JPH0460133A - Air-fuel ratio control device of engine - Google Patents

Air-fuel ratio control device of engine

Info

Publication number
JPH0460133A
JPH0460133A JP2171882A JP17188290A JPH0460133A JP H0460133 A JPH0460133 A JP H0460133A JP 2171882 A JP2171882 A JP 2171882A JP 17188290 A JP17188290 A JP 17188290A JP H0460133 A JPH0460133 A JP H0460133A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
secondary air
exhaust
exhaust sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2171882A
Other languages
Japanese (ja)
Inventor
Michiya Masuhara
増原 三千哉
Yasufumi Matsushita
保史 松下
Yoshikazu Iwashita
岩下 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2171882A priority Critical patent/JPH0460133A/en
Publication of JPH0460133A publication Critical patent/JPH0460133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To prevent overcontrol of air-fuel ratio due to misdetection of an exhaust sensor by suspending feedback control of air-fuel ratio in a predetermined period at switching time while switching secondary air so that it is supplied to an exhaust passage in the downstream from the upstream of an exhaust sensor after a predetermined time from the time of starting an engine. CONSTITUTION:In air-fuel ratio control by a controller 20, air-fuel ratio is feedback-controlled by adjust-controlling a fuel injection amount in accordance with a deviation between both the air-fuel ratios in each bank 1A, 1B so that the detection air-fuel ratio becomes the target air-fuel ratio, basically based on an air-fuel ratio detection signal of an exhaust sensor 12. In supply control of secondary air by the controller 20, the secondary air is supplied to the upstream side of the exhaust sensor 12 from the first branch secondary air passage 14a, at cold time, to promote a temperature rise of a catalytic converter 11. On the other hand, after a water temperature rises, the secondary air is switched so as to be supplied to the downstream side of the exhaust sensor 12 from the second branch secondary air passage 14b. Here, the feedback control of air-fuel ratio is suspended for a predetermined time after switching the secondary air.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、排気通路に配設した排気センサの検出信号に
基づいて空燃比を目標値にフィードパ・ツク制御するエ
ンジンの空燃比制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine air-fuel ratio control device that performs feed-patch control of the air-fuel ratio to a target value based on a detection signal from an exhaust sensor disposed in an exhaust passage. It is something.

(従来の技術) 従来より、エンジンの空燃比制御において、エンジンに
供給された混合気の空燃比を排気通路に設けた排気セン
サによって検出し、この検出空燃比が目標値に収束する
ように空燃比をフィードバック制御するようにした技術
は、例えば特公昭62−59220号公報に見られるよ
うに公知である。
(Prior art) Conventionally, in engine air-fuel ratio control, the air-fuel ratio of the air-fuel mixture supplied to the engine is detected by an exhaust sensor installed in the exhaust passage, and the air-fuel ratio is controlled so that the detected air-fuel ratio converges to a target value. Techniques for feedback controlling the fuel ratio are known, for example, as seen in Japanese Patent Publication No. 62-59220.

(発明が解決しようとする課題) ところで、エンジンの始動時には排気系に配設した触媒
装置の温度が低く触媒の活性化が不足し、排気ガスの浄
化反応が十分に行えないことから、エンジン始動後の所
定期間は2次エアを排気センサの上流側の排気通路に供
給し、排出直後の排気ガスの後燃えを促進して排気ガス
温度を高めて触媒の活性化を行い、早期に触媒温度を上
昇させて浄化性能を確保する技術が考えられている。
(Problem to be solved by the invention) By the way, when the engine is started, the temperature of the catalyst device installed in the exhaust system is low and the activation of the catalyst is insufficient, and the exhaust gas purification reaction cannot be performed sufficiently. During the subsequent predetermined period, secondary air is supplied to the exhaust passage upstream of the exhaust sensor, promoting afterburning of the exhaust gas immediately after exhaust gas, increasing the exhaust gas temperature, and activating the catalyst. Techniques are being considered to ensure purification performance by increasing the

しかして、前記空燃比のフィードバック制御を行う場合
にその排気センサは排気ガス中の酸素濃度がら空燃比を
検出するものであって、始動直後に排気センサ上流に供
給される2次エアによって排気センサは空燃比がリーン
状態にあると誤検出を行い、これにより燃料供給量を増
大するようにフィードバック補正して、実際の供給空燃
比がリッチ状態となることから、この2次エアを排気セ
ンサ上流側に供給している時には前記空燃比のフィード
バック制御を中止することが有効である。
Therefore, when performing feedback control of the air-fuel ratio, the exhaust sensor detects the air-fuel ratio from the oxygen concentration in the exhaust gas, and the exhaust sensor detects the air-fuel ratio from the oxygen concentration in the exhaust gas. The system falsely detects that the air-fuel ratio is in a lean state, and as a result, feedback correction is made to increase the fuel supply amount, and the actual supplied air-fuel ratio becomes rich, so this secondary air is sent to the upstream of the exhaust sensor. It is effective to cancel the feedback control of the air-fuel ratio when the fuel is being supplied to the air-fuel ratio.

一方、始動後の所定期間が終了して触媒の活性化が行わ
れた後には前記2次エアを排気センサの下流側の排気通
路に供給するように切り換え、空燃比のフィードバック
制御を開始して適正な浄化性能を確保するように制御す
ることになるが、上記2次エアの供給位置の切換時に空
燃比のオーバーリッチ状態が発生する恐れがある。
On the other hand, after the predetermined period after startup ends and the catalyst is activated, the secondary air is switched to be supplied to the exhaust passage downstream of the exhaust sensor, and feedback control of the air-fuel ratio is started. Although control is performed to ensure appropriate purification performance, there is a risk that an overrich state of the air-fuel ratio may occur when switching the supply position of the secondary air.

すなわち、2次エアの供給を排気センサの下流側に切り
換えても、この切り換え直後の状態では排気センサより
上流側の排気通路にはそれまでに供給された2次エアが
残留しているものであり、この残留2次エアが排気セン
サに接触することで、該排気センサは空燃比がリーン状
態にあると誤検出し、それにともなうフィードバック制
御で燃料増量が行われてオーバーリッチ状態となり、H
ClGOなどの未燃焼成分の排出が増大し、エミッショ
ン性能が低下する問題を有する。この問題は2次エアの
供給位置と排気センサの配設位置との距離が離れている
ほど残留2次エア量か増加して誤検出を行う期間が長く
なるものである。
In other words, even if the supply of secondary air is switched to the downstream side of the exhaust sensor, the secondary air that was previously supplied remains in the exhaust passage upstream of the exhaust sensor immediately after the switch. When this residual secondary air comes into contact with the exhaust sensor, the exhaust sensor falsely detects that the air-fuel ratio is in a lean state, and accordingly feedback control increases the amount of fuel, resulting in an overrich state.
There is a problem that the emission of unburned components such as ClGO increases and the emission performance deteriorates. This problem is caused by the fact that as the distance between the secondary air supply position and the exhaust sensor installation position increases, the amount of residual secondary air increases and the period during which erroneous detection occurs becomes longer.

そこで本発明は上記事情に鑑み、2次エアの供給位置の
切り換えに伴う排気センサの誤検出による空燃比の過制
御の発生を防止するようにしたエンジンの空燃比制御装
置を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide an engine air-fuel ratio control device that prevents over-control of the air-fuel ratio due to erroneous detection by an exhaust sensor due to switching of the secondary air supply position. That is.

(課題を解決するだめの手段) 上記目的を達成するため本発明の空燃比制御装置は、排
気通路に配設した排気センサの検出信号に基づいて空燃
比を目標値にフィードバック制御するについて、始動時
から所定期間は上記フィードバック制御を中止すると共
に2次エアを排気センサ上流の排気通路に供給し、所定
期間後はフィードバック制御を開始すると共に2次エア
を排気センサ下流の排気通路に供給するように切り換え
る2次エア切換手段を備え、さらに、上記2次エア切換
手段による上流供給から下流供給への切換時、所定期間
内は前記フィードバック制御を中止する制御手段を備え
て構成したものである。
(Means for Solving the Problem) In order to achieve the above object, the air-fuel ratio control device of the present invention performs feedback control of the air-fuel ratio to a target value based on a detection signal from an exhaust sensor disposed in an exhaust passage. The feedback control is stopped for a predetermined period of time and secondary air is supplied to the exhaust passage upstream of the exhaust sensor, and after the predetermined period, feedback control is started and secondary air is supplied to the exhaust passage downstream of the exhaust sensor. The apparatus further includes a control means for stopping the feedback control within a predetermined period when the secondary air switching means switches from upstream supply to downstream supply.

(作用) 上記のようなエンジンの空燃比制御装置では、エンジン
始動後は所定期間だけ2次エアを排気センサの上流側に
供給して排気直後の排気ガスに2次エアを供給して後産
えによる排気ガス温を上昇して触媒の活性化を促進する
一方、この状態では空燃比のフィードバック制御を中止
して2次エアの供給に伴う排気センサの誤検出による空
燃比のずれを防止し、また、始動後の所定期間経過後に
は2次エアの供給を排気センサの下流側に切り換えて正
常な空燃比のフィードバック制御が行えるようにするも
のであるが、切り換え後の所定期間はフィードバック制
御の中止を継続して、上流側から供給された2次エアが
排気センサ下流に流れた後にフィードバック制御を開始
して残留2次エアの影響による空燃比のずれを回避して
、排気ガス浄化性能の劣化防止を行うと共に、未燃焼成
分の排出量の増大による触媒温度の異常上昇を回避して
該触媒の耐久性を向上するようにしている。
(Function) In the engine air-fuel ratio control device as described above, after the engine starts, secondary air is supplied to the upstream side of the exhaust sensor for a predetermined period of time, and the secondary air is supplied to the exhaust gas immediately after exhaust, thereby controlling the after-effect gas. While increasing the exhaust gas temperature due to air flow and promoting activation of the catalyst, in this state, feedback control of the air-fuel ratio is stopped to prevent deviations in the air-fuel ratio due to erroneous detection by the exhaust sensor due to the supply of secondary air. In addition, after a predetermined period of time has elapsed after startup, the secondary air supply is switched to the downstream side of the exhaust sensor so that normal air-fuel ratio feedback control can be performed. After the secondary air supplied from the upstream side flows downstream of the exhaust sensor, feedback control is started to avoid deviations in the air-fuel ratio due to the influence of residual secondary air, and improve exhaust gas purification performance. In addition to preventing deterioration of the catalyst, the durability of the catalyst is improved by avoiding an abnormal rise in catalyst temperature due to an increase in the amount of unburned components discharged.

(実施例) 以下、図面に沿って本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は一実施例の空燃比制御装置を備えた■型エンジ
ンの全体構成図である。
FIG. 1 is an overall configuration diagram of a ■-type engine equipped with an air-fuel ratio control device according to an embodiment.

V型エンジン1は、所定の角度をもって傾斜した左右の
バンクIA、IBを備え、両側のバンクIA、IBの各
気筒2に吸気を供給する吸気通路3は各バンクIA、I
Bで独立形成され、それぞれの吸気通路3A、3Bには
上流側からエアクリーナ5,5、エアフローセンサ6.
6、スロットルバルブ7.7が介装され、下流端には燃
料を噴射供給するインジエク8,8が配設されている。
The V-type engine 1 includes left and right banks IA and IB inclined at a predetermined angle, and an intake passage 3 that supplies intake air to each cylinder 2 of both banks IA and IB is connected to each bank IA and IB.
B are independently formed, and air cleaners 5, 5, air flow sensors 6.
6. A throttle valve 7.7 is interposed, and injectors 8, 8 for injecting and supplying fuel are arranged at the downstream end.

また、両バンクIA、IBの各気筒2からの排気ガスを
排出する排気通路9A、9Bは各バンクIA、IBで独
立形成され、それぞれの排気通路9A、9Bには排気ガ
ス浄化用の触媒コンバータ11.11が介装されると共
に、この触媒コンバータ11,11より上流側には排気
ガスの酸素濃度から空燃比を検出する排気センサ12,
12(02センサ)が配設されている。
In addition, exhaust passages 9A and 9B for discharging exhaust gas from each cylinder 2 of both banks IA and IB are formed independently in each bank IA and IB, and each exhaust passage 9A and 9B has a catalytic converter for exhaust gas purification. 11.11 is interposed, and an exhaust sensor 12, which detects the air-fuel ratio from the oxygen concentration of exhaust gas, is installed upstream of the catalytic converter 11, 11.
12 (02 sensor) are arranged.

さらに、上記排気通路9A、9Bに2次エアを供給する
2次エア通路14が設けられている。この2次エア通路
14の上流端はエアクリーナ5のクリーンサイドに接続
され、途中から上流用と下流用とに分岐し、一方の第1
分岐2次エア通路14aの下流端は前記排気センサ12
上流で各気筒2の排出部近傍の両排気通路9A、9Bに
接続され、他方の第2分岐2次エア通路14bbの下流
端は排気センサ12下流で前記触媒コンバータ11.1
1の上流側部分の両排気通路9A、9Bにそれぞれ接続
されている。また、上記第1分岐2次エア通路14aに
は該通路を開閉する第1制御弁15が介装されると共に
逆流防止用のリードバルブ17が介装され、同様に第2
分岐2次エア通路14bには該通路を開閉する第2制御
弁16が介装されると共に逆流防止用のリードバルブ1
7が介装されている。
Further, a secondary air passage 14 is provided for supplying secondary air to the exhaust passages 9A and 9B. The upstream end of this secondary air passage 14 is connected to the clean side of the air cleaner 5, and it branches into an upstream and a downstream side from the middle.
The downstream end of the branched secondary air passage 14a is connected to the exhaust sensor 12.
The downstream end of the other second branch secondary air passage 14bb is connected to the catalytic converter 11.1 downstream of the exhaust sensor 12.
It is connected to both exhaust passages 9A and 9B on the upstream side of No. 1, respectively. Further, the first branch secondary air passage 14a is provided with a first control valve 15 for opening and closing the passage, and a reed valve 17 for preventing backflow.
The branch secondary air passage 14b is provided with a second control valve 16 for opening and closing the passage, and a reed valve 1 for preventing backflow.
7 is interposed.

上記第1制御弁15および第2制御弁16の開閉操作を
行うそれぞれのソレノイド15a、16aに対してコン
トローラ20から制御信号が出力されて、その開閉作動
が運転状態に応じて制御され、これらによって2次エア
の供給を上流供給と下流供給とに切り換える2次エア切
換手段が構成されている。
Control signals are output from the controller 20 to the solenoids 15a and 16a that open and close the first control valve 15 and the second control valve 16, and the opening and closing operations are controlled according to the operating state. A secondary air switching means is configured to switch the supply of secondary air between upstream supply and downstream supply.

また、前記インジェクタ8からの燃料噴射量がコントロ
ーラ20から運転状態に応じた燃料噴射パルスが出力さ
れて調整され、空燃比制御が行われる。上記コントロー
ラ20には、エンジンの運転状態の検出のために、冷間
始動状態の判定用にエンジンの冷却水温度を検出する水
温センサ21からの水温信号、排気ガス中の酸素濃度か
ら供給空燃比を検出する前記排気センサ1212からの
空燃比信号、エアフローセンサ6.6からの吸入空気量
信号、回転センサ22からの回転数信号などがそれぞれ
入力される。
Further, the fuel injection amount from the injector 8 is adjusted by outputting a fuel injection pulse according to the operating state from the controller 20, and air-fuel ratio control is performed. In order to detect the operating state of the engine, the controller 20 receives a water temperature signal from a water temperature sensor 21 that detects the engine cooling water temperature for determining a cold start state, and a supplied air-fuel ratio based on the oxygen concentration in the exhaust gas. An air-fuel ratio signal from the exhaust sensor 1212, an intake air amount signal from the air flow sensor 6.6, a rotation speed signal from the rotation sensor 22, and the like are input, respectively.

前記コントローラ20による空燃比制御は、基本的には
排気センサ12,12の空燃比検出信号に基づいて検出
空燃比が目標空燃比となるようにそれぞれのバンクIA
、IBで、雨空燃比の偏差に基づいて燃料噴射量を増減
制御して、空燃比のフィードバック制御を行うものであ
る。また、上記コントローラ20による2次エアの供給
制御は、冷間時には第1分岐2次エア通路14aから排
気センサ12の上流側に2次エアを供給して、排気ガス
温上昇で触媒コンバータ11の温度上昇を促進し、水温
が上昇した後には第2分岐2次エア通路14bから排気
センサ12の下流側に2次エアを供給するように切り換
えるものである。
The air-fuel ratio control by the controller 20 is basically based on the air-fuel ratio detection signals of the exhaust sensors 12, 12, so that the detected air-fuel ratio becomes the target air-fuel ratio.
, IB, the fuel injection amount is controlled to increase or decrease based on the deviation of the air-fuel ratio, thereby performing feedback control of the air-fuel ratio. Further, the secondary air supply control by the controller 20 is performed by supplying secondary air from the first branch secondary air passage 14a to the upstream side of the exhaust sensor 12 when the temperature is cold, so that the catalytic converter 11 is activated by the rise in exhaust gas temperature. After the temperature rise is promoted and the water temperature has risen, the switch is made to supply secondary air to the downstream side of the exhaust sensor 12 from the second branch secondary air passage 14b.

上記2次エアの供給の切り換えに応じて、排気センサ1
2の上流側に2次エアが供給されている状態および下流
側に切り換えてから所定期間は空燃比のフィードバック
制御を中止し、空燃比の誤検出に伴う目標空燃比からの
ずれの発生を防止制御する制御手段が構成されている。
Exhaust sensor 1
Feedback control of the air-fuel ratio is suspended when secondary air is supplied to the upstream side of 2 and for a predetermined period after switching to the downstream side, to prevent deviation from the target air-fuel ratio due to erroneous detection of the air-fuel ratio. A control means for controlling is configured.

また、2次エアの切り換えで空燃比のフィードバック制
御を開始する際に、切り換えからフィードバック制御を
停止している期間の燃料供給量は固定して一定の燃料噴
射を行い、排気センサ12による空燃比検出が安定して
からフィードバック制御を開始する。
Furthermore, when starting feedback control of the air-fuel ratio by switching the secondary air, the amount of fuel supplied during the period from switching to stopping the feedback control is fixed and fuel injection is performed at a constant level, and the air-fuel ratio is determined by the exhaust sensor 12. Feedback control is started after detection becomes stable.

第2図は上記コントローラ20による2次エアの供給制
御と空燃比のフィードバック制御の中止制御を示すフロ
ーチャートである。制御スタート後、ステップS1で水
温センサ21による検出水温が所定値以下の冷間状態か
否かを判定する。この判定がYESで冷間時には、ステ
ップs2で空燃比のフィードバック制御を中止して、エ
ンジン水温に応じた燃料供給量による燃料噴射を実行す
る。また、ステップS3でフラグFを1にセットしてか
ら、ステップS4で第1制御弁15にオン信号を出力し
て開作動し、第1分岐2次エア通路14aによって排気
センサ12の上流側に2次工アを供給して触媒コンバー
タ11の早期活性化を図る。
FIG. 2 is a flowchart showing the control for stopping the supply of secondary air and the feedback control of the air-fuel ratio by the controller 20. After the control is started, in step S1 it is determined whether the water temperature detected by the water temperature sensor 21 is in a cold state below a predetermined value. If this determination is YES and the engine is cold, feedback control of the air-fuel ratio is stopped in step s2, and fuel injection is performed using a fuel supply amount according to the engine water temperature. In addition, after setting the flag F to 1 in step S3, an on signal is output to the first control valve 15 in step S4 to open the valve, and the first branch secondary air passage 14a causes the first control valve 15 to be opened on the upstream side of the exhaust sensor 12. Early activation of the catalytic converter 11 is attempted by supplying secondary working air.

そして、エンジン水温が上昇して前記ステップS1の判
定がYESとなると、ステップS5に進んで第2制御弁
16にオン信号を出力して開作動する一方、ステップS
6で第1制御弁15にオフ信号を出力して閉作動し、第
2分岐2次エア通路14bによって排気センサ12の下
流側に2次エアを供給するように切り換えるものである
When the engine water temperature rises and the determination in step S1 becomes YES, the process proceeds to step S5 and outputs an on signal to the second control valve 16 to open it, while in step S
6, an off signal is output to the first control valve 15 to close it, and the second branch secondary air passage 14b switches to supply secondary air to the downstream side of the exhaust sensor 12.

続いて、ステップS7で前記フラグFが1にセットされ
ているか否かを判定し、前記ステップS3でセットされ
ている場合はYES判定でステップS8に進み、タイマ
ーTに初期値Toをセットしてタイマーカウントを開始
する。そして、ステップS9で上記タイマーTがOにな
ったか否かを判定し、上記To期間中はステップS10
で空燃比のフィードバック制御を中止して、燃料供給量
を吸入空気量とエンジン回転数から求めた所定値に固定
して燃料噴射を実行するとともに、ステップSllでタ
イマーTの値を減算して所定期間が経過するのを待つ。
Next, in step S7, it is determined whether or not the flag F is set to 1, and if it is set in step S3, the process proceeds to step S8 with a YES determination, and the timer T is set to an initial value To. Start timer count. Then, in step S9, it is determined whether the above-mentioned timer T has become O, and during the above-mentioned To period, step S10
At step S1, the feedback control of the air-fuel ratio is stopped, and the fuel injection is executed by fixing the fuel supply amount to a predetermined value determined from the intake air amount and engine rotation speed, and at the same time, at step Sll, the value of timer T is subtracted to the predetermined value. Wait for the period to elapse.

所定期間TOが経過してステップS9の判定がYESと
なると、ステップS12に進んてフラグFを0にクリア
する。このフラグFのクリアに応じて前記ステップS7
の判定がNOとなり、ステップSI3でフィードバック
制御を開始し、排気センサ12の信号に基づいて目標空
燃比との偏差に応じて燃料噴射量の増減補正を行って、
目標空燃比に収束制御する。
When the predetermined period TO has elapsed and the determination in step S9 becomes YES, the process proceeds to step S12 and the flag F is cleared to 0. In response to the clearing of this flag F, the step S7
If the determination is NO, feedback control is started in step SI3, and the fuel injection amount is increased or decreased according to the deviation from the target air-fuel ratio based on the signal from the exhaust sensor 12.
Perform convergence control to the target air-fuel ratio.

上記のような実施例によれば、水温の上昇に伴って2次
エアの供給を排気センサ12の下流側に切り換えると共
に、空燃比のフィードバック制御を開始する場合には、
タイマーTで設定された所定期間はフィードバックの開
始を遅らせて、排気センサの上流側に供給された2次エ
アが下流側に流れるのを待ち、供給空燃比に対応した酸
素濃度の排気ガスとなった状態で排気センサ12の信号
に基づくフィードバック制御を開始し、空燃比制御の制
御精度を高めて触媒コンバータ11による排気ガス浄化
性能を確保することができる。
According to the embodiment described above, when switching the supply of secondary air to the downstream side of the exhaust sensor 12 and starting feedback control of the air-fuel ratio as the water temperature rises,
The start of feedback is delayed for a predetermined period set by timer T, and the secondary air supplied to the upstream side of the exhaust sensor flows to the downstream side, and becomes exhaust gas with an oxygen concentration corresponding to the supplied air-fuel ratio. In this state, feedback control based on the signal from the exhaust sensor 12 is started, thereby increasing the accuracy of air-fuel ratio control and ensuring the exhaust gas purification performance of the catalytic converter 11.

なお、前記実施例においては、V型エンジンの例につい
て説明したが、その他のエンジンについても同様に適用
可能である。
In addition, although the example of a V-type engine was demonstrated in the said Example, it is applicable to other engines similarly.

(発明の効果) 上記のような本発明によれば、排気センサの検出信号に
基づいて空燃比をフィードバック制御するについて、始
動時から所定期間は上記フィードバック制御を中止する
と共に2次エアを排気センサ上流の排気通路に供給し、
所定期間後はフィードバック制御を開始すると共に2次
エアを排気センサ下流の排気通路に供給するように切り
換える2次エア切換手段を備え、さらに、上記2次エア
切換手段による上流供給から下流供給への切換時、所定
期間内は前記フィードバック制御を中止するようにした
ことにより、エンジン冷機時には排気直後の排気ガスに
2次エアを供給して排気ガス温を上昇して触媒の活性化
を促進する一方、暖機後には2次エアの供給を排気セン
サの下流側に切り換えて正常な空燃比のフィードバック
制御が行えるようにするものであるが、切り換え後の所
定期間はフィードバック制御の中止を継続して、上流側
から供給された2次エアが排気センサ下流に流れた後に
フィードバック制御を開始して残留2次エアの影響によ
る空燃比のずれを回避して、排気ガス浄化性能の劣化防
止を行うと共に、未燃焼成分の排出量の増大による触媒
温度の異常上昇を回避して触媒の耐久性を向上すること
ができるものである。
(Effects of the Invention) According to the present invention as described above, regarding the feedback control of the air-fuel ratio based on the detection signal of the exhaust sensor, the feedback control is stopped for a predetermined period from the time of startup, and the secondary air is transferred to the exhaust sensor. Supplies the upstream exhaust passage,
After a predetermined period of time, a secondary air switching means is provided which starts feedback control and switches the secondary air to be supplied to the exhaust passage downstream of the exhaust sensor. By discontinuing the feedback control for a predetermined period when the engine is switched, when the engine is cold, secondary air is supplied to the exhaust gas immediately after exhaust gas to raise the exhaust gas temperature and promote activation of the catalyst. After warming up, the secondary air supply is switched to the downstream side of the exhaust sensor to enable normal air-fuel ratio feedback control, but feedback control continues to be suspended for a predetermined period after switching. After the secondary air supplied from the upstream side flows downstream of the exhaust sensor, feedback control is started to avoid deviations in the air-fuel ratio due to the influence of residual secondary air, and prevent deterioration of exhaust gas purification performance. , it is possible to improve the durability of the catalyst by avoiding an abnormal rise in catalyst temperature due to an increase in the amount of unburned components discharged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すエンジンの空燃比制御
装置の全体構成図、 第2図はコントローラの処理を説明するためのフローチ
ャート図である。 1・・・・・・エンジン、3・・・・・・吸気通路、8
・・・・・・インジェクタ、9A、9B・・・・・・排
気通路、11・・・・・・触媒コンバータ、12・・・
・・・排気センサ、14・・団・2次エア通路、14a
、14b・・・・・・分岐2次エア通路、15.16・
・・・・・制御弁(2次エア切換手段)、20・・・・
・・コントローラ(制御手段)、21・・・・・・水温
センサ、22・・・・・・回転センサ。
FIG. 1 is an overall configuration diagram of an engine air-fuel ratio control device showing an embodiment of the present invention, and FIG. 2 is a flowchart for explaining the processing of the controller. 1...Engine, 3...Intake passage, 8
...Injector, 9A, 9B...Exhaust passage, 11...Catalytic converter, 12...
...Exhaust sensor, 14...Group/secondary air passage, 14a
, 14b... Branch secondary air passage, 15.16.
...Control valve (secondary air switching means), 20...
... Controller (control means), 21 ... Water temperature sensor, 22 ... Rotation sensor.

Claims (2)

【特許請求の範囲】[Claims] (1)排気通路に配設した排気センサの検出信号に基づ
いて空燃比を目標値にフィードバック制御するエンジン
の空燃比制御装置において、始動時から所定期間は上記
フィードバック制御を中止すると共に2次エアを排気セ
ンサ上流の排気通路に供給し、所定期間後はフィードバ
ック制御を開始すると共に2次エアを排気センサ下流の
排気通路に供給するように切り換える2次エア切換手段
を備え、上記2次エア切換手段による上流供給から下流
供給への切換時、所定期間内は前記フィードバック制御
を中止する制御手段を備えたことを特徴とするエンジン
の空燃比制御装置。
(1) In an engine air-fuel ratio control device that performs feedback control of the air-fuel ratio to a target value based on a detection signal from an exhaust sensor disposed in an exhaust passage, the above-mentioned feedback control is stopped for a predetermined period from the time of startup, and the secondary air is provided with a secondary air switching means for supplying secondary air to the exhaust passage upstream of the exhaust sensor, and after a predetermined period, starts feedback control and switches to supply secondary air to the exhaust passage downstream of the exhaust sensor. 1. An air-fuel ratio control device for an engine, comprising: a control means for discontinuing the feedback control for a predetermined period when switching from upstream supply to downstream supply by the means.
(2)前記2次エア切換手段による上流供給から下流供
給への切換時に、制御手段は燃料供給量を所定値に固定
することを特徴とする請求項1記載のエンジンの空燃比
制御装置。
(2) The air-fuel ratio control device for an engine according to claim 1, wherein the control means fixes the fuel supply amount to a predetermined value when the secondary air switching means switches from upstream supply to downstream supply.
JP2171882A 1990-06-29 1990-06-29 Air-fuel ratio control device of engine Pending JPH0460133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171882A JPH0460133A (en) 1990-06-29 1990-06-29 Air-fuel ratio control device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171882A JPH0460133A (en) 1990-06-29 1990-06-29 Air-fuel ratio control device of engine

Publications (1)

Publication Number Publication Date
JPH0460133A true JPH0460133A (en) 1992-02-26

Family

ID=15931548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171882A Pending JPH0460133A (en) 1990-06-29 1990-06-29 Air-fuel ratio control device of engine

Country Status (1)

Country Link
JP (1) JPH0460133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057920U (en) * 1991-07-16 1993-02-02 日本電子機器株式会社 Secondary air supply device for internal combustion engine
US6330795B1 (en) 1993-04-09 2001-12-18 Hitachi, Ltd. Diagnostic equipment for an exhaust gas cleaning apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057920U (en) * 1991-07-16 1993-02-02 日本電子機器株式会社 Secondary air supply device for internal combustion engine
US6330795B1 (en) 1993-04-09 2001-12-18 Hitachi, Ltd. Diagnostic equipment for an exhaust gas cleaning apparatus
US6408617B1 (en) 1993-04-09 2002-06-25 Hitachi, Ltd. Diagnostic equipment for an exhaust gas cleaning apparatus
US6807806B2 (en) 1993-04-09 2004-10-26 Hitachi, Ltd. Diagnostic equipment for an exhaust gas cleaning apparatus
US7117664B2 (en) 1993-04-09 2006-10-10 Hitachi, Ltd. Diagnostic equipment for an exhaust gas cleaning apparatus
US7389637B2 (en) 1993-04-09 2008-06-24 Hitachi, Ltd. Diagnostic equipment for an exhaust gas cleaning apparatus

Similar Documents

Publication Publication Date Title
WO2007145141A1 (en) Catalyst deterioration detector
JPS5853180B2 (en) cylinder number control engine
JPH10339195A (en) Exhaust emission control device of internal combustion engine
JPS60219429A (en) Air-fuel ratio controlling device
JPH0693841A (en) Control device for exhaust secondary air supply device in internal combustion engine
JPH0460133A (en) Air-fuel ratio control device of engine
JP4103759B2 (en) Exhaust gas purification device for internal combustion engine
JPH0569985B2 (en)
JPH06346774A (en) Air-fuel ratio control device for internal combustion engine
JP2001234781A (en) Hydrocarbon exhaust quantity reduction device for internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP2003065027A (en) Control device for exhaust air temperature sensor for internal combustion engine
JP3601101B2 (en) Air-fuel ratio control device for internal combustion engine
JP3700221B2 (en) Exhaust gas purification device for internal combustion engine
JP4371227B2 (en) Exhaust gas purification device for multi-cylinder engine
JPH0420992Y2 (en)
JP2536753B2 (en) Engine air-fuel ratio control device
US6435171B2 (en) Air-fuel ratio control apparatus
JP2005155401A (en) Air fuel ratio control device for internal combustion engine
JPS63205451A (en) Air-fuel ratio control method for internal combustion engine
JP4609485B2 (en) Exhaust gas purification device for internal combustion engine
JP3667520B2 (en) Air-fuel ratio control device for internal combustion engine
JPH10184342A (en) Emission control device for engine
JPH06280549A (en) Failure detecting device in secondary air supplying system
JP2006097513A (en) Air-fuel ratio control device of engine