JPH0460489B2 - - Google Patents

Info

Publication number
JPH0460489B2
JPH0460489B2 JP2955187A JP2955187A JPH0460489B2 JP H0460489 B2 JPH0460489 B2 JP H0460489B2 JP 2955187 A JP2955187 A JP 2955187A JP 2955187 A JP2955187 A JP 2955187A JP H0460489 B2 JPH0460489 B2 JP H0460489B2
Authority
JP
Japan
Prior art keywords
weight
parts
component
resin
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2955187A
Other languages
Japanese (ja)
Other versions
JPS63199228A (en
Inventor
Kunyoshi Itoyama
Takamichi Yamakawa
Naotake Kashiwakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2955187A priority Critical patent/JPS63199228A/en
Publication of JPS63199228A publication Critical patent/JPS63199228A/en
Publication of JPH0460489B2 publication Critical patent/JPH0460489B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、次元ネツトワヌク構造を圢成する
ビスフタロニトリル化合物に関する。さらに詳し
くはビスフタロニトリル化合物の反応性により、
架橋密床を高め、その結果ずしお高匟性率ず良奜
な耐熱性を有する硬化物を䞎える熱硬化性暹脂原
料組成物に関する。 埓来の技術 特定のビスフタロニトリル化合物においお、加
熱融解たたは硬化剀を混ぜ加熱融解しお瞮重合さ
せ、䞉次元ネツトワヌク構造が圢成するこずが報
告されおいるJournal of Applied Polymer
ScienceVol 2933391984。 たた、ゞアセチレン化合物の固盞重合による高
匟性率を有する高分子材料の開発が詊みられおい
る䟋えば、Journal of polymer Sciencevol
B91331971Journal of Polymer Science
Polymer−Physics Edition Vol 121511
1974。 発明が解決しようずする問題点 ビスフタロニトリルおよびゞアセチレン化合物
は、シアノ基、アセチレン基の高い反応性を利甚
しお、䞉次元ネツトワヌク構造を圢成するこずが
できる。しかし、これたでの研究結果では、硬化
剀の架橋密床が十分に高たらず、匟性率も高々
10GPa皋床で䞍十分であ぀た。 問題点を解決するための手段 そこで、本発明者らは、ビスフタロニトリルの
瞮合䜓を甚いた成圢䜓のより䞀局の高匟性率化ず
耐熱性向䞊を鋭意研究しおきた。 すなわち、本発明は、 䞋蚘(A)(B)及び(C)成分を含み、か぀(B)成分100
重量郚に察しお(A)成分が〜50重量郚、(A)(B)成
分100重量郚に察しお(C)成分が〜10重量郚ずな
る割合で配合されおなるこずを特城ずする熱硬化
性暹脂原料組成物に関する。 (A) 成分テトラシアノベンれン (B) 成分次匏で瀺されるビスフタロニトリル 匏䞭、は芳銙族炭化氎玠環を衚す (C) 成分硬化剀 本発明における(B)成分のは芳銙族炭化氎玠環
を衚し、䞻軞方向の結合が少なくずもπ電子の非
局圚化によ぀お、䞀぀のσ結合より結合匷床が匷
た぀おいるのを特城ずする。の具䜓的な䟋ずし
おは、
[Industrial Application Field] The present invention relates to a bisphthalonitrile compound that forms a three-dimensional network structure. More specifically, due to the reactivity of bisphthalonitrile compounds,
The present invention relates to a thermosetting resin raw material composition that increases crosslinking density and, as a result, provides a cured product having a high modulus of elasticity and good heat resistance. [Prior Art] It has been reported that a three-dimensional network structure is formed in certain bisphthalonitrile compounds by heating and melting them or by heating and melting them with a curing agent and causing condensation polymerization (Journal of Applied Polymer
Science, Vol 293339 (1984)). In addition, attempts have been made to develop polymeric materials with high elastic modulus by solid-phase polymerization of diacetylene compounds (for example, Journal of Polymer Science, vol.
B9133 (1971), Journal of Polymer Science,
Polymer−Physics Edition Vol 121511
(1974)). [Problems to be Solved by the Invention] Bisphthalonitrile and diacetylene compounds can form a three-dimensional network structure by utilizing the high reactivity of cyano groups and acetylene groups. However, the results of previous research have shown that the crosslinking density of the curing agent has not been sufficiently increased, and the elastic modulus has been too high.
The pressure was insufficient at around 10 GPa. [Means for Solving the Problems] Therefore, the present inventors have conducted intensive research into further increasing the modulus of elasticity and improving the heat resistance of a molded article using a condensate of bisphthalonitrile. That is, the present invention includes the following components (A), (B), and (C), and contains 100% of the component (B).
Component (A) is blended in a ratio of 1 to 50 parts by weight to parts by weight, and component (C) is blended in a ratio of 1 to 10 parts by weight to 100 parts by weight of components (A) + (B). The present invention relates to a characteristic thermosetting resin raw material composition. (A) Component: Tetracyanobenzene (B) Component: Bisphthalonitrile represented by the following formula (In the formula, R represents an aromatic hydrocarbon ring.) (C) Component: Curing agent R of the component (B) in the present invention represents an aromatic hydrocarbon ring, and the bond in the main axis direction is a nonlocalized one of at least π electrons. It is characterized by the fact that the strength of the bond becomes stronger than that of a single σ bond. As a specific example of R,

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 などが挙げられるが、これに限定されるものでは
ない。 本発明における(C)成分の硬化剀ずしおは、通垞
アミン化合物が奜適である。 䟋えば、−プニレンゞアミン、−プニ
レンゞアミン、4′−メチレンゞアニリン、
−アミノプニル゚ヌテル、4′−プニ
レンゞオキシゞアニリン、−アミノプニル
サルホンなどが挙げられる。これらは単独でたた
は皮以䞊䜵甚しお甚いられる。 本発明の組成物においお、(B)成分100重量郚に
察する(A)成分の配合量は、(B)成分の化孊構造に䟝
存するが、〜50重量郚が奜たしく、さらに奜た
しくは〜30重量郚がよい。(B)成分の配合量が
重量郚より小さいず、組成物の架橋密床は高たり
にくく、熱架橋埌の硬化物の匷床、匟性率が䜎
く、奜たしいずいえない。䞀方、(B)成分の配合量
が50重量郚を越えるず、架橋密床はある皋床高た
るが、逆に柔軟さがなくなり硬化物は非垞にもろ
くなり、実甚䞊奜たしくない。 たた、本発明の組成物においお、(A)(B)成分
100重量郚に察しお硬化剀(C)成分は〜10重量郹
配合する。(C)成分の量が重量郚より小さいずき
には、硬化速床が小さいなどの、䞍郜合があり、
実甚䞊奜たしくない。たた、(C)成分量が10重量郹
を越えるず、硬化速床は倧きくなるが、実質的な
架橋密床は逆に䜎䞋しお、奜たしい機械的特性は
埗られない。 本発明の組成物には、必芁に応じお次の成分を
添加するこずができる。 (1) 粉末状の補匷剀や充填剀、たずえば酞化アル
ミニりム、酞化マグネシりムなどの金属酞化
物、氎酞化アルミニりムなどの金属氎酞化物、
炭酞カルシりム、炭酞マグネシりムなど金属炭
酞塩、ケむ゜り土粉、塩基性ケむ酞マグネシり
ム、焌成クレむ、埮粉末シリカ、溶融シリカ、
結晶シリカ、カヌボンブラツク、カオリン、埮
粉末マむカ、石英粉末、氎酞化アルミニりムな
どの金属氎酞化物、グラフアむト、アスベス
ト、二硫化モリブデン、䞉酞化アンチモンな
ど。さらに繊維質の補匷材や充填剀、たずえば
ガラス繊維、ロツクりヌル、セラミツク繊維、
アスベスト、およびカヌボンフアむバヌなどの
無機質繊維や玙、パルプ、朚粉、リンタヌなら
びにポリアミド繊維などの合成繊維などであ
る。これらの粉末もしくは繊維質の補匷材や充
填剀の䜿甚量は甚途により異なるが積局材料や
成圢材料ずしおは暹脂組成物100重量郚に察し
お500重量郚たで䜿甚できる。 (2) 着色剀、顔料、難燃剀たずえば二酞化チタ
ン、黄鉛カヌボンブラツク、鉄黒、モリブデン
赀、玺青、矀青、カドミりム黄、カドミりム
赀、赀リン等の無機リン、トリプニルフオス
プむト等の有機リンなどである。 (3) さらに、最終的な塗膜、接着局、暹脂成圢品
などにおける暹脂の性質を改善する目的で皮々
の合成暹脂を配合するこずができる。たずえば
プノヌル暹脂、アルキツド暹脂、メラミン暹
脂、フツ玠暹脂、塩化ビニル暹脂、アクリル暹
脂、シリコヌン暹脂、ポリ゚ステル暹脂等の
皮たたは皮以䞊の組み合せを挙げるこずが出
来る。これらの暹脂の䜿甚量は本発明の暹脂組
成物本来の性質を損なわない範囲量、すなわ
ち、党暹脂量の50重量未満が奜たしい。 (A)成分、(B)成分、(C)成分および各皮添加剀の配
合手段ずしおは、加熱溶融混合、ロヌル、ニヌダ
ヌ等を甚いお混緎、適圓な有機溶剀を甚いおの混
合等があげられる。 −成分の合成− −テトラシアノベンれンの合成
はピロメツト酞テトラアミドを䞭間䜓ずする方法
が普通である。この䞭間䜓を調敎するのにはピロ
メリツト酞のアンモニりム塩を加熱しおピロメリ
ツト酞ゞむミドずし、これをアンモニア氎で凊理
しお埗る方法Monatsh.353961914があ
る。たた、ピロメリツト酞無氎物ず尿玠をモノク
ロベンれン䞭で反応させおピロメリツト酞テトラ
アミドを䞀段で埗る反応Metody Polucheniya
khim Reaktivovi Preparatov No.12108
1965がある。こうしお埗た䞭間䜓のピロメリ
ツト酞テトラアミドから−テトラ
シアノベンれンを合成するにはゞメチルホルムア
ミドを溶媒ずしお塩化チオニルで脱氎する方法
Chemistry and Industry1964752がずら
れる。 −成分の合成− 成分の合成法はニトロフタロニトリルずビ
プノヌルのアルカリ塩の反応“Resins for
Aerospace”Am.Chem.Soc.Symp.Ser.132
251980に基づき、皮々のビスフタロニトリル
が埗られる。 特性の枬定方法および効果の評䟡方法 (1) 曲げ匟性率 曲げ匟性率の枬定方法は、暙準的な方法ずしお
ASTM−D790−66が䜿甚できる。しかし、本発
明の成圢物は必ずしもASTMの枬定法で枬定で
きるだけの倧きい成圢物を補造するずは限らない
堎合がある。このため、小型成圢物の曲げ匟性率
の枬定方法ずしお、次の方法を甚いた。 すなわち、䞊蚘の曲げ匟性率の枬定法ずしお
は、詊隓片を長さ30mm、幅mm、高さmmずし、
支点間距離16mm、支点先端半埄2R、加圧くさび
先端半埄5R、詊隓速床0.5mmminに蚭定しお枬
定した。この堎合ASTMの方法に比べ曲げ匟性
率は若干小さく枬定されるもののほが近い倀が埗
られた。 (2) 導電率 板状詊料片厚みmm、幅mm、長さ30mm、
の䞡端郚に導電性塗料“ドヌタむト”、(æ ª)藀倉化
成補銀ペヌストを塗垃也燥埌、デゞタルマルチ
サヌモメヌタタケダ理研工業(æ ª)補を甚いお抵
抗倀を枬定した。この抵抗倀から通䟋の方法に埓
぀お導電率を求めた。 (3) 耐衝撃性 詊料の耐衝撃性は、シダルピヌ衝撃詊隓機(æ ª)
東掋粟機補䜜所補を甚いお、ハンマヌで打撃し
お砎断させたずきの砎断に芁した゚ネルギヌを詊
料断面積で埐した倀を衝撃倀ずしお評䟡した。詊
隓は断面積mm2mm×mm、長さ40mmの板状
物を長さ方法ず垂盎に打撃しお砎断させた。支点
間距離は20mmに遞んだ。ハンマヌ重量Kg速
床、刃先半埄、支持台圢状はJIS芏栌にしたが぀
た。衝撃倀がKg・cmcm2以䞋のものを耐衝撃性
䞍良、Kg・cmcm2以䞊のものを良奜ず刀定し
た。 発明の効果 本発明の組成物は、性質の異なる皮のビスフ
タロニトリル化合物からなり、成圢加熱凊理によ
぀おシアノ基を分子間架橋させ、耐衝撃性、熱的
性質にすぐれた高剛性成圢䜓を埗るこずができ
る。たた、この架橋䜓はπ電子共圹結合によ぀お
構成されおいるこずから、すぐれた導電率を瀺
す。 埓぀お、本発明の組成物は、電子材料分野、航
空宇宙分野、粟密機械分野、構造材料分野など広
範囲にわたり、利甚可胜である。 実斜䟋 以䞋に実斜䟋をあげおさらに具䜓的な説明をす
るが、これらの実斜䟋は䟋瀺であり、本発明は実
斜䟋によ぀お制限されるものではない。 実斜䟋  ピロメリツト酞無氎物109重量郚、尿玠100重量
郚、およびモノクロルベンれン玄700重量郚を撹
拌翌、コンデンサヌ、枩床蚈を装着した反応容噚
に仕蟌んだ。撹拌し぀぀7.5時間還流䞋118〜
125℃に反応させた。攟冷埌、ガラスフむルタ
ヌでロ過し、埗られる埮黄色の粉末を颚也する。
颚也した粉末に350重量郚の濃アンモニア氎を入
れ1.5時間撹拌しおからロ過した。埗られた粉末
をさらに回350重量郚の濃アンモニア氎で抜出
しお未反応物を陀いた。アンモニア氎での抜出終
了埌、ロ液が䞭性になるたで氎で掗滌する。さら
に真空也燥するこずにより107重量郚の淡玅色の
ピロメリツト酞テトラアミドを埗た。 ここで埗られたピロメリツト酞テトラアミド
37.5重量郚を容噚に入れ、脱氎したゞメチルホル
ムアミド250重量郚を加えた。氷济を甚いお容噚
の反応液を−〜−℃に保ち぀぀、撹拌䞋で
178重量郚の塩化チオニルを2.5時間かけお滎䞋し
た。滎䞋終了埌は宀枩にお日間反応させた。反
応終了埌にガラスフむルタヌでロ過しお埗られた
橙色の透明溶液を200重量郚の氷ず100重量郚の濃
塩酞の混合物に泚いだ。析出する結晶をガラスフ
むルタヌでロ別し、氎でロ液が䞭性になるたで掗
滌しおから也燥した。18重量郚の
−テトラシアノベンれンが淡黄色の粉末ずしお埗
られた。 こうしお埗た−テトラシアノベ
ンれンを24重量郚ずり、390重量郚の酢酞を甚い
お再結晶した。19重量郚の針状結晶が埗られた。
この結晶に110重量郚のメチルセロ゜ルブを甚い
お再結晶した。13重量郚のほが癜色の板状結晶が
埗られた。融点272〜273℃であ぀た。 次に、4′−ビス−プニレンオキシフ
タロニトリルは䞋蚘の方法で合成した。 110重量郚の濃アンモニア氎を反応容噚に入れ、
これに25重量郚の−ニトロフタルむミドを少し
づ぀添加した。添加埌時間反応液を撹拌埌、ガ
ラスフむルタヌでロ過した。埗られたりグむス色
の粉末を容噚に入れ、撹拌翌で液を撹拌し぀぀濃
アンモニア氎110重量郚を加えた。懞濁液を時
間撹拌したあず、ガラスフむルタヌで結晶をロ別
した。埗られた結晶をロ液が䞭性になるたで氎
で、掗滌し、次いで真空也燥した。23重量郚の
−ニトロフタルアミドが埗られた。 次に21重量郚の−ニトロフタルアミドず88重
量郚のゞメチルホルムアミドを反応容噚に仕蟌
み、撹拌し぀぀液枩を−29〜−34℃に保ち、62重
量郚の塩化チオニルを時間かけお滎䞋した。滎
䞋埌時間かけおゆ぀くり宀枩に液枩を戻した。
生成した緑耐色の透明溶液をそのたた倜攟眮
し、次いで50重量郚の濃塩酞ず100重量郚の砎氷
の混合物に泚ぎ蟌んだ。結晶がゆ぀くり析出する
ので、時々かきたぜ぀぀10℃以䞋に時間眮いお
からロ別した。埗られたケヌクをロ液が䞭性にな
るたたで掗滌し、真空也燥するず玄11重量郚の
−ニトロフタルニトリルが灰緑色の粉末ずしお埗
られた。融点は140〜144℃であ぀た。 次に、52重量郚のゞメチルスルホキシド、59重
量郚のP′−ビプノヌル、16重量郚の炭酞カ
リりム、および11重量郚の−ニトロフタルニト
リルを窒玠眮換した反応容噚に入れた。混合液を
撹拌䞋で宀枩から昇枩し、56〜59℃に時間保぀
お反応させた。反応終了埌、埗られた赀耐色の分
散液を宀枩に戻し、冷华した125重量郚の3NHCl
に少しづ぀泚いだ。発泡が起こるが、これが止た
り℃たで冷えたずころで析出結晶をロ別した。
氎でロ液が䞭性になるたで掗滌し、真空也燥する
ず13.3重量郚の4′−ビス−プニレンオ
キシフタロニトリルが淡黄色の粉末ずしお埗ら
れた。融点は235〜238℃であ぀た。 䞊述のようにしお合成した−テ
トラシアノベンれンおよび4′−ビス−フ
゚ニレンオキシフタロニトリルから瞮重合によ
぀お䞋蚘方法でポリフタロニトリル成圢䜓を䜜぀
た。 4′−ビス−プニレンオキシフタロニ
トリル97重量郚、−テトラシア
ノベンれン重量郚および−プニレンゞアミ
ン重量郚を反応容噚に入れ、十分ブレンドした
埌250℃に加熱溶融する。溶融埌分皋床攪拌す
るず少し粘りのある融液ずなるので、そこで加熱
を䞭止しお冷华する。これを砕いお粉末にする。 粉末状のプレポリマヌは、成圢甚金型に入れ、
圧瞮プレス機を甚いお、200℃、15Kgcm2の圧力
で、板状物厚みmm、幅50mm、長さ80mmに成
圢する。 埗られた成圢品は250から900℃たで50℃ステツ
プで各枩床に30分間窒玠雰囲気䞭で熱凊理した。
詊料をいきなり高い枩床で凊理するず、発泡等が
生じるこずがあるので、このように凊理枩床を
埐々に高めるのが奜たしい。 埗られた成圢䜓の曲げ匟性率は25GPa、導電率
は2.1×102Scm、耐衝撃性は良奜であ぀た。 実斜䟋・および比范䟋 実斜䟋の条件の䞭で、テトラシアノベンれン
ずビスフタロニトリルの配合比、硬化剀の添加量
を倉曎するこずによ぀お、ポリフタロニトリル成
圢品を䜜぀た。これら成圢品特性を衚に瀺す。
これらの結果から、本発明範囲内の組成物から埗
られた成圢䜓は匟性率、導電率および耐衝撃性に
優れおいるこずがわかる。 比范䟋  撹拌翌付き反応容噚を窒玠眮換埌、38.4重量郹
のゞメチルスルホキシド、5.3重量郚のビスプ
ノヌル、11.7重量郚の炭酞カリりム、8.1重量
郚の粟補−ニトトフタロニトリルを順番に入
れ、少しづ぀窒玠を流し぀぀撹拌しながら昇枩し
た。45℃付近で発熱が芋られる。56〜62℃で時
間反応させお埗られた赀耐色の分散液を95重量郹
の冷华した3NHClの泚ぎ蟌んだ。10℃に冷华し
おから析出結晶をロ別し、氎でロ液が䞭性になる
たで掗滌しおから真空也燥した。10.7重量郚の
4′−む゜プロピリデン−ビス−プニレ
ンオキシフタロニトリルが淡黄色の粉末ずしお
埗られた。 このようにしお埗た4′−む゜プロピリデン
−ビス−プニレンオキシフタロニトリル
90重量郚に察しお、テトラシアノベンれン10重量
郚、−プニレンゞアミン重量郚を反応容噚
に入れ、250℃で加熱溶融する。分間撹拌埌、
成圢甚金型に入れ、以䞋実斜䟋の方法で成圢物
を埗た。 この成圢品の曲げ匟性率は3GPaず䜎く、耐衝
撃性も䞍良で、奜たしい特性は瀺さなか぀た。 実斜䟋  P′−ビプノヌルの代わりに、ヒドロキノ
ンを圓量甚いるほかは実斜䟋ず同じ手順で埗ら
れた−ビス3′4′−ゞシアノプノキ
シベンれンを甚いお埗たポリフタロニトリル成
圢䜓の曲げ匟性率は19GPa、導電率は4.8×
10-1Scm、耐衝撃性は良奜であ぀た。
Examples include, but are not limited to, [Formula]. As the curing agent for component (C) in the present invention, amine compounds are usually suitable. For example, m-phenylenediamine, p-phenylenediamine, 4,4'-methylenedianiline, 4
-aminophenyl ether, 4,4'(p-phenylenedioxy)dianiline, 4-aminophenyl sulfone, and the like. These may be used alone or in combination of two or more. In the composition of the present invention, the amount of component (A) to be blended relative to 100 parts by weight of component (B) depends on the chemical structure of component (B), but is preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight. Weight parts are good. (B) The amount of component is 1
If it is less than part by weight, the crosslinking density of the composition will be difficult to increase, and the strength and elastic modulus of the cured product after thermal crosslinking will be low, which is not preferable. On the other hand, if the amount of component (B) exceeds 50 parts by weight, the crosslinking density increases to some extent, but on the other hand, the cured product loses its flexibility and becomes extremely brittle, which is not preferred in practice. Furthermore, in the composition of the present invention, (A) + (B) components
The curing agent (C) component is added in an amount of 1 to 10 parts by weight per 100 parts by weight. When the amount of component (C) is less than 1 part by weight, there are disadvantages such as slow curing speed.
Practically unfavorable. Furthermore, if the amount of component (C) exceeds 10 parts by weight, the curing speed increases, but the substantial crosslinking density decreases, making it impossible to obtain desirable mechanical properties. The following components can be added to the composition of the present invention as necessary. (1) Powdered reinforcing agents and fillers, such as metal oxides such as aluminum oxide and magnesium oxide, metal hydroxides such as aluminum hydroxide,
Metal carbonates such as calcium carbonate and magnesium carbonate, diatomaceous earth powder, basic magnesium silicate, calcined clay, fine powder silica, fused silica,
Crystalline silica, carbon black, kaolin, finely powdered mica, quartz powder, metal hydroxides such as aluminum hydroxide, graphite, asbestos, molybdenum disulfide, antimony trioxide, etc. In addition, fibrous reinforcements and fillers, such as glass fibers, rock wool, ceramic fibers,
These include asbestos, inorganic fibers such as carbon fiber, and synthetic fibers such as paper, pulp, wood flour, linters, and polyamide fibers. The amount of these powder or fibrous reinforcing materials or fillers used varies depending on the purpose, but as a laminated material or molding material, up to 500 parts by weight can be used per 100 parts by weight of the resin composition. (2) Colorants, pigments, flame retardants such as titanium dioxide, yellow carbon black, iron black, molybdenum red, navy blue, ultramarine blue, cadmium yellow, cadmium red, inorganic phosphorus such as red phosphorus, and organic such as triphenyl phosphate. Such as phosphorus. (3) Furthermore, various synthetic resins can be blended for the purpose of improving the properties of the resin in the final coating film, adhesive layer, resin molded product, etc. For example, phenolic resin, alkyd resin, melamine resin, fluororesin, vinyl chloride resin, acrylic resin, silicone resin, polyester resin, etc.
Species or combinations of two or more types can be mentioned. The amount of these resins used is preferably within a range that does not impair the inherent properties of the resin composition of the present invention, that is, less than 50% by weight of the total resin amount. Examples of blending methods for component (A), component (B), component (C), and various additives include heating and melt mixing, kneading using a roll, kneader, etc., and mixing using an appropriate organic solvent. . -Synthesis of component A- 1,2,4,5-tetracyanobenzene is usually synthesized by a method using pyrometh acid tetraamide as an intermediate. This intermediate can be prepared by heating the ammonium salt of pyromellitic acid to form pyromellitic acid diimide, which is then treated with aqueous ammonia (Monatsh. 35, 396 (1914)). In addition, the reaction of reacting pyromellitic anhydride and urea in monochlorobenzene to obtain pyromellitic acid tetraamide in one step
khim Reaktivovi Preparatov No.12, 108
(1965)). To synthesize 1,2,4,5-tetracyanobenzene from the intermediate pyromellitic acid tetraamide thus obtained, a method of dehydration with thionyl chloride using dimethylformamide as a solvent is used (Chemistry and Industry, 1964, 752). -Synthesis of component B- The synthesis method for component B is the reaction of 4-nitrophthalonitrile with an alkali salt of biphenol (“Resins for
Aerospace”, Am.Chem.Soc.Symp.Ser., 132,
25 (1980)), various bisphthalonitriles are obtained. [Methods for measuring properties and evaluating effects] (1) Flexural modulus The standard method for measuring the flexural modulus is
ASTM-D790-66 can be used. However, the molded product of the present invention may not necessarily be large enough to be measured by the ASTM measurement method. Therefore, the following method was used to measure the flexural modulus of the small molded product. That is, to measure the flexural modulus mentioned above, the test piece is 30 mm long, 5 mm wide, and 1 mm high.
Measurements were made with the following settings: distance between fulcrums 16 mm, fulcrum tip radius 2R, pressure wedge tip radius 5R, and test speed 0.5 mm/min. In this case, although the flexural modulus was measured slightly smaller than the ASTM method, almost similar values were obtained. (2) Electrical conductivity Plate specimen (thickness 1mm, width 5mm, length 30mm)
A conductive paint (“Dotite”, manufactured by Fujikura Kasei Silver Co., Ltd.) was applied to both ends of the film, and after drying, the resistance value was measured using a digital multi-thermometer (manufactured by Takeda Riken Kogyo Co., Ltd.). The electrical conductivity was determined from this resistance value according to a conventional method. (3) Impact resistance The impact resistance of the sample was measured using a Shalpy impact tester (Co., Ltd.).
(manufactured by Toyo Seiki Seisakusho), and the impact value was evaluated as the value obtained by dividing the energy required to break by hitting it with a hammer by the cross-sectional area of the sample. In the test, a plate-like object with a cross-sectional area of 5 mm 2 (1 mm x 5 mm) and a length of 40 mm was struck perpendicular to its length to break it. The distance between the fulcrums was chosen to be 20 mm. Hammer weight (1Kg) speed, cutting edge radius, and support trapezoid shape were in accordance with JIS standards. Those with an impact value of 4 kg·cm/cm 2 or less were judged to have poor impact resistance, and those with an impact value of 4 kg·cm/cm 2 or more were judged to be good. [Effects of the Invention] The composition of the present invention is composed of two types of bisphthalonitrile compounds with different properties, and the cyano groups are intermolecularly cross-linked by heat treatment for forming, resulting in a high-performance composition with excellent impact resistance and thermal properties. A rigid molded body can be obtained. Furthermore, since this crosslinked body is composed of π-electron conjugated bonds, it exhibits excellent electrical conductivity. Therefore, the composition of the present invention can be used in a wide range of fields such as electronic materials, aerospace, precision machinery, and structural materials. [Examples] A more specific explanation will be given below with reference to Examples, but these Examples are merely illustrative, and the present invention is not limited by the Examples. Example 1 109 parts by weight of pyromellitic anhydride, 100 parts by weight of urea, and about 700 parts by weight of monochlorobenzene were charged into a reaction vessel equipped with a stirring blade, a condenser, and a thermometer. Under reflux for 7.5 hours with stirring (118~
125°C). After cooling, it is filtered through a glass filter, and the resulting slightly yellow powder is air-dried.
350 parts by weight of concentrated aqueous ammonia was added to the air-dried powder, stirred for 1.5 hours, and then filtered. The obtained powder was further extracted twice with 350 parts by weight of concentrated aqueous ammonia to remove unreacted substances. After extraction with aqueous ammonia, wash with water until the filtrate becomes neutral. Further vacuum drying yielded 107 parts by weight of pale pink pyromellitic acid tetraamide. Pyromellitic acid tetraamide obtained here
37.5 parts by weight was placed in a container, and 250 parts by weight of dehydrated dimethylformamide was added. While keeping the reaction solution in the container at -1 to -2℃ using an ice bath, add the mixture under stirring.
178 parts by weight of thionyl chloride was added dropwise over 2.5 hours. After completion of the dropwise addition, the reaction was allowed to proceed at room temperature for 2 days. After the reaction was completed, the orange transparent solution obtained by filtration through a glass filter was poured into a mixture of 200 parts by weight of ice and 100 parts by weight of concentrated hydrochloric acid. The precipitated crystals were filtered out using a glass filter, washed with water until the filtrate became neutral, and then dried. 18 parts by weight of 1, 2, 4, 5
-Tetracyanobenzene was obtained as a pale yellow powder. 24 parts by weight of the 1,2,4,5-tetracyanobenzene thus obtained was recrystallized using 390 parts by weight of acetic acid. 19 parts by weight of needle-like crystals were obtained.
This crystal was recrystallized using 110 parts by weight of methyl cellosolve. 13 parts by weight of almost white plate-like crystals were obtained. The melting point was 272-273°C. Next, 4,4'-bis(4-phenyleneoxyphthalonitrile) was synthesized by the following method. Put 110 parts by weight of concentrated ammonia water into a reaction container,
To this was added portionwise 25 parts by weight of 4-nitrophthalimide. After the addition, the reaction solution was stirred for 1 hour and then filtered through a glass filter. The obtained green-green powder was placed in a container, and 110 parts by weight of concentrated aqueous ammonia was added while stirring the liquid with a stirring blade. After stirring the suspension for 1 hour, the crystals were filtered out using a glass filter. The obtained crystals were washed with water until the filtrate became neutral, and then dried under vacuum. 23 parts by weight 4
-Nitrophthalamide was obtained. Next, 21 parts by weight of 4-nitrophthalamide and 88 parts by weight of dimethylformamide were charged into a reaction vessel, the liquid temperature was maintained at -29 to -34°C while stirring, and 62 parts by weight of thionyl chloride was added over 1 hour. dripped. After dropping, the temperature of the solution was slowly returned to room temperature over 4 hours.
The resulting green-brown clear solution was allowed to stand overnight and then poured into a mixture of 50 parts by weight of concentrated hydrochloric acid and 100 parts by weight of broken ice. Since crystals slowly precipitated, the mixture was kept at 10°C or lower for 2 hours with occasional stirring, and then filtered. The obtained cake was washed while the filtrate remained neutral, and when dried in vacuum, about 11 parts by weight of 4
- Nitrophthalnitrile was obtained as a gray-green powder. The melting point was 140-144°C. Next, 52 parts by weight of dimethyl sulfoxide, 59 parts by weight of P,P'-biphenol, 16 parts by weight of potassium carbonate, and 11 parts by weight of 4-nitrophthalnitrile were placed in a reaction vessel purged with nitrogen. The temperature of the mixed solution was raised from room temperature while stirring, and the temperature was kept at 56-59°C for 4 hours to react. After the reaction, the resulting reddish-brown dispersion was returned to room temperature and cooled with 125 parts by weight of 3NHCl.
I poured it little by little. Foaming occurred, but when this stopped and the temperature reached 7°C, the precipitated crystals were filtered out.
The filtrate was washed with water until it became neutral and dried under vacuum to obtain 13.3 parts by weight of 4,4'-bis(4-phenyleneoxyphthalonitrile) as a pale yellow powder. The melting point was 235-238°C. A polyphthalonitrile molded article was produced by condensation polymerization from 1,2,4,5-tetracyanobenzene and 4,4'-bis(4-phenyleneoxyphthalonitrile) synthesized as described above by the following method. Ivy. 97 parts by weight of 4,4'-bis(4-phenyleneoxyphthalonitrile), 3 parts by weight of 1,2,4,5-tetracyanobenzene, and 3 parts by weight of P-phenylenediamine were placed in a reaction vessel and thoroughly blended. After that, heat and melt at 250℃. After stirring for about 5 minutes after melting, the melt becomes slightly sticky, so heating is stopped and the mixture is cooled. Crush this into powder. Powdered prepolymer is put into a mold,
Using a compression press, mold into a plate (1 mm thick, 50 mm wide, 80 mm long) at 200°C and a pressure of 15 kg/cm 2 . The obtained molded product was heat treated in a nitrogen atmosphere from 250 to 900°C in 50°C steps for 30 minutes at each temperature.
If the sample is suddenly treated at a high temperature, foaming or the like may occur, so it is preferable to gradually increase the treatment temperature in this way. The molded article obtained had a flexural modulus of 25 GPa, an electrical conductivity of 2.1×10 2 S/cm, and good impact resistance. Example 2 and Comparative Examples 1 and 2 Polyphthalonitrile molded products were produced by changing the blending ratio of tetracyanobenzene and bisphthalonitrile and the amount of curing agent added under the conditions of Example 1. Ivy. Table 1 shows the properties of these molded products.
These results show that molded bodies obtained from compositions within the scope of the present invention are excellent in elastic modulus, electrical conductivity, and impact resistance. Comparative Example 3 After purging a reaction vessel with a stirring blade with nitrogen, 38.4 parts by weight of dimethyl sulfoxide, 5.3 parts by weight of bisphenol A, 11.7 parts by weight of potassium carbonate, and 8.1 parts by weight of purified 4-nitotophthalonitrile were added in order. The temperature was raised while stirring while nitrogen was gradually introduced. Fever is seen around 45℃. The reddish-brown dispersion obtained after reacting at 56-62°C for 4 hours was poured into 95 parts by weight of cooled 3NHCl. After cooling to 10°C, the precipitated crystals were filtered out, washed with water until the filtrate became neutral, and then dried in vacuum. 10.7 parts by weight of 4,4'-isopropylidene-bis(4-phenyleneoxyphthalonitrile) was obtained as a pale yellow powder. 4,4′-isopropylidene-bis(4-phenyleneoxyphthalonitrile) thus obtained
To 90 parts by weight, 10 parts by weight of tetracyanobenzene and 3 parts by weight of P-phenylenediamine are placed in a reaction vessel and heated and melted at 250°C. After stirring for 5 minutes,
The mixture was placed in a mold for molding, and a molded product was obtained by the method described in Example 1 below. This molded product had a low flexural modulus of 3 GPa, poor impact resistance, and did not exhibit desirable properties. Example 3 Using 1,4-bis(3',4'-dicyanophenoxy)benzene obtained in the same manner as in Example 1 except that an equivalent amount of hydroquinone was used instead of P,P'-biphenol. The flexural modulus of the obtained polyphthalonitrile molded body was 19GPa, and the electrical conductivity was 4.8×
10 -1 S/cm, the impact resistance was good.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  䞋蚘(A)(B)及び(C)成分を含み、か぀(B)成分
100重量郚に察しお(A)成分が〜50重量郚、(A)
(B)成分100重量郚に察しお(C)成分が〜10重量郹
ずなる割合で配合されおなるこずを特城ずする熱
硬化性暹脂原料組成物。 (A) 成分テトラシアノベンれン (B) 成分次匏で瀺されるビスフタロニトリル 匏䞭、は芳銙族炭化氎玠環を衚す (C) 成分硬化剀
[Scope of Claims] 1 Contains the following components (A), (B) and (C), and component (B)
Component (A) is 1 to 50 parts by weight per 100 parts by weight, (A)+
A thermosetting resin raw material composition characterized in that component (C) is blended in a ratio of 1 to 10 parts by weight to 100 parts by weight of component (B). (A) Component: Tetracyanobenzene (B) Component: Bisphthalonitrile represented by the following formula (In the formula, R represents an aromatic hydrocarbon ring) (C) Component: Curing agent
JP2955187A 1987-02-13 1987-02-13 Thermosetting resin raw material composition Granted JPS63199228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2955187A JPS63199228A (en) 1987-02-13 1987-02-13 Thermosetting resin raw material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2955187A JPS63199228A (en) 1987-02-13 1987-02-13 Thermosetting resin raw material composition

Publications (2)

Publication Number Publication Date
JPS63199228A JPS63199228A (en) 1988-08-17
JPH0460489B2 true JPH0460489B2 (en) 1992-09-28

Family

ID=12279275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2955187A Granted JPS63199228A (en) 1987-02-13 1987-02-13 Thermosetting resin raw material composition

Country Status (1)

Country Link
JP (1) JPS63199228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107903189A (en) * 2017-10-24 2018-04-13 䞭囜科孊院化孊研究所 It is a kind of phthalonitrile-terminated containing fluorene structured poly (arylene ether nitrile) oligomer, solidfied material and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001926A (en) * 1997-10-02 1999-12-14 The United States Of America As Represented By The Secretary Of The Navy Fiber-reinforced phthalonitrile composite cured with low-reactivity aromatic amine curing agent
US5965268A (en) * 1998-06-26 1999-10-12 The United States Of America As Represented By The Secretary Of The Navy Carbon-based composites derived from phthalonitrile resins
CA2443309A1 (en) * 2001-04-02 2002-10-10 Eikos, Inc. Polymer nanocomposites and methods of preparation
EP3424982B1 (en) 2016-11-30 2021-09-08 LG Chem, Ltd. Curable composition
KR102046576B1 (en) 2017-05-18 2019-11-21 죌식회사 엘지화학 Low friction polymerizable composition
WO2021228081A1 (en) * 2020-05-11 2021-11-18 䞭囜科孊院化孊研究所 Phthalonitrile-based composite material, preparation method therefor and use thereof
RU2767683C2 (en) * 2020-09-09 2022-03-18 ЀеЎеральМПе гПсуЎарствеММПе бюЎжетМПе ПбразПвательМПе учрежЎеМОе высшегП ПбразПваМОя «МПскПвскОй гПсуЎарствеММый уМОверсОтет ОЌеМО М.В.ЛПЌПМПсПва» (МГУ) Protective coating based on fluorine-containing phthalonitrile oligomers for polymer composite materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107903189A (en) * 2017-10-24 2018-04-13 䞭囜科孊院化孊研究所 It is a kind of phthalonitrile-terminated containing fluorene structured poly (arylene ether nitrile) oligomer, solidfied material and preparation method thereof

Also Published As

Publication number Publication date
JPS63199228A (en) 1988-08-17

Similar Documents

Publication Publication Date Title
US3658764A (en) Cross-linked resins
KR910002086B1 (en) Polyimide resin composition
JPH04507110A (en) Cyanato group-containing phenolic resins and phenolic triazine resins derived therefrom
JPH0368629A (en) Fusible crystalline polyether-imide
Sethuraman et al. Thermo-mechanical and surface properties of POSS reinforced structurally different diamine cured epoxy nanocomposites
JPS61195127A (en) Tehrmoplastic aromatic polyamide imide copolymer
JPH0460489B2 (en)
CA1270998A (en) Thermosetting resin composition
US4968762A (en) Thermosetting-resin-forming composition from bis-maleimide and diallyl bis phenol
JPH036215A (en) 1-isopropyl-2-methylimidazole as epoxy curing agent
US4705833A (en) Thermosettable heat-resistant resin compositions
JPH0553170B2 (en)
JPS62236858A (en) Polyimide resin composition
EP0486479B1 (en) Thermosetting resin composition
US5084507A (en) Thermosetting resin composition
JPH0319857B2 (en)
JPS62257963A (en) Novel polyimide resin composition
JP3688097B2 (en) Crystalline resin composition
CA1297615C (en) Polyimide resin composition
JPH02167340A (en) Production of polyimide having excellent molding and processing property
JPH047369B2 (en)
JPS629250B2 (en)
JPS63193924A (en) Thermosetting resin composition
JPS63107976A (en) Novel polymaleimide compound and production thereof
JPH0559933B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term