2845622A1 (en) * 1978-10-19 1980-04-30 Exxon Research Engineering Co Continuous multistage degasification of liq. sulphur - by contact with hydrogen sulphide-lean carrier gas in a series of contact chambers
FR2440336A1 (en) * 1978-11-02 1980-05-30 Exxon Research Engineering Co Continuous multistage degasification of liq. sulphur - by contact with hydrogen sulphide-lean carrier gas in a series of contact chambers
DE2904845C2 (en) * 1979-02-09 1983-01-27 Gottfried Bischoff Bau kompl. Gasreinigungs- und Wasserrückkühlanlagen GmbH & Co KG, 4300 Essen Method and separation vessel for the continuous separation of a sulfur / washing liquor suspension

Also Published As

Publication number Publication date
DE3417230A1 (en) 1985-11-14
DE3576320D1 (en) 1990-04-12
US4612020A (en) 1986-09-16
EP0164140A3 (en) 1988-09-14
JPS60239306A (en) 1985-11-28
ATE50749T1 (en) 1990-03-15
EP0164140A2 (en) 1985-12-11
ZA853564B (en) 1987-01-28
EP0164140B1 (en) 1990-03-07

Similar Documents

Publication Publication Date Title
JPH0460923B2 (en)
US6149887A (en) Method and apparatus for degassing sulfur
CN104114481B (en) Method and device for degassing liquid sulphur
CA1194830A (en) Process for utilizing waste heat and for obtaining water gas during the cooling of incandescent coke ejected from a chamber oven
CN104528659B (en) Sulfur recycling process for circularly treating low-concentration acidy gas by utilizing liquid sulfur
CN102781823B (en) Device and method for condensing, separating, and storing liquid sulfur in a claus plant
CN104986740A (en) Claus tail gas treatment system and treatment method
CN106902625A (en) A kind of hypergravity Claus tail gases desulphurization system device and application
US4897251A (en) Catalytic removal of hydrogen sulphide from liquid sulphur
JPH01500588A (en) Catalytic removal of hydrogen sulfide from liquid sulfur
WO2009092569A4 (en) Method and plant for removing accumulating slag from a slag bath
US5930998A (en) Process and apparatus for preheating and deaeration of make-up water
US6676918B2 (en) Hydrogen sulfide removal from liquid sulfur
CN110054161A (en) A kind of liquid sulphur degasification technique and degasser
US2534792A (en) Reaction furnace and recovery units
CN105217579B (en) Sulfur recovery facility reduces flue gas SO2The method of concentration of emission
US1915364A (en) Treating hydrogen-sulphide containing gases
US3148042A (en) Gas-liquid contact system for separating phosphorus from gases
CN205011386U (en) Claus tail gas clean up system
CN105419882B (en) A kind of desulfurization of water gas method and its system
JP4792574B2 (en) Heavy oil reforming system and gas turbine power generation system using heavy oil
US20170088421A1 (en) Superdegas- a process of integrating sulfur collection and degassing for zero emission
KR102283198B1 (en) Hydrogen gas manufacturing apparatus and method thereof
SK283766B6 (en) Apparatus for separating gases from liquids, use of the apparatus for the separation of hydrogen sulphide from liquid sulphur and the degassed sulphur obtained
US1971964A (en) Method of recovering ammonium sulphate and sulphur from gases containing ammonia andsulphuretted hydrogen