JPH0460326A - Air conditioner with humidifying functions - Google Patents

Air conditioner with humidifying functions

Info

Publication number
JPH0460326A
JPH0460326A JP2169909A JP16990990A JPH0460326A JP H0460326 A JPH0460326 A JP H0460326A JP 2169909 A JP2169909 A JP 2169909A JP 16990990 A JP16990990 A JP 16990990A JP H0460326 A JPH0460326 A JP H0460326A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor
air
water
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2169909A
Other languages
Japanese (ja)
Inventor
Takashi Komagine
駒木根 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2169909A priority Critical patent/JPH0460326A/en
Publication of JPH0460326A publication Critical patent/JPH0460326A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To humidify interior air without requiring any supplemental water and further without requiring any water tap work by a method wherein an outdoor installing device is constructed, a drain generated at an outdoor heat exchanger under a defrosting operation is guided to an air flow passage at an indoor heat exchanger, and its moisture content is included in the indoor air. CONSTITUTION:An inside part of a case 3 of a heat exchanging device 1 is divided into an upper segment and a lower segment by a partition wall 3. An upper stage partitioned chamber is provided with an air flow passage 6 for communicating a surrounding air intake port 4 with a surrounding air blowing port 5. This air flow passage 6 is provided with an outdoor side heat exchanger 7 and an outdoor fan 8. A lower part of the outdoor heat exchanger 7 is provided with a defrosting water receptacle 9. The lower partitioned chamber is formed with an indoor heat exchanger including an indoor side heat exchanger 13. A suction side of the indoor side heat exchanger 13 is provided with a defrosting and water evaporating system 20. Defrosted water is fed from the defrosting water receptacle 9 through a feeding pipe 25 and an upper water receptacle 23 to a base member 21 and then moisture is evaporated and included in the indoor air passing through the base member 21.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、暖房運転時、室内の湿度を増加させる機能
をもつ加湿機能付空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an air conditioner with a humidifying function that has a function of increasing indoor humidity during heating operation.

(従来の技術) 一般に、家庭、事務所などで使用される空気調和機には
、第7図に示されるように室内aに据付けた室内ユニッ
トbを室外に据付けた室外ユニットCとを組合わせる構
造のものが用いられている。
(Prior Art) In general, air conditioners used in homes, offices, etc., as shown in Fig. 7, combine an indoor unit B installed indoors a with an outdoor unit C installed outdoors. structure is used.

すなわち、第6図にも示されるように室内ユニットbは
ユニット本体d内に室内aと連通ずる空気流通路eを設
け、この空気流通路eに室内側熱交換器fおよび室内フ
ァンgを設けて構成される。
That is, as shown in FIG. 6, the indoor unit b is provided with an air flow passage e that communicates with the room a within the unit body d, and an indoor heat exchanger f and an indoor fan g are provided in this air flow passage e. It consists of

また室外ユニットCはユニット本体り内に外気と連通ず
る空気流通路材および機械室(図示しない)を設け、上
記空気流通路に内に室外側熱交換器iおよび室外ファン
kを設け、機械室内に圧縮機j(第6図のみ図示)を設
けて構成される。そして、圧縮機jに冷媒配管pを介し
て、四方弁m、室内側熱交換器f、キャピラリチューブ
n(減圧装置)、室外側熱交換器1を順次接続して、冷
暖房運転可能なヒートポンプ式の冷凍サイクルを構成さ
せている。なお、四方弁m1キャピラリチューブnは室
内ユニットI、室外ユニットCのいずれかに設けられる
In addition, the outdoor unit C is provided with an air flow path material communicating with the outside air and a machine room (not shown) inside the unit body, and an outdoor heat exchanger i and an outdoor fan k are installed inside the air flow path, and the machine room The compressor j (only shown in FIG. 6) is installed in the compressor j (only shown in FIG. 6). A four-way valve m, an indoor heat exchanger f, a capillary tube n (pressure reducing device), and an outdoor heat exchanger 1 are sequentially connected to the compressor j via a refrigerant pipe p, thereby creating a heat pump type capable of air-conditioning operation. It consists of a refrigeration cycle. Note that the four-way valve m1 capillary tube n is provided in either the indoor unit I or the outdoor unit C.

そして、四方弁mの冷房側、暖房側の切換えにより、冷
房サイクル、暖房サイクルを構成して、室内aを冷暖房
していく。
Then, by switching the four-way valve m between the cooling side and the heating side, a cooling cycle and a heating cycle are configured to cool and heat the room a.

例えば暖房するときは、四方弁mを暖房側に切換えて圧
縮機jを作動すれば、圧縮機jから圧縮された高温高圧
の冷媒ガスは四方弁mを通って室内側熱交換器fに流入
する。この冷媒が室内側熱交換器fの内部を通過すると
き、室内ファンgの送風によって空気流通路eを流れる
室内空気と熱交換して、冷媒の熱量を室内空気に与えて
いく。
For example, when heating, if you switch the four-way valve m to the heating side and operate the compressor j, the high-temperature, high-pressure refrigerant gas compressed from the compressor j will flow into the indoor heat exchanger f through the four-way valve m. do. When this refrigerant passes through the interior of the indoor heat exchanger f, it exchanges heat with the indoor air flowing through the air flow passage e by the air blown by the indoor fan g, and imparts the heat amount of the refrigerant to the indoor air.

つまり、この室内空気は温風となって室内aに吹出され
ていく。一方、熱交換後の冷媒は冷却により凝縮(液化
)する。この液化した冷奴はキャピラリチューブnに導
かれ、そこで減圧され低温低圧の液冷媒となっていく。
In other words, this indoor air becomes warm air and is blown into the room a. On the other hand, the refrigerant after heat exchange is condensed (liquefied) by cooling. This liquefied cold tofu is led to the capillary tube n, where it is depressurized and becomes a low-temperature, low-pressure liquid refrigerant.

そして、この液冷媒が室内側熱交換器iを通過するとき
、外気から熱を奪って蒸発し、再び四方弁mを経て圧縮
機jに戻っていくという暖房サイクルが繰返し行われ、
室内aを暖房していく。
When this liquid refrigerant passes through the indoor heat exchanger i, it absorbs heat from the outside air, evaporates, and returns to the compressor j via the four-way valve m, a heating cycle that is repeated.
Heating room a.

(発明が解決しようとする課題) ところで、空気調和機の暖房運転により、2℃で相対湿
度80%RHの部屋の空気を、そのまま加湿しないで2
0℃にまで暖めると、相対湿度は、一般に快適とされる
「60%RH〜90%RHJをはるかに下回る25%R
Hとなり、空気が乾燥した状態となることがわかってい
る。
(Problem to be Solved by the Invention) By the way, by heating the air conditioner, the air in a room with a temperature of 2°C and a relative humidity of 80% RH can be heated without being humidified.
When warmed to 0℃, the relative humidity drops to 25%R, which is far below the generally comfortable level of 60%RH to 90%RHJ.
H, and the air is known to be in a dry state.

ところが、上述したような従来のヒートポンプ式の空気
調和機には、加湿機能がなく、快適な暖房が維持されな
い。
However, the conventional heat pump type air conditioner as described above does not have a humidifying function and cannot maintain comfortable heating.

そこで、空気調和機に別途加湿器を設けることが考えら
れている。このためには、加湿に必要な水を確保しなけ
ればならない。
Therefore, it has been considered to provide a separate humidifier to the air conditioner. For this purpose, it is necessary to secure the water necessary for humidification.

しかし、加湿器には水を補給する機能がないので、給水
に手間がかかったり、給水のための水道工事か必要にな
ったりする問題があり、管理の点て良いものではなかっ
た。
However, since humidifiers do not have a function to replenish water, there are problems in that it takes time and effort to supply water and requires plumbing work to supply water, so management has not been good.

この発明は、このような事情に着目してなされたもので
、その目的とするところは、加湿に必要な水の補給の手
間ならびに同水道工事を必要とせずに、室内空気を加湿
しながら暖房することのできる加湿機能付空気調和機を
提供することにある。
This invention was made in view of these circumstances, and its purpose is to humidify indoor air while heating it without the need for water replenishment or plumbing work required for humidification. An object of the present invention is to provide an air conditioner with a humidifying function that can perform the following functions.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、この発明の加湿機能付空気
調和機は、内部が仕切壁部で仕切られた本体の一方の隔
室に室内側熱交換器および当該室内側熱交換器に室内空
気を流通させる手段を設けるとともに他方の隔室に室外
側熱交換器および当該室外側熱交換器に外気を流通させ
る手段を設けて室外設置用のユニットを構成し、このユ
ニットに除霜運転によって前記室外側熱交換器で生じる
ドレンを前記室内側熱交換器側の空気流通路に導く手段
を設け、かつ前記空気流通路に導かれたドレンの水分を
室内空気に含ませる手段を設けたことにある。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, an air conditioner with a humidifying function of the present invention has a main body, the interior of which is partitioned by a partition wall, with a room in one compartment. For outdoor installation, an inner heat exchanger and a means for circulating indoor air to the indoor heat exchanger are provided, and an outdoor heat exchanger and a means for circulating outside air to the outdoor heat exchanger are provided in the other compartment. The unit is provided with means for guiding the condensate generated in the outdoor heat exchanger during defrosting operation to the air flow passage on the indoor heat exchanger side, and the condensate guided to the air flow passage. The purpose of this invention is to provide a means for causing indoor air to contain moisture.

(作用) この発明の加湿機能付空気調和機によると、除霜運転で
生じたドレンは室内側熱交換器側の空気流通路に導かれ
ていく。この導かれたドレンの水分が暖房運転時に室内
空気中に含まれ、吹出空気を加湿していく。
(Function) According to the air conditioner with a humidifying function of the present invention, the drain generated during the defrosting operation is guided to the air flow path on the indoor heat exchanger side. The moisture in this drain is included in the indoor air during heating operation, humidifying the blown air.

これにより、外部に捨てられる除霜運転に際に生じたド
レンを、加湿するための水に活用することができ、加湿
器を用いたときのような給水の手間、さらには給水の水
道工事は必要としないですむこととなる。
As a result, the drain generated during defrosting operation, which is disposed of outside, can be used as water for humidification, eliminating the hassle of water supply when using a humidifier, and furthermore, eliminating the need for water supply work. There is no need for it.

(実施例) 以下、この発明を第1図ないし第5図に示す一実施例に
もとづいて説明する。第4図はこの発明を適用した空気
調和機の全体の概略構成を示し、第5図は同冷凍サイク
ル回路を示す。この空気調和機は、例えば熱交換系機器
を内蔵した熱交換ユニット1(室外設置用のユニット)
と、熱交換系機器を除く機器を内蔵したコンプレッサユ
ニット30とを組合わせて構成されている。そして、こ
のうちの熱交換ユニット1の構造が第2図および第3図
に示されている。
(Example) The present invention will be described below based on an example shown in FIGS. 1 to 5. FIG. 4 shows a schematic overall configuration of an air conditioner to which the present invention is applied, and FIG. 5 shows a refrigeration cycle circuit thereof. This air conditioner includes, for example, a heat exchange unit 1 (a unit for outdoor installation) that has a built-in heat exchange system device.
and a compressor unit 30 containing built-in equipment except for heat exchange equipment. The structure of the heat exchange unit 1 is shown in FIGS. 2 and 3.

熱交換ユニット1について説明すれば、2はユニット本
体となる縦長の1つの略偏平箱形状のケースで構成され
た筐体である。筐体2は、第1図にも示されるように一
側面が室内Aの壁部Bの外面と対面するようにして室外
に据付けられている。
To explain the heat exchange unit 1, 2 is a housing composed of one vertically elongated case in the shape of a substantially flat box, which serves as the unit body. As shown in FIG. 1, the casing 2 is installed outdoors so that one side faces the outer surface of the wall B of the room A.

この筐体3内の中段には、内部を上下2分割するよう仕
切壁部3が設けられ、上段の隔室を室外側とし、下段の
隔室を室内側としている。上段の隔室には、後部(壁部
Bと反対側)に設けた外気吸込口4と外気吹出口5とを
連通ずる空気流通路6が設けられている。この空気流通
路6には室外側熱交換器7および室外ファン8(シロッ
コファンよりなる)が設けられ(室外熱交換系)、外気
と室外側熱交換器7とを熱交換させることができるよう
になっている。また室外側熱交換器7の下部には、除霜
水受9が設けられている。この除霜水受20にて、除霜
運転にしたがって室外側熱交換器7から発生する除霜水
(ドレン)を受けることができるようになっている。な
お、除霜水受9は例えば室外側熱交換器7の着霜量の全
てを受けるような容積に設定しである。
A partition wall 3 is provided in the middle of the housing 3 to divide the interior into upper and lower halves, with the upper compartment serving as the outdoor side and the lower compartment serving as the indoor side. The upper compartment is provided with an air flow path 6 that communicates with an outside air inlet 4 and an outside air outlet 5 provided at the rear (on the opposite side from wall B). This air flow path 6 is provided with an outdoor heat exchanger 7 and an outdoor fan 8 (made of a sirocco fan) (outdoor heat exchange system), so that the outside air and the outdoor heat exchanger 7 can exchange heat. It has become. Further, a defrosting water receiver 9 is provided at the lower part of the outdoor heat exchanger 7. This defrosting water receiver 20 can receive defrosting water (drain) generated from the outdoor heat exchanger 7 during the defrosting operation. Note that the defrosting water receiver 9 is set to have a volume that can receive the entire amount of frost on the outdoor heat exchanger 7, for example.

下段の隔室には、下部両側に設けた内気吸込口10と内
気吹出口11とを連通する空気流通路12が設けられて
いる。この空気流通路12には室内側熱交換器13およ
び内気吹出口11につながる室内ファン14(遠心ファ
ンよりなる)が設けられている(室内熱交換系)。また
各内気吸込ロ10.内気吹出口11は、それぞれダクト
15゜16を介して室内Aの壁部Bに設けた貫通孔(図
示しない)に接続されていて、室内側熱交換器12で熱
交換した室内空気を室内Aに吹出すことができるように
なっている。
The lower compartment is provided with an airflow passage 12 that communicates with an inside air inlet 10 and an inside air outlet 11 provided on both sides of the lower part. This airflow passage 12 is provided with an indoor heat exchanger 13 and an indoor fan 14 (consisting of a centrifugal fan) connected to the indoor air outlet 11 (indoor heat exchange system). Also, each internal air suction hole 10. The indoor air outlets 11 are connected to through holes (not shown) provided in the wall B of the indoor A through ducts 15 and 16, respectively, and the indoor air that has been heat exchanged by the indoor heat exchanger 12 is transferred to the indoor A. It is now possible to blow out.

上記室内側熱交換器12の吸込側には除霜水蒸発系20
が設けられている。この除霜水蒸発系20について説明
すれば、21は水分の保持が可能で、かつ通気性が有る
部材、例えば布、網等の材料で構成された平板状の基材
(水分を含ませる手段)である。基材21は、空気流通
路12を遮るように立位した状態に設けられている。こ
の基材21の下部には、同下端部を受けるようにして下
部水受22が設けられている。また基材21の上部には
、同上端部が貫通するようにして上部水受23が設けら
れている。そして、上下位置に配置された上部水受23
と上記除霜水受9とは、例えば常閉形の電磁開閉弁24
を介装した導入管25(除霜水導入手段)で連通接続さ
れていて、除霜水受9で受けた除霜水を電磁開閉弁9の
開動作にしたがって上部水受23に導くことができるよ
うになっている。つまり、除霜水を毛細管現象。
A defrosting water evaporation system 20 is provided on the suction side of the indoor heat exchanger 12.
is provided. To explain this defrosting water evaporation system 20, reference numeral 21 is a flat base material (means for absorbing moisture) made of a material that can retain moisture and has air permeability, such as cloth or netting. ). The base material 21 is provided in an upright position so as to block the air flow path 12. A lower water receiver 22 is provided at the lower part of the base material 21 to receive the lower end thereof. Further, an upper water receptacle 23 is provided at the upper part of the base material 21 so that the upper end thereof passes through the base material 21 . And the upper water receiver 23 arranged in the upper and lower positions
The defrosting water receiver 9 is, for example, a normally closed electromagnetic on-off valve 24.
The defrost water received by the defrost water receiver 9 can be guided to the upper water receiver 23 according to the opening operation of the electromagnetic on-off valve 9. It is now possible to do so. In other words, the defrosting water undergoes capillary action.

水位差等で、基材21に含ませることができるようにな
っている。これにより、基材21を通過する室内空気に
、基材21に保持した水分を蒸発(気化)で含ませるこ
とができるようになっている。
It can be contained in the base material 21 by adjusting the water level or the like. Thereby, the indoor air passing through the base material 21 can contain the moisture held in the base material 21 by evaporation (vaporization).

一方、コンプレッサユニット30について説明すれば、
31はユニット本体となる筐体である。
On the other hand, if we explain the compressor unit 30,
Reference numeral 31 denotes a casing serving as the unit main body.

この筐体31内には圧縮機32が設けられている。A compressor 32 is provided within this housing 31 .

そして、第5図に示されるようにこの圧縮機32に冷媒
配管33を介して、例えば筐体31に内蔵した四方弁3
4、上記室外側熱交換器7、例えば上記筐体2内に内蔵
したキャピラリチューブ35(減圧装置)、上記室内側
熱交換器13が順に接続され、ヒートポンプ式の冷凍サ
イクルを構成している。なお、四方弁34は筐体31で
なく、筐体2に内蔵する構造でもよい。
As shown in FIG.
4. The outdoor heat exchanger 7, for example, the capillary tube 35 (pressure reducing device) built in the housing 2, and the indoor heat exchanger 13 are connected in this order to form a heat pump type refrigeration cycle. Note that the four-way valve 34 may be built into the housing 2 instead of the housing 31.

そして、例えば筐体31.内に内蔵された制御部40に
て、上記冷凍サイクルおよび上記除霜水蒸発系20を制
御するようにしている。すなわち、制御部40は例えば
マイクロコンピュータおよびその周辺機器から構成され
ている。制御部40には、第5図に示すように室温セン
サ41および冷房運転に必要な情報を入力する操作部4
2が接続されていて、操作部42から人力される冷暖房
切替にしたがって四方弁34を冷房あるいは暖房側に切
換えるようにしている。また制御部40は、上記室温セ
ンサ41で検知された室温と上記操作部42から入力さ
れた設定温度との偏差に応じて、圧縮機32の能力を制
御するようにしている。さらに制御部40には、室外側
熱交換器7に設けた着霜および除霜を検知するセンサ4
3が接続されている。そして、制御部40はセンサ43
から着霜したこと示す信号が出力されるにしたかって除
霜開始信号を出力して、暖房運転から除霜運転(暖房サ
イクルと反対のサイクル)に切換え、同じくセンサ43
から除霜されたことを示す信号が出力されるにしたがっ
て除霜終了信号を出力して、暖房運転に復帰させるよう
にしている。なお、制御部40の指令により、室外ファ
ン8のファンモル夕8aは冷暖房運転開始にしたがって
所定の回転数で作動し、室内ファン14のファンモータ
14aは室内側熱交換器13の温度に応じた数種類のモ
ードの回転数で作動するようにしである。
For example, the housing 31. The refrigeration cycle and the defrosting water evaporation system 20 are controlled by a control unit 40 built into the unit. That is, the control section 40 is composed of, for example, a microcomputer and its peripheral devices. As shown in FIG. 5, the control unit 40 includes a room temperature sensor 41 and an operation unit 4 for inputting information necessary for cooling operation.
2 is connected, and the four-way valve 34 is switched to the cooling or heating side according to the air conditioning/heating switching manually inputted from the operating section 42. Further, the control unit 40 controls the capacity of the compressor 32 according to the deviation between the room temperature detected by the room temperature sensor 41 and the set temperature input from the operation unit 42. Furthermore, the control unit 40 includes a sensor 4 provided on the outdoor heat exchanger 7 that detects frost formation and defrost.
3 is connected. Then, the control unit 40 controls the sensor 43
As soon as a signal indicating that frost has formed is output from the sensor 43, a defrost start signal is output, and the heating operation is switched to the defrosting operation (the opposite cycle to the heating cycle).
When a signal indicating that defrosting has been performed is outputted, a defrosting end signal is outputted to return to heating operation. In addition, according to a command from the control unit 40, the fan motor 8a of the outdoor fan 8 operates at a predetermined rotation speed in accordance with the start of the cooling/heating operation, and the fan motor 14a of the indoor fan 14 operates in several types according to the temperature of the indoor heat exchanger 13. It is designed to operate at the following speeds.

さらに制御部40は、上記除霜開始信号、除霜終了信号
にしたがって上記電磁開閉弁24を制御させる機能を有
している。すなわち、制御部40は、内蔵の遅延回路4
4により、除霜開始信号から所定時間遅延して電磁開閉
弁24の駆動回路(図示しない)に開信号を出力し、ま
た除霜終了信号にしたがって同駆動回路に閉信号を出力
するように設定しである。これにより、実際上、除霜運
転の開始から遅れる室外側熱交換器7からの除霜水発生
時期に対応させて、電磁開閉弁24を開作動させるよう
にしている。なお、遅延時間には例えば30秒程度か設
定しである。
Further, the control section 40 has a function of controlling the electromagnetic on-off valve 24 according to the defrosting start signal and defrosting end signal. That is, the control unit 40 controls the built-in delay circuit 4
4, an open signal is output to the drive circuit (not shown) of the electromagnetic on-off valve 24 after a predetermined time delay from the defrost start signal, and a close signal is output to the drive circuit in accordance with the defrost end signal. It is. As a result, in practice, the electromagnetic on-off valve 24 is opened in accordance with the time when defrosting water is generated from the outdoor heat exchanger 7, which is delayed from the start of the defrosting operation. Note that the delay time is set to, for example, about 30 seconds.

また除霜水蒸発系20には、除霜水か不足したとき補給
できるようにした機能が設けられている。
Furthermore, the defrosting water evaporation system 20 is provided with a function that allows replenishment of defrosting water when it becomes insufficient.

すなわち、制御部40には上記基材21に設けた当該基
材21の湿り度を検知する湿りセンサ45が接続されて
いる。また制御部40は、暖房運転時、上記湿りセンサ
45から基材21か湿っていないことを示す信号が出力
されると、同暖房運転時のファンモータ3a(室外ファ
ン8)に同モータ8aの回転数を下げる制御信号を出力
するように設定されていて、暖房運転中、基材21に加
湿に必要な水分が無くなると、室外側熱交換器7を着霜
しやすい状態、すなわち蒸発圧力および温度か低下(送
風量の減少による)する状態を作りたすようにしている
。つまり、除霜水か無くなると、大気中の水分を積極的
に室外側熱交換器7に着霜させ、このとき発生する除霜
水を基材21に供給する構造となっている。
That is, a humidity sensor 45 provided on the base material 21 and detecting the wetness of the base material 21 is connected to the control unit 40 . Further, during heating operation, when a signal indicating that the base material 21 is not wet is output from the humidity sensor 45, the control unit 40 controls the fan motor 3a (outdoor fan 8) during the heating operation. It is set to output a control signal to lower the rotation speed, and when the base material 21 loses the moisture necessary for humidification during heating operation, the outdoor heat exchanger 7 is in a state where it is easy to frost, that is, the evaporation pressure and We are trying to create a condition where the temperature decreases (by reducing the amount of air blowing). That is, when the defrosting water runs out, the structure is such that moisture in the atmosphere is actively frosted on the outdoor heat exchanger 7, and the defrosting water generated at this time is supplied to the base material 21.

また制御部40には、操作部42に設けた加湿量増加用
の例えば操作ノブから信号か入力されると、上記室外フ
ァン8の回転数を下げる機能も設定されている。これに
より、手動操作で除霜水を増加させることができるよう
にもなっている。
The control section 40 is also set with a function of lowering the rotation speed of the outdoor fan 8 when a signal is input from, for example, an operation knob for increasing the amount of humidification provided on the operation section 42. This also makes it possible to manually increase the amount of defrosting water.

つぎに、このように構成された加湿機能付空気調和機の
作用について説明する。
Next, the operation of the air conditioner with humidification function configured as described above will be explained.

操作部42を暖房に設定する。これにより、四方弁34
が暖房側に切換わり、圧縮機32、室外ファン8が作動
していく。これにより、圧縮機32て圧縮された冷媒ガ
スが、四方弁34.室内側熱交換器13.キャピラリチ
ューブ35.室外側熱交換器7を順に流れる暖房サイク
ルが構成されていく。
Set the operation unit 42 to heating. As a result, the four-way valve 34
is switched to the heating side, and the compressor 32 and outdoor fan 8 start operating. As a result, the refrigerant gas compressed by the compressor 32 is transferred to the four-way valve 34. Indoor heat exchanger 13. Capillary tube 35. A heating cycle is constructed that flows through the outdoor heat exchanger 7 in order.

一方、室内ファン14は暖房運転にしたがって作動して
いて、吸込側のダクト15から室内空気を空気流通路1
2に取入れている。そして、この室内空気が基材21を
通過するときに、同基材21に保持されている除霜運転
で得た除霜水が蒸発して、同室内空気に湿気が含まれて
いく(加湿)。
On the other hand, the indoor fan 14 is operating according to the heating operation, and the indoor fan 14 is pumping indoor air from the suction side duct 15 to the air flow passage 1.
It has been incorporated into 2. When this indoor air passes through the base material 21, the defrosting water obtained during the defrosting operation held in the base material 21 evaporates, and the indoor air contains moisture (humidification). ).

ここで、上記除霜水は、つぎのようにして得られたもの
である。
Here, the above-mentioned defrosting water was obtained as follows.

すなわち、上記暖房サイクルが継続していくと、大気か
ら熱を奪うために、蒸発器として機能している室外側熱
交換器7には大気中の水分が霜となって看き始める。こ
こで、着霜はセンサ43で検知されていて、暖房能力の
低下をきたすような着霜量になると、制御部40は除霜
開始信号を出力していく。すると、四方弁34が切換わ
り、暖房運転から除霜運転に代っていく。すなわち、除
霜運転は暖房運転とは逆のサイクルとなり、今度は圧縮
機32で圧縮された冷媒ガスは、四方弁34゜室外側熱
交換器7.キャピラリチューブ35.室内側熱交換器1
3を順に流れていく。これにより、室外側熱交換器7に
着いた霜は、同室外側熱交換器7を流れる高温の冷媒に
より溶解されて水となり、除霜水受9に溜っていく。
That is, as the heating cycle continues, moisture in the atmosphere begins to form frost on the outdoor heat exchanger 7, which functions as an evaporator, in order to remove heat from the atmosphere. Here, frost formation is detected by the sensor 43, and when the amount of frost formation reaches such a level that the heating capacity is reduced, the control unit 40 outputs a defrosting start signal. Then, the four-way valve 34 is switched, and the heating operation is switched to the defrosting operation. That is, the defrosting operation is a cycle opposite to the heating operation, and this time the refrigerant gas compressed by the compressor 32 is passed through the four-way valve 34° outdoor heat exchanger 7. Capillary tube 35. Indoor heat exchanger 1
3 in order. As a result, the frost that has arrived at the outdoor heat exchanger 7 is dissolved by the high temperature refrigerant flowing through the outdoor heat exchanger 7 and becomes water, which accumulates in the defrosting water receiver 9.

ここで、遅延制御により電磁開閉弁24は、霜が溶解す
る時期に対応して、開作動していく。すると、除霜水は
除霜水受9から導入管25、上部水受22を経て基材2
1に導かれていく。
Here, by delay control, the electromagnetic on-off valve 24 is opened in accordance with the time when the frost melts. Then, the defrosting water flows from the defrosting water receiver 9 through the introduction pipe 25 and the upper water receiver 22 to the base material 2.
It will lead you to 1.

これにより、除霜水は毛細管現象、水位差などで基材2
1に拡散して、同基材21に水分が保持されていき、過
多の水量が下部水受22に溜まっていく。なお、この除
霜水回収の工程は、センサ43の検知信号にしたがって
除霜運転から暖房運転に復帰するまで続く。なお、除霜
運転時は室外ファン8は停止している。
As a result, the defrosting water is transferred to the base material 2 through capillary action, water level difference, etc.
1, the water is retained in the base material 21, and an excessive amount of water accumulates in the lower water receiver 22. Note that this defrosting water recovery process continues until the defrosting operation returns to the heating operation according to the detection signal from the sensor 43. Note that the outdoor fan 8 is stopped during the defrosting operation.

そして、上記のようにして加湿された室内空気が、凝縮
器として機能している室内側熱交換器13を通過すると
きに、冷媒と熱交換して室内空気を暖めていく。この室
内空気が温風となってダクト16から室内空間に吹出さ
れ、室内Aを暖房していく。
When the indoor air humidified as described above passes through the indoor heat exchanger 13 functioning as a condenser, it exchanges heat with the refrigerant and warms the indoor air. This indoor air becomes warm air and is blown out from the duct 16 into the indoor space, heating the room A.

一方、こうした暖房運転中、大気の温度が高いことが原
因で着霜する状態が少なくなる場合、基材21に保持さ
れている水分がほとんど無くなるときがある。
On the other hand, during such a heating operation, when frost formation is reduced due to high atmospheric temperature, there are times when the moisture held in the base material 21 almost disappears.

このような場合、基材21の水分が無いことが湿すセン
サ45で検知されていく。これにより、制御部40は室
外ファン8の回転数を下げる制御信号を出力していく。
In such a case, the moisture sensor 45 detects that the base material 21 is free of moisture. As a result, the control unit 40 outputs a control signal to lower the rotation speed of the outdoor fan 8.

すると、室外ファン8のファンモータ8aの回転数は下
がり、送風量の低下にしたがい、室外側熱交換器7を通
過する冷媒の蒸発圧力および蒸発温度は低下していく。
Then, the rotational speed of the fan motor 8a of the outdoor fan 8 decreases, and as the amount of air blown decreases, the evaporation pressure and evaporation temperature of the refrigerant passing through the outdoor heat exchanger 7 decrease.

これにより、室外側熱交換器7は着霜しやすい状態とな
り、上記の暖房運転の条件下において着霜しにくかった
大気中の水分が室外側熱交換器7に着いていく。そして
、このとき発生する除霜水が上記した工程にしたがって
上記基材21に供給されていくことになる。つまり、加
湿不足を生じない。
As a result, the outdoor heat exchanger 7 becomes susceptible to frost formation, and moisture in the atmosphere that was difficult to frost under the above heating operation conditions arrives at the outdoor heat exchanger 7. Then, the defrosting water generated at this time is supplied to the base material 21 according to the steps described above. In other words, insufficient humidification does not occur.

したがって、室内空気を加湿しながら暖房を行うことが
できることとなる。実験によれば、通常の暖房運転(室
外温度2℃、室内温度20℃のJIS試験相当の運転)
においては、1時間当たりの着霜量はr800g〜10
00g程度」であり、これが暖房対象空間に空気が与え
られることで、室内空気の相対湿度は75%RH(8畳
の部屋、換気回数1.水分利用率50%)となった。
Therefore, heating can be performed while humidifying indoor air. According to experiments, normal heating operation (operation equivalent to JIS test with outdoor temperature of 2℃ and indoor temperature of 20℃)
, the amount of frost per hour is r800g~10
By supplying this air to the space to be heated, the relative humidity of the indoor air became 75% RH (8 tatami room, ventilation frequency 1, moisture utilization rate 50%).

ここで、加湿無しの場合のときは室内空気の相対湿度は
25%RHなので、加湿無しに比へ、相対湿度は50%
RH上昇するので、適当な湿度をもつ暖房か実現できる
ものであった。
Here, when there is no humidification, the relative humidity of the indoor air is 25% RH, so if there is no humidification, the relative humidity is 50%.
Since RH increases, heating with appropriate humidity could be achieved.

しかも、外部に捨てられる除霜運転で生じた除霜水を加
湿のだめの水に活用しているので、加湿器のような給水
(補給)の手間、さらには給水のための水道工事は必要
としない。そのうえ、除霜水を空気流通路12に導く電
磁開閉弁24は、発生する除霜水の流出時期に応して作
動するので、無駄な電磁開閉弁24の通電時間はなく、
その分、消費電力の減少させることができる。
Moreover, since the defrost water generated during the defrosting operation that is disposed of outside is used as water for the humidifier, there is no need for the hassle of water supply (replenishment) such as a humidifier, and furthermore, there is no need for plumbing work to supply water. do not. Moreover, the electromagnetic on-off valve 24 that guides the defrosting water to the air flow path 12 operates according to the outflow timing of the generated defrosting water, so there is no wasted energization time of the electromagnetic on-off valve 24.
Power consumption can be reduced accordingly.

さらに、暖房運転中、加湿能力が不足することが起きて
も、自動的に大気中の水分を室外側熱交換器7に着霜さ
せる運転に代って、このとき発生する除霜水を基材21
に供給するので、速やかに加湿で必要となる水量を補充
てきる利点もある。
Furthermore, even if the humidifying capacity becomes insufficient during heating operation, the defrosting water generated at this time is used instead of the operation that automatically frosts the moisture in the atmosphere on the outdoor heat exchanger 7. Material 21
It also has the advantage of quickly replenishing the amount of water required for humidification.

加えて、居住者か現在の加湿では足りなく、加湿量を増
大させたいときは、操作部42の加湿量増加用操作ノブ
を操作すれば、先に述べた除霜水の不足を解消したとき
と同様、室外ファン8が作動して加湿量を増やすことが
でき、所望とする加湿量が確保できる。
In addition, if the current humidification is insufficient and the resident wishes to increase the amount of humidification, by operating the operation knob for increasing the amount of humidification on the operation unit 42, the above-mentioned shortage of defrosting water can be resolved. Similarly, the outdoor fan 8 is operated to increase the amount of humidification, and the desired amount of humidification can be secured.

なお、上述した一実施例では基材を室内側熱交換器の吸
込側に設けたが、むろん吹出側に設けてもよい。
Although the base material was provided on the suction side of the indoor heat exchanger in the embodiment described above, it may of course be provided on the outlet side.

また、上述した一実施例では基材に水分を保持させて除
霜水を蒸発させる装置を採用したが、これに限らず他の
装置を用いて、除霜水を室内空気に含ませるようにして
もよい。例えば室内側熱交換器が設置された空気流通路
に除霜水を集溜する受容器を設け、この受容器にヒータ
ーを設け、ヒター熱により受容器内の除霜水を蒸発させ
るようにしても、また超音波振動子を受容器に設けて、
超音波振動により受容器内の除霜水を霧化させるように
してもよい。
In addition, in the above-mentioned embodiment, a device is used that allows the base material to retain moisture and evaporates the defrosting water, but this is not the only option. It's okay. For example, a receiver for collecting defrosting water is provided in the air flow path where the indoor heat exchanger is installed, a heater is provided in this receiver, and the defrosting water in the receiver is evaporated by heat from the heater. Also, an ultrasonic transducer is installed in the receptor,
The defrosting water in the receiver may be atomized by ultrasonic vibration.

また一実施例では、水位差を利用して室外側熱交換器の
除霜水を室内側熱交換器が設置された空気流通路に導い
たが、ポンプを用いて強制的に除霧水を室内側熱交換器
が設置された空気流通路に導くようにしてもよい。
In one example, the water level difference was used to guide the defrosting water from the outdoor heat exchanger to the air flow path where the indoor heat exchanger was installed, but a pump was used to forcibly direct the defrosting water from the outdoor heat exchanger. It may also lead to an air flow path in which an indoor heat exchanger is installed.

[発明の効果コ 以上説明したようにこの発明によれば、加湿に必要な水
の補給の手間ならびに同水道工事を必要とせずに、室内
空気を加湿しながら暖房することができる。
[Effects of the Invention] As explained above, according to the present invention, indoor air can be heated while being humidified without the need for replenishing water necessary for humidification or the need for water supply work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図はこの発明の一実施例を示し、m1
図はこの発明を適用した熱交換ユニットを示す斜視図、
第2図は熱交換ユニットの除霜水蒸発系の部分正断面図
、第3図は熱交換ユニットの除霜水蒸発系の側断面図、
第4図は据付けた加湿機能付空気調和機を示す断面図、
第5図は冷凍サイクルを制御系と共に示す図、第6図は
従来の空気調和機の冷凍サイクルを示す図、第7図は据
付けた加湿機能付空気調和機を示す断面図である。 1・・・熱交換ユニット(室外設置用のユニット)、2
・・・筐体(本体) 3・・・仕切壁部、6・・・空気
流通路、7・・・室外側熱交換器、8・・・室外ファン
、9・・・除霜水受、12・・・空気流通路、13・・
・室内側熱交換器、14・・・室内ファン、15.16
・・・ダクト、20・・・除霜水蒸発系、21・・・基
材、22・・・下部水受、23・・・上部水受、24・
・・電磁開閉弁、25・・・導入管、40・・・制御部
、45・・・湿すセンサ。 出願人代理人 弁理士 鈴江武彦 第 図
FIGS. 1 to 5 show an embodiment of the present invention, and m1
The figure is a perspective view showing a heat exchange unit to which this invention is applied;
Figure 2 is a partial front sectional view of the defrost water evaporation system of the heat exchange unit, and Figure 3 is a side sectional view of the defrost water evaporation system of the heat exchange unit.
Figure 4 is a sectional view showing the installed air conditioner with humidification function.
FIG. 5 is a diagram showing a refrigeration cycle together with a control system, FIG. 6 is a diagram showing a refrigeration cycle of a conventional air conditioner, and FIG. 7 is a sectional view showing an installed air conditioner with a humidifying function. 1... Heat exchange unit (unit for outdoor installation), 2
... Housing (main body) 3 ... Partition wall section, 6 ... Air flow path, 7 ... Outdoor heat exchanger, 8 ... Outdoor fan, 9 ... Defrost water receiver, 12... Air flow passage, 13...
・Indoor heat exchanger, 14... Indoor fan, 15.16
...Duct, 20...Defrosting water evaporation system, 21...Base material, 22...Lower water receiver, 23...Upper water receiver, 24...
...Electromagnetic on-off valve, 25...Introduction pipe, 40...Control unit, 45...Moistening sensor. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 内部が仕切壁部で仕切られた本体の一方の隔室に室内側
熱交換器および当該室内側熱交換器に室内空気を流通さ
せる手段を設けるとともに他方の隔室に室外側熱交換器
および当該室外側熱交換器に外気を流通させる手段を設
けて室外設置用のユニットを構成し、このユニットに除
霜運転によって前記室外側熱交換器で生じるドレンを前
記室内側熱交換器側の空気流通路に導く手段を設け、か
つ前記空気流通路に導かれたドレンの水分を室内空気に
含ませる手段を設けたことを特徴とする加湿機能付空気
調和機。
An indoor heat exchanger and means for circulating indoor air to the indoor heat exchanger are provided in one compartment of the main body whose interior is partitioned by a partition wall, and an outdoor heat exchanger and a means for circulating indoor air to the indoor heat exchanger are provided in the other compartment. A unit for outdoor installation is constructed by providing a means for circulating outside air to the outdoor heat exchanger, and the unit is configured to pass the drain generated in the outdoor heat exchanger during defrosting operation to the air circulation side of the indoor heat exchanger. 1. An air conditioner with a humidifying function, characterized in that the air conditioner is provided with a means for introducing moisture into the air flow path, and a means for causing indoor air to contain moisture from the drain guided into the air flow path.
JP2169909A 1990-06-29 1990-06-29 Air conditioner with humidifying functions Pending JPH0460326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2169909A JPH0460326A (en) 1990-06-29 1990-06-29 Air conditioner with humidifying functions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2169909A JPH0460326A (en) 1990-06-29 1990-06-29 Air conditioner with humidifying functions

Publications (1)

Publication Number Publication Date
JPH0460326A true JPH0460326A (en) 1992-02-26

Family

ID=15895216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2169909A Pending JPH0460326A (en) 1990-06-29 1990-06-29 Air conditioner with humidifying functions

Country Status (1)

Country Link
JP (1) JPH0460326A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147096A (en) * 1999-09-09 2001-05-29 Tadahiro Omi Apparatus and method for highly efficiently controlling temperature and humidity of gas
KR100831797B1 (en) * 2006-08-03 2008-05-28 엘지전자 주식회사 Ventilating apparatus
WO2023228236A1 (en) * 2022-05-23 2023-11-30 三菱電機株式会社 Air conditioning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147096A (en) * 1999-09-09 2001-05-29 Tadahiro Omi Apparatus and method for highly efficiently controlling temperature and humidity of gas
KR100831797B1 (en) * 2006-08-03 2008-05-28 엘지전자 주식회사 Ventilating apparatus
WO2023228236A1 (en) * 2022-05-23 2023-11-30 三菱電機株式会社 Air conditioning device

Similar Documents

Publication Publication Date Title
JP6743869B2 (en) Air conditioner
JP2937090B2 (en) Dehumidifier
CN112378004B (en) Air conditioning apparatus
KR20160044885A (en) Dehumidifier
JP4450120B2 (en) Air conditioner
JP2008144991A (en) Heat pump-type air conditioner
JP2020118383A (en) Heat exchange type ventilation device with dehumidification function
JPH0814389B2 (en) Clean room with direct expansion heat exchanger
JP5228344B2 (en) Ventilation air conditioner
CN211290329U (en) Constant humidity machine
JPH0460326A (en) Air conditioner with humidifying functions
WO2022043978A1 (en) Cooling apparatus with hybrid cooling cycle and closed water cycle with double wall heat transfer system
KR101192002B1 (en) Humidification ventilation unit and air conditioner having the same
JP2020159595A (en) Heat exchange type ventilation device with humidity control function
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
JPH1194286A (en) Air conditioner
KR200176060Y1 (en) All in one type thermohygrostat
CN113405178B (en) Air conditioning system and control method thereof
CN216693784U (en) Indoor air conditioner
CN216693783U (en) Indoor air conditioner
JPH0834228A (en) Air conditioner for vehicle
JPH1163586A (en) Air-conditioner with humidifier
JPH09229468A (en) Ventilation hole-embedded bath room temperature and humidity controller
JPS6191443A (en) Operation control device of air conditioner
CN117588800A (en) Multifunctional integrated machine