JPH0460279B2 - - Google Patents
Info
- Publication number
- JPH0460279B2 JPH0460279B2 JP15702484A JP15702484A JPH0460279B2 JP H0460279 B2 JPH0460279 B2 JP H0460279B2 JP 15702484 A JP15702484 A JP 15702484A JP 15702484 A JP15702484 A JP 15702484A JP H0460279 B2 JPH0460279 B2 JP H0460279B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- circuit
- voltage
- constant
- internal voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 9
- 230000003321 amplification Effects 0.000 claims 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は、圧力・変位などの物理量を検出する
センサの出力信号を対応する電流に変換し、二線
式伝送路を介して遠隔の受信部に伝送する二線式
伝送器に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention converts the output signal of a sensor that detects physical quantities such as pressure and displacement into a corresponding current, and transmits the signal to a remote reception via a two-wire transmission line. The present invention relates to a two-wire transmitter for transmitting data to other parts.
<従来技術>
二線式伝送器は周知の様にセンサの出力信号を
対応する電流に変換した後二線の伝送路に供給す
るものであり、伝送線が2本で済むことから工業
計測の分野で広く利用されている。<Prior art> As is well known, a two-wire transmitter converts the output signal of a sensor into a corresponding current and then supplies it to a two-wire transmission line.Since only two transmission lines are required, it is suitable for industrial measurement. Widely used in the field.
この種の従来の二線式伝送器には各種のものが
存在するが、本発明の改良のベースとなる従来の
二線式伝送器の一例を第1図に示し、これについ
て説明する。 Although there are various types of conventional two-wire transmitters of this type, one example of the conventional two-wire transmitter that forms the basis of the improvement of the present invention is shown in FIG. 1, and will be described below.
端子L1,L2は24VDCなどの電源Ebと電流を受
信する指示計などの負荷Lとが伝送線l1,l2を介
して接続されている。端子L2は内部回路の共通
電位点COMに接続されている。端子L1,L2には
電流調整回路1が直列に接続されている。電流調
整回路1は複合接続されたトランジスタQ1,Q2、
トランジスタQ、のエミツタに接続された抵抗
R1、ベースに接続された抵抗R2、トランジスタ
Q2のエミツタとベースに接続された抵抗R3、ト
ランジスタQ1のベース・エミツタ間を1辺とす
るブリツジ回路BRなどから構成されている。 The terminals L 1 and L 2 are connected to a power source E b such as 24 VDC and a load L such as an indicator that receives current via transmission lines l 1 and l 2 . Terminal L2 is connected to the common potential point COM of the internal circuit. A current adjustment circuit 1 is connected in series to the terminals L 1 and L 2 . The current adjustment circuit 1 includes compositely connected transistors Q 1 , Q 2 ,
A resistor connected to the emitter of transistor Q.
R 1 , resistor connected to the base R 2 , transistor
It consists of a resistor R 3 connected to the emitter and base of Q 2 , and a bridge circuit BR with one side extending between the base and emitter of transistor Q 1 .
ブリツジ回路BRは抵抗R4,R5,R6およびトラ
ンジスタのベース・エミツタ間で辺抵抗を構成し
ている。抵抗R4とトランジスタQ1のベースとの
接続点と抵抗R5とR6の接続点との間には演算増
幅器Q3の入力端が接続され、その出力端は抵抗
R4とR6の接続点に接続されている。この様な構
成により、トランジスタQ1のベース・エミツタ
間の電圧の温度による変化を演算増幅器Q3で検
出し、この変化に対応した電流を抵抗R4を介し
て抵抗R2に流し、抵抗R2の両端にトランジスタ
Q1のベース・エミツタ間の電圧に対応した電圧
を逆方向に発生させて等価的にトランジスタQ1
のベース・エミツタ間電圧変動の影響を受けない
ようにして、安定な電流調整回路1を実現してい
る。 The bridge circuit BR includes resistors R 4 , R 5 , R 6 and a side resistance between the base and emitter of the transistor. The input terminal of operational amplifier Q 3 is connected between the connection point between resistor R 4 and the base of transistor Q 1 and the connection point between resistors R 5 and R 6 , and its output terminal is connected to the resistor
Connected to the connection point of R 4 and R 6 . With this configuration, operational amplifier Q3 detects changes in the voltage between the base and emitter of transistor Q1 due to temperature, and a current corresponding to this change is caused to flow through resistor R2 via resistor R4 . Transistor across 2
A voltage corresponding to the voltage between the base and emitter of Q 1 is generated in the opposite direction to equivalently transform the transistor Q 1 .
A stable current adjustment circuit 1 is realized by avoiding the influence of base-emitter voltage fluctuations.
端子L1とL2間には定電流回路2とツエナダイ
オードZDとが直列に接続され、ツエナダイオード
ZDの両端に内部電圧VC1を作つている。演算増幅
部3は内部電圧VC1で付勢された演算増幅器Q4、
定電流回路2の出力端と演算増幅器Q4の反転入
力端との間に接続された抵抗R6、反転入力端と
出力端との間に接続された抵抗R7より構成され
る。 A constant current circuit 2 and a Zener diode Z D are connected in series between terminals L 1 and L 2 .
An internal voltage V C1 is created across Z D. The operational amplifier section 3 includes an operational amplifier Q4 powered by an internal voltage V C1 ,
It consists of a resistor R 6 connected between the output terminal of the constant current circuit 2 and the inverting input terminal of the operational amplifier Q 4 , and a resistor R 7 connected between the inverting input terminal and the output terminal.
センサー回路SCの出力端は抵抗R8,R9を介し
てそれぞれ演算増幅器Q4の非反転入力端、反転
入力端に接続されている。センサ回路SCはまた
内部電圧VC1で付勢される。 The output end of the sensor circuit SC is connected to the non-inverting input end and the inverting input end of the operational amplifier Q4 via resistors R8 and R9 , respectively. The sensor circuit SC is also energized with an internal voltage V C1 .
更に零点調整回路4は内部電圧VC1の供給を受
け、ボルテージフオロワーを形成する演算増幅器
Q5、内部電圧VC1が両端に与えられ演算増幅器Q5
の非反転入力端にゼロ点調整用の電圧を供給する
可変抵抗器VR、演算増幅器Q5の出力端と演算増
幅器Q4の非反転入力端間に接続された抵抗R10と
から構成されている。 Furthermore, the zero point adjustment circuit 4 is supplied with the internal voltage V C1 and includes an operational amplifier forming a voltage follower.
Q 5 , an internal voltage V C1 is applied across the operational amplifier Q 5
It consists of a variable resistor VR that supplies a voltage for zero point adjustment to the non-inverting input terminal of , and a resistor R 10 connected between the output terminal of operational amplifier Q 5 and the non-inverting input terminal of operational amplifier Q 4 . There is.
演算増幅器3は、センサ回路SCからの例えば
0〜320(mV)の電圧信号を受けて増幅し、0〜
1.6(V)の電圧信号として電流調整回路1へ供給
する。電流調整回路1はこの電圧信号に対応して
0〜16(mA)の電流として負荷Lに伝送する。 The operational amplifier 3 receives and amplifies a voltage signal of, for example, 0 to 320 (mV) from the sensor circuit SC, and
It is supplied to the current adjustment circuit 1 as a voltage signal of 1.6 (V). The current adjustment circuit 1 transmits a current of 0 to 16 (mA) to the load L in response to this voltage signal.
一方、定電流回路2は例えば4(mA)の定電
流としてセンサ回路SC、ツエナーダイオードZD、
零点調整回路4、演算増幅器3等を介して負荷L
に流す。 On the other hand, the constant current circuit 2 has a sensor circuit SC, a Zener diode Z D , and a constant current of 4 (mA), for example.
Load L via zero point adjustment circuit 4, operational amplifier 3, etc.
flow to.
従つて、この構成によるときは定電流回路2の
電流値が安定でかつ内部電圧VC1が安定な定電圧
であればセンサ回路SCの出力電圧に対応した正
確な負荷電流が伝送できる。 Therefore, with this configuration, if the current value of the constant current circuit 2 is stable and the internal voltage V C1 is a stable constant voltage, an accurate load current corresponding to the output voltage of the sensor circuit SC can be transmitted.
しかし、センサ回路SC、演算増幅器3、電流
調整回路1での回路電流は若干の変動を含み、こ
のためツエナーダイオードZDの内部抵抗と回路電
流の変動に関連した内部電圧VC1の変動が起り、
演算増幅部3あるいはセンサ回路SCの出力信号
の変動が生じ得る。 However, the circuit currents in the sensor circuit SC, operational amplifier 3, and current adjustment circuit 1 include some fluctuations, which causes fluctuations in the internal voltage V C1 related to the fluctuations in the internal resistance of the Zener diode Z D and the circuit current. ,
Fluctuations may occur in the output signal of the operational amplifier 3 or the sensor circuit SC.
そこで、定電流回路2が外部から流入する負荷
電流と、内部電圧VC1から回路への吐出電圧、お
よび内部電圧VC1からの吐出電流の3者の制御を
する必要がある。 Therefore, it is necessary for the constant current circuit 2 to control the load current flowing from the outside, the discharge voltage from the internal voltage V C1 to the circuit, and the discharge current from the internal voltage V C1 .
<発明の目的>
本発明は、前記の従来技術に鑑み、内部消費電
流の変動に影響されず、安定な内部回路付勢電圧
と安定な伝送電流を供給できる二線式伝送回路を
提供することを目的とする。<Object of the Invention> In view of the above-mentioned prior art, an object of the present invention is to provide a two-wire transmission circuit that is not affected by fluctuations in internal current consumption and can supply a stable internal circuit energizing voltage and a stable transmission current. With the goal.
<発明の構成>
この目的を達成する本発明の構成は、電源と負
荷とが直列接続された1対の伝送線を介して負荷
電流の供給を受ける二線式伝送器に係り、負荷電
流の一部を略一定の定電流とする定電流手段と、
定電流の一部が抵抗と基準電源の直列回路に供給
されこの直列回路の両端に内部電圧を作る内部電
圧手段と、定電流手段と直列回路との間に挿入さ
れ定電流の変化を電圧変化として検出する検出抵
抗と、内部電圧と基準電源の電圧の変化を検出し
て定電流手段へ帰還することにより基準電源に流
れる電流を一定に制御する電流調整手段と、伝送
線間に接続され負荷電流を制御する電流調整手段
と、内部電圧が供給されて測定する物理量に対応
する電気信号を出力するセンサ回路と、センサ回
路の出力に対応した負荷電流になる様に内部電圧
が供給されて電流調整手段を制御する演算増幅手
段と、検出抵抗における電圧変化を打消す様に演
算増幅手段を介して電流調整手段を制御する電流
補償手段とを具備することを特徴とするものであ
る。<Configuration of the Invention> The configuration of the present invention that achieves this object relates to a two-wire transmitter that receives load current through a pair of transmission lines in which a power source and a load are connected in series. constant current means that partially maintains a substantially constant constant current;
A part of the constant current is supplied to a series circuit of a resistor and a reference power supply, and an internal voltage means is inserted between the constant current means and the series circuit to create an internal voltage across this series circuit, and a part of the constant current is supplied to a series circuit of a resistor and a reference power supply. A detection resistor is connected between the transmission line and the load is connected to a current adjusting means for controlling the current; a sensor circuit to which an internal voltage is supplied and which outputs an electrical signal corresponding to the physical quantity to be measured; The present invention is characterized by comprising an operational amplifying means for controlling the adjusting means, and a current compensating means for controlling the current adjusting means via the operational amplifying means so as to cancel the voltage change in the detection resistor.
<実施例>
以下、本発明の実施例につき図面に基づき詳細
に説明する。尚、従来技術と同一の機能を有する
部分には同一番号を付し、重複する説明は省略す
る。<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings. Note that parts having the same functions as those in the prior art are given the same numbers, and redundant explanations will be omitted.
第2図は本発明の一実施例を示す回路図であ
る。 FIG. 2 is a circuit diagram showing one embodiment of the present invention.
定電流回路2は例えば電界効果トランジスタ等
で構成され、その出力端と共通電位点COMとの
間に検出抵抗R11、抵抗R12およびツエナーダイ
オードZDが直列に接続されている。抵抗R12とツ
エナーダイオードZDの直列回路の両端に発生する
電圧は内部電圧VC2とされ内部の各回路の電源電
圧として用いられる。 The constant current circuit 2 is composed of, for example, a field effect transistor, and has a detection resistor R 11 , a resistor R 12 and a Zener diode Z D connected in series between its output terminal and a common potential point COM. The voltage generated across the series circuit of resistor R 12 and Zener diode Z D is used as internal voltage V C2 and used as the power supply voltage for each internal circuit.
抵抗R12と基準電源を構成するツエナーダイオ
ードZDの接続点の電圧と内部電圧VC2を抵抗R13,
R14で分圧した電圧は内部電圧で付勢された演算
増幅器Q6に入力され、その出力で定電流回路2
の電界効果トランジスタのゲートを制御しツエナ
ダイオードZDに流れる電流を一定に制御する。こ
れらのもので電流制御回路5を構成する。 The voltage at the connection point of resistor R 12 and the Zener diode Z D that constitutes the reference power supply and the internal voltage V C2 are determined by resistor R 13 ,
The voltage divided by R 14 is input to the operational amplifier Q 6 energized by the internal voltage, and its output is used as the constant current circuit 2.
The gate of the field effect transistor is controlled to keep the current flowing through the Zener diode Z D constant. These components constitute the current control circuit 5.
検出抵抗R11と定電流回路2の接続点と演算増
幅器Q4の反転入力端の間に抵抗R6が挿入され、
演算増幅器Q4により定電流回路の出力電流の変
化が検出される。 A resistor R6 is inserted between the connection point of the detection resistor R11 and the constant current circuit 2 and the inverting input terminal of the operational amplifier Q4 ,
Changes in the output current of the constant current circuit are detected by operational amplifier Q4 .
以上の構成において検出抵抗R11、抵抗R12、
ツエナーダイオードZDへの分流電流を電流制御回
路5により一定に制御すると内部電圧VC2は必然
的に一定電圧になる。しかし、内部電圧VC2によ
つて共通電位点側に流れる回路電流は略一定では
あるが回路動作に伴つた若干の変動を含むように
流れる。この変動は抵抗R12への分流電流を電流
制御回路5により一定値に制御するため定電流回
路2の調整電流の若干の変動となり負荷電流の誤
差要因を作り出す。 In the above configuration, the detection resistor R 11 , the resistor R 12 ,
If the shunt current to the Zener diode Z D is controlled to be constant by the current control circuit 5, the internal voltage V C2 will inevitably become a constant voltage. However, although the circuit current flowing toward the common potential point due to the internal voltage V C2 is approximately constant, it flows with some fluctuations due to circuit operation. This fluctuation causes a slight fluctuation in the adjustment current of the constant current circuit 2 because the shunt current to the resistor R 12 is controlled to a constant value by the current control circuit 5, creating an error factor in the load current.
そこで、この定電流回路2の調整電流の若干の
変動を検出抵抗R11で検出してこれを抵抗R6を介
して演算増幅器Q4に帰還し、その出力を変化さ
せトランジスタQ1のベースを介して抵抗R1での
若干の逆バイアスを生じさせ負荷電流に生じる誤
差を補償する。このためには検出抵抗R11、抵抗
R6,R7,R1の関係をR11・R7=R6・R1になるよ
うに選定すれば良い。 Therefore, the detection resistor R11 detects a slight fluctuation in the adjusted current of the constant current circuit 2, and feeds it back to the operational amplifier Q4 via the resistor R6 , changing its output and changing the base of the transistor Q1 . through the resistor R1 to compensate for the error introduced in the load current. For this we need a sensing resistor R 11 , a resistor
The relationship among R 6 , R 7 , and R 1 may be selected so that R 11 · R 7 = R 6 · R 1 .
<発明の効果>
以上、実施例と共に具体的に説明した様に本発
明によれば、基準電源への分流電流を電流制御手
段により一定値に制御することにより内部電圧を
一定値に保つと同時にこれに伴つて変化する負荷
電流の変化を電流補償手段により補償する様にし
たので、内部回路への付勢電流に含まれる若干の
変動にも影響されない正確なセンサ回路の出力電
圧に対応した負荷電流を得ることができる。<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, by controlling the shunt current to the reference power supply to a constant value by the current control means, the internal voltage can be maintained at a constant value, and at the same time. Since the change in load current that changes along with this is compensated by the current compensation means, the load corresponds to the output voltage of the accurate sensor circuit, which is not affected by slight fluctuations included in the energizing current to the internal circuit. Current can be obtained.
第1図は従来の二線式伝送器を示す回路図、第
2図は本発明の一実施例を示す回路図である。
1……電流調整回路、2……定電流回路、3…
…演算増幅部、4……零点調整回路、5……電流
制御回路、Q1,Q2……トランジスタ、Q3,Q4,
Q5,Q6……演算増幅器、BR……ブリツジ回路、
SC……センサ回路、Eb……電源、L……負荷、
l1,l2……伝送線、R11……検出抵抗。
FIG. 1 is a circuit diagram showing a conventional two-wire transmitter, and FIG. 2 is a circuit diagram showing an embodiment of the present invention. 1...Current adjustment circuit, 2...Constant current circuit, 3...
... operational amplifier section, 4 ... zero point adjustment circuit, 5 ... current control circuit, Q 1 , Q 2 ... transistor, Q 3 , Q 4 ,
Q 5 , Q 6 ... operational amplifier, BR ... bridge circuit,
SC...sensor circuit, E b ...power supply, L...load,
l 1 , l 2 ...transmission line, R 11 ...detection resistor.
Claims (1)
を介して負荷電流の供給を受ける二線式伝送器に
おいて、前記負荷電流の一部を略一定の定電流と
する定電流手段と、前記定電流の一部が抵抗と基
準電源の直列回路に供給されこの直列回路の両端
に内部電圧を作る内部電圧手段と、前記定電流手
段と前記直列回路との間に挿入され前記定電流の
変化を電圧変化として検出する検出抵抗と、前記
内部電圧と前記基準電源の電圧の変化を検出して
前記定電流手段へ帰還することにより前記基準電
源に流れる電流を一定に制御する電流制御手段
と、前記伝送線間に接続され前記負荷電流を制御
する電流調整手段と、前記内部電圧が供給されて
測定する物理量に対応する電気信号を出力するセ
ンサ回路と、前記センサ回路の出力に対応した負
荷電流になる様に前記内部電圧が供給されて前記
電流調整手段を制御する演算増幅手段と、前記検
出抵抗における電圧変化を打消す様に前記演算増
幅手段を介して前記電流調整手段を制御する電流
補償手段とを具備することを特徴とする二線式伝
送器。1. In a two-wire transmitter that receives load current through a pair of transmission lines in which a power source and a load are connected in series, a constant current means that makes a part of the load current a substantially constant constant current; A part of the constant current is supplied to a series circuit of a resistor and a reference power supply, and an internal voltage means is inserted between the constant current means and the series circuit to generate an internal voltage across the series circuit, and a detection resistor that detects a change as a voltage change; and a current control means that detects a change in the internal voltage and the voltage of the reference power source and feeds it back to the constant current means to control the current flowing to the reference power source to be constant. , a current adjusting means connected between the transmission lines and controlling the load current; a sensor circuit to which the internal voltage is supplied and outputs an electrical signal corresponding to the physical quantity to be measured; and a load corresponding to the output of the sensor circuit. operational amplification means to which the internal voltage is supplied to control the current adjustment means such that the internal voltage becomes a current; and a current that controls the current adjustment means via the operational amplification means so as to cancel the voltage change at the detection resistor. A two-wire transmitter, comprising compensation means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15702484A JPS6134699A (en) | 1984-07-27 | 1984-07-27 | Two-wire transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15702484A JPS6134699A (en) | 1984-07-27 | 1984-07-27 | Two-wire transmitter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6134699A JPS6134699A (en) | 1986-02-18 |
JPH0460279B2 true JPH0460279B2 (en) | 1992-09-25 |
Family
ID=15640515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15702484A Granted JPS6134699A (en) | 1984-07-27 | 1984-07-27 | Two-wire transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6134699A (en) |
-
1984
- 1984-07-27 JP JP15702484A patent/JPS6134699A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6134699A (en) | 1986-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3517556A (en) | Resistive-type temperature-to-current transducer | |
US4362060A (en) | Displacement transducer | |
US3967188A (en) | Temperature compensation circuit for sensor of physical variables such as temperature and pressure | |
JPS61176830A (en) | Circuit device for temperature compensation of piezoresistance type pressure sensor | |
US5818225A (en) | Sensor apparatus including compensating circuit for temperature effects | |
JPH0675247B2 (en) | Air flow detector | |
US5616846A (en) | Method and apparatus for current regulation and temperature compensation | |
JPH0664080B2 (en) | Temperature compensation circuit for flow sensor | |
US5048343A (en) | Temperature-compensated strain-gauge amplifier | |
JP2002174559A (en) | Detection device of physical quantity | |
US4190796A (en) | Pressure detecting apparatus having linear output characteristic | |
JPH0235251B2 (en) | ||
US4444056A (en) | Temperature compensated circuit | |
US3246176A (en) | Magnetic flow meter circuit utilizing field effect transistors | |
GB1600530A (en) | Two wire current transmitter with adjustable current control linearization | |
JP2001141757A (en) | Sensor device using hall element | |
JPH0460279B2 (en) | ||
US4585987A (en) | Regulated voltage supply with sense current cancellation circuit | |
US4001703A (en) | Transmission line interface circuit | |
JPH06174489A (en) | Temperature compensating circuit | |
US6810745B2 (en) | Temperature dependent sensitivity compensation structure of sensor | |
WO1991007713A1 (en) | Transducer power supply | |
JPS6134698A (en) | Two-wire transmitter | |
USRE30603E (en) | Two wire current transmitter responsive to a resistance sensor input signal | |
US20010005134A1 (en) | Circuit configuration compensating for disturbance variables for a measurement pickup |