JPH0460101A - Valve timing control device of internal combustion engine - Google Patents

Valve timing control device of internal combustion engine

Info

Publication number
JPH0460101A
JPH0460101A JP2171019A JP17101990A JPH0460101A JP H0460101 A JPH0460101 A JP H0460101A JP 2171019 A JP2171019 A JP 2171019A JP 17101990 A JP17101990 A JP 17101990A JP H0460101 A JPH0460101 A JP H0460101A
Authority
JP
Japan
Prior art keywords
camshaft
hydraulic
hydraulic lock
lock mechanism
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2171019A
Other languages
Japanese (ja)
Other versions
JP2760637B2 (en
Inventor
Seiji Suga
聖治 菅
Hideaki Onishi
秀明 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Priority to JP17101990A priority Critical patent/JP2760637B2/en
Priority to DE4034406A priority patent/DE4034406A1/en
Priority to US07/605,536 priority patent/US5117785A/en
Priority to FR9106821A priority patent/FR2663981A1/en
Priority to US07/721,131 priority patent/US5203291A/en
Priority to FR9108118A priority patent/FR2663982B1/en
Priority to DE4121475A priority patent/DE4121475C2/en
Publication of JPH0460101A publication Critical patent/JPH0460101A/en
Priority to FR9214471A priority patent/FR2684135B1/en
Application granted granted Critical
Publication of JP2760637B2 publication Critical patent/JP2760637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain control with high accuracy and smoothness, simplify a structure, improve manufacturing efficiency and cost performance by relatively rotating a rotational body an a cam shaft with relative pressurizing control of each hydraulic lock mechanism to the rotational body. CONSTITUTION:When an engine is under a high load area, for example, an ON signal is output to a solenoid actuator 44 of a switch means 41 to move a spool valve 42 in a right direction against a coil spring 43 and carry out switching of a hydraulic circuit 14. That is, a first through-hole 36 is opened by a valve body 42, while a second through-hole 37 is closed. A second plunger 20 of a second hydraulic lock mechanism 16 proceeds with synthetic force of high hydraulic pressure in a second high pressure chamber 22 and a compression spring and pressurizes a second inclined face 9a at its pressurizing portion. On the other hand, a first plunger 19 of a first hydraulic lock mechanism 15 pressurizes a first inclined face 8a with a small force of the compression spring alone. As a result, a cam shaft is rotated in a normal direction until projections 12, 13 abut against a stopper, and kept at a position where an earlier closing timing is obtained in respect to an intake valve.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、内燃機関の吸気・排気バルブの開閉時期を運
転状態に応じて可変制御するバルブタイミング制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a valve timing control device that variably controls the opening and closing timing of intake and exhaust valves of an internal combustion engine in accordance with operating conditions.

従来の技術 従来のこの種バルブタイミング制御装置としては、種々
提供されており、その−例として米国特許第4.535
,731号公報に記載されたものなどが知られている。
2. Description of the Related Art Various conventional valve timing control devices of this type have been provided, such as U.S. Pat. No. 4,535.
, No. 731 is known.

概略を説明すれば、吸気・排気バルブを開閉制御するカ
ムシャフトは、前端部の外周に外歯が形成されている。
Briefly, a camshaft that controls the opening and closing of intake and exhaust valves has external teeth formed on the outer periphery of its front end.

一方、カムシャフト前端部の外側に配置支持された外筒
は、外周に機関の回転力がタイミングチェーンを介して
伝達されるスプロケットを備えていると共に、内周には
内歯が形成されている。そして、この内歯と上記カムシ
ャフトの外歯との間に、内外周の歯のうち少なくともい
ずれか一方がはす歯に形成された筒状歯車が噛合してお
り、この筒状歯車を、機関運転状態に応じて油圧回路の
油圧や圧縮スプリングのばね力によりカム7ヤフトの軸
方向へ移動させることによって、該カムシャフトをスプ
ロケットに対して相対回動させて吸気・排気バルブの開
閉時期を制御するようになっている。
On the other hand, the outer cylinder, which is placed and supported on the outside of the front end of the camshaft, is equipped with a sprocket on its outer periphery through which the rotational force of the engine is transmitted via a timing chain, and internal teeth are formed on its inner periphery. . A cylindrical gear in which at least one of the teeth on the inner and outer peripheries is helical is meshed between the inner teeth and the outer teeth of the camshaft. By moving the cam 7 shaft in the axial direction using the hydraulic pressure of the hydraulic circuit and the spring force of the compression spring depending on the engine operating condition, the camshaft is rotated relative to the sprocket and the opening/closing timing of the intake and exhaust valves is determined. It is meant to be controlled.

発明が解決しようとする課題 然し乍ら、前記従来のバルブタイミング制御装置にあっ
ては、スプロケットとカムシャフトとを、筒状歯車の内
外周の少なくともいずれか一方に形成されたはす歯を利
用して相対回転させるようにしており、したがって、こ
のはす歯はスプロケットの内歯あるいはカムシャフトの
外歯との良好な噛合い精度を確保するために、高精度な
加工が要求される。この結果、該はす歯の加工作業が傾
雑となり、加工作業能率の低下と、加工コストの高騰を
招いている。
Problems to be Solved by the Invention However, in the conventional valve timing control device, the sprocket and the camshaft are connected by using helical teeth formed on at least one of the inner and outer circumferences of the cylindrical gear. They are designed to rotate relative to each other, and therefore, these helical teeth require highly accurate machining to ensure good meshing accuracy with the internal teeth of the sprocket or the external teeth of the camshaft. As a result, the machining operation of the helical teeth becomes complicated, resulting in a decrease in machining efficiency and a rise in machining cost.

また、筒状歯車をカムシャフトの軸方向に移動させるよ
うになっているため、装置全体の長さが必然的に長尺に
なってしまい、大型化が余儀なくされる。
In addition, since the cylindrical gear is moved in the axial direction of the camshaft, the length of the entire device inevitably becomes long, which necessitates an increase in size.

課題を解決するための手段 本発明は、前記従来の実情に鑑みて案出されたもので、
とりわけカム7ヤフトの回転体内部に臨む端部に設けら
れて回転体とカムシャフトの相対回動位置を規制する一
対の油圧ロック機構と、該各油圧ロック機構に対して相
対的に油圧を給排する油圧回路と、該油圧回路の流路を
機関運転状態に応じて切り替える切替手段とを備えたこ
とを特徴としている。
Means for Solving the Problems The present invention was devised in view of the above-mentioned conventional situation, and
In particular, a pair of hydraulic lock mechanisms are provided at the end of the cam 7 shaft facing inside the rotating body to regulate the relative rotational position of the rotating body and the camshaft, and hydraulic pressure is supplied relatively to each hydraulic lock mechanism. The engine is characterized by comprising a hydraulic circuit for discharging water, and a switching means for switching the flow path of the hydraulic circuit depending on the engine operating state.

作用 例えば機関低負荷域では、切替手段によって油圧回路を
切り替えて、第1の油圧ロック機構に油圧を供給し、同
時に第2の油圧ロック機構内の油を排出させる。したが
って、第1の油圧口7り機構が、回転体側に進出して回
転体を押圧するのに対し、第2の油圧ロック機構が回転
体に対して非押圧状態となる。そして、この時点でカム
シャフトに機関の駆動力により正の回転トルクが作用す
ると、第1の油圧ロック機構が、回転体を介して該第1
の油圧ロック機構を後退方向に押し戻そうとする力に抗
して回転体を強く押圧してカムシャフトの正方向の回転
を規制する。これによって、回転体とカムシャフトとの
相対回動が規制され、該カムシャフトを例えば吸気バル
ブの閉時期を遅らす回動位置に保持する。
Function: For example, in a low engine load range, the switching means switches the hydraulic circuit to supply hydraulic pressure to the first hydraulic lock mechanism and at the same time drain the oil in the second hydraulic lock mechanism. Therefore, while the first hydraulic locking mechanism advances toward the rotating body and presses the rotating body, the second hydraulic locking mechanism is not pressed against the rotating body. At this point, when positive rotational torque is applied to the camshaft by the driving force of the engine, the first hydraulic lock mechanism is activated via the rotating body.
The hydraulic lock mechanism of the camshaft is strongly pressed against the force that tries to push it back in the backward direction, thereby restricting the forward rotation of the camshaft. This restricts relative rotation between the rotating body and the camshaft, and holds the camshaft in a rotational position that delays the closing timing of the intake valve, for example.

一方、機関が高負荷域に移行した場合は、切替手段によ
り油圧回路を前述とは逆に切り替えて第2の油圧ロック
機構にのみ油圧を供給し、第1の油圧ロック機構内の油
圧を排出させる。したがって、第2の油圧ロック機構が
、回転体を押圧するのに対し、第1の油圧ロック機構が
回転体に対して非押圧状態となる。したがって、カムシ
ャフトは、正方向への回転が許容され、該正方向への最
大回転位置に達した時点で負の回転トルクを受けると、
今度は第2の油圧ロック機構が、油圧により回転体を強
く押圧してカムシャフトの負方向の回転を規制する。こ
れによって、カムシャフトを吸気バルブの閉時期を早め
る回動位置に保持する。
On the other hand, when the engine shifts to a high load range, the switching means switches the hydraulic circuit in the opposite direction to the above, supplying hydraulic pressure only to the second hydraulic lock mechanism, and draining the hydraulic pressure in the first hydraulic lock mechanism. let Therefore, while the second hydraulic lock mechanism presses the rotating body, the first hydraulic lock mechanism is not pressed against the rotating body. Therefore, when the camshaft is allowed to rotate in the positive direction and receives a negative rotational torque when it reaches the maximum rotational position in the positive direction,
This time, the second hydraulic lock mechanism strongly presses the rotating body using hydraulic pressure to restrict rotation of the camshaft in the negative direction. This holds the camshaft in a rotational position that advances the closing timing of the intake valve.

実施例 以下、本発明の実施例を図面に基づいて詳述する。Example Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図及び第2図は自動車のDOHC型内燃機関に適用
したこの発明の一実施例を示し、1はシリンダヘッド上
部のカム軸受2に支承されて、吸気バルブを開閉するカ
ムシャフト、3は該カムシャフト1の一端部la側に配
置されて、図外のクランク軸に取り付けられたドライブ
スプロケットからタイミングチェーンを介して回転力が
伝達される回転体たるドリブンスプロケット、4はドリ
ブンスプロケット3の内部に配置された円形状のボディ
であって、該ボディ4は、中実軸方向に穿設された段差
状の貫通孔4aとカムシャフト1の一端部la軸方向に
穿設されたボルト孔1bとを夫々挿通した取付ポルト5
によってカムシャフト一端部1aに固定されている。
Figures 1 and 2 show an embodiment of the present invention applied to a DOHC internal combustion engine for an automobile, in which 1 is a camshaft supported by a cam bearing 2 at the top of the cylinder head to open and close the intake valve; A driven sprocket, which is a rotating body, is disposed on one end la side of the camshaft 1 and transmits rotational force via a timing chain from a drive sprocket attached to a crankshaft (not shown); 4 is the inside of the driven sprocket 3; The body 4 has a stepped through hole 4a drilled in the solid axial direction and a bolt hole 1b drilled in the axial direction at one end la of the camshaft 1. and the mounting port 5 inserted respectively.
is fixed to one end 1a of the camshaft.

前記ドリブンスプロケット3は、有蓋筒状の本体6と、
該本体6の外周面に一体に設けられた2連の歯車7aと
、本体6の一端開口を閉塞する円形状の端板7bとから
なり、前記本体6の他端壁6a中央部に有する筒部6b
を介してカムシャフト1に回転自在に支承されている。
The driven sprocket 3 includes a main body 6 in the shape of a covered cylinder;
A cylinder formed in the center of the other end wall 6a of the main body 6, consisting of two sets of gears 7a integrally provided on the outer peripheral surface of the main body 6, and a circular end plate 7b that closes an opening at one end of the main body 6. Part 6b
It is rotatably supported on the camshaft 1 via the camshaft 1.

また、本体6の周方向の内周面直径方向位置には、第3
図にも示すように略楔状の一対の突起部8,9が周方向
に沿って延設されている。この突起部8,9の上面には
、周方向に沿って互いに逆向きに湾曲状に傾斜した第1
.第2傾斜面8a、9aが形成されている。すなわち、
第3図中上側の第1傾斜面8aと下側の第2傾斜面9a
は、互いに夫々図中右方向から左方向に沿って漸次低く
なるように所定角度で傾斜している。また、前記本体6
の他端壁6aには、第3図に示すようにボディ4の後述
する最大左右回転位置を規制するストッパ10,11・
・・が突設されている。
Further, a third
As shown in the figure, a pair of substantially wedge-shaped protrusions 8 and 9 extend along the circumferential direction. The upper surfaces of the protrusions 8 and 9 are provided with first inclines curved in opposite directions along the circumferential direction.
.. Second inclined surfaces 8a and 9a are formed. That is,
The first inclined surface 8a on the upper side and the second inclined surface 9a on the lower side in FIG.
are inclined at a predetermined angle so as to become gradually lower from the right to the left in the figure. In addition, the main body 6
On the other end wall 6a, as shown in FIG.
...is installed protrudingly.

前記ボディ4は、前記各傾斜面8a、9aに対応した外
周に、円柱状の凸部12.13が直径方向に沿って延設
されていると共に、該各画部12゜13に一対の収納穴
12a、13aが軸方向に沿って穿設されている。また
、この各収納穴12a。
The body 4 has a cylindrical convex portion 12.13 extending along the diameter direction on the outer periphery corresponding to each of the inclined surfaces 8a, 9a, and a pair of storage portions in each of the image portions 12.13. Holes 12a and 13a are bored along the axial direction. Moreover, each storage hole 12a.

13aには、油圧回路14の油圧によって作動する油圧
ロック機構15.16が配置されている。
A hydraulic lock mechanism 15, 16 operated by the hydraulic pressure of the hydraulic circuit 14 is arranged at 13a.

この油圧ロック機構1.5.16は、第4図にも示すよ
うに収納穴12a、13aの底部に圧入固定された略円
柱状のリテーナ1.7.18と、該リテーナ17.18
外周面と収納穴12a、13aの内周面との間に配置さ
れて、該収納穴12a、]3aから第1.第2傾斜面8
a、9aに対して進退動する第1.第2プランジャ1.
9.20と、該プランジャ19.20とリテーナ17,
18上面とに依って画成された第1.第2高圧室21.
22とを備えている。前記リテーナ17.18は、内部
軸方向に油圧回路14の後述する供給通路35と高圧室
21.22とを連通ずる連通路23゜24が貫通形成さ
れている。前記第1.第2プランジャ19.20は、有
蓋円筒状を呈し、先端に前記各傾斜面8a、9aを適宜
押圧する球状の押圧部19a、20aが形成されている
と共に、周壁に高圧室21,22と外周壁に有する排出
溝25.26とを連通ずる小孔27.28が半径方向に
沿って穿設されており、また高圧室21,22内に弾装
された圧縮スプリング29.30の小さなばね力によっ
て進出方向(各傾斜面8a、9a方向)に付勢されてい
る。また、高圧室21,22内には、前記連通路23.
24内の油圧を高圧室2]、、22にのみ流入を許容す
るチエツクバルブ3]、32が設けられている。
As shown in FIG. 4, this hydraulic locking mechanism 1.5.16 includes a substantially cylindrical retainer 1.7.18 press-fitted into the bottom of the storage holes 12a and 13a, and a retainer 17.18.
The first . Second inclined surface 8
a, the first one that moves forward and backward with respect to 9a. Second plunger1.
9.20, the plunger 19.20 and the retainer 17,
18 upper surface. Second hyperbaric chamber 21.
22. The retainers 17, 18 are formed with communicating passages 23 and 24 that communicate the later-described supply passage 35 of the hydraulic circuit 14 and the high pressure chambers 21, 22 in the internal axial direction. Said 1st. The second plunger 19, 20 has a cylindrical shape with a lid, and has spherical pressing portions 19a, 20a formed at its tip to appropriately press the respective inclined surfaces 8a, 9a, and has high pressure chambers 21, 22 and an outer periphery formed on the peripheral wall. Small holes 27.28 are drilled along the radial direction to communicate with the discharge grooves 25.26 in the walls, and small spring forces of compression springs 29.30 elastically loaded in the high pressure chambers 21, 22 are used. is biased in the advancing direction (in the direction of each inclined surface 8a, 9a). Further, in the high pressure chambers 21 and 22, the communication passage 23.
Check valves 3] and 32 are provided to allow the hydraulic pressure in 24 to flow only into the high pressure chambers 2], 22.

前記油圧回路14は、第1図及び第2図に示すように図
外のオイルメインギヤラリから分岐してカム軸受2とカ
ムシャフト1の半径方向に貫通形成されて、上流のオイ
ルポンプ33から圧油が圧送される主通路34と、カム
シャフト1のボルト孔1bと取付ポルト5との間に形成
されて、−1Jが主通路34に、他端が連通路23.2
4に夫々接続された円環状の供給通路35と、ボディ4
の内部に略り字形に屈曲形成されて、一端が前記各排出
溝25.26に、他端が取付ポルト5の頭部5a側前後
位置に半径方向に沿って形成された第1、第2通孔36
.37に接続された排出通路38.39と、頭部5aの
内部軸方向に形成されて、第1.第2通孔36.37の
各下流端が開口する制御穴40とを備えている。該制御
穴40は、拡開状に形成された開口端40aがドリブン
スプロケット3の内部を介して外部に連通している。ま
た、油圧回路14は、排出側の流路が切替手段41によ
って適宜切替え制御されるようになっている。
As shown in FIGS. 1 and 2, the hydraulic circuit 14 branches from an oil main gear rally (not shown) and is formed to penetrate the cam bearing 2 and the camshaft 1 in the radial direction, and receives pressure from the upstream oil pump 33. A main passage 34 through which oil is pumped is formed between the bolt hole 1b of the camshaft 1 and the mounting port 5, -1J is connected to the main passage 34, and the other end is connected to the communication path 23.2.
An annular supply passage 35 connected to the body 4 and the body 4 respectively.
The first and second holes are bent in an abbreviated shape inside the body, and one end is formed in each of the discharge grooves 25 and 26, and the other end is formed in the front and rear positions on the head 5a side of the mounting port 5 along the radial direction. Through hole 36
.. 37 and a discharge passage 38, 39 formed in the internal axial direction of the head 5a and connected to the first. Each downstream end of the second through hole 36,37 is provided with an open control hole 40. The control hole 40 has an enlarged opening end 40 a that communicates with the outside through the inside of the driven sprocket 3 . Further, the hydraulic circuit 14 is configured such that the flow path on the discharge side is appropriately switched and controlled by the switching means 41.

前記切替手段41は、制御穴40内に軸方向へ摺動自在
に収納されたスプール弁42と、該スプール弁42をコ
イルスプリング43のばね力に抗して図中右方向に移動
させる電磁アクチュエータ44とから構成されている。
The switching means 41 includes a spool valve 42 that is slidably housed in the control hole 40 in the axial direction, and an electromagnetic actuator that moves the spool valve 42 to the right in the figure against the spring force of a coil spring 43. It consists of 44.

前記スプール弁42は、摺動位置に応じて前記制御穴4
0と第1通孔36あるいは第2通孔37を相対的に連通
・遮断する有蓋円筒状の弁体42aと、該弁体42aの
先端部内に形成されて、制御穴40を介して外部と第1
通孔36あるいは第2通孔37とを適宜連通させる略丁
字形の連通孔42bとを備えている。
The spool valve 42 is connected to the control hole 4 depending on the sliding position.
0 and the first through hole 36 or the second through hole 37. 1st
It is provided with a substantially T-shaped communication hole 42b that communicates with the communication hole 36 or the second communication hole 37 as appropriate.

更に、前記電磁アクチュエータ44は、ロッカカバー4
5に固着されて、駆動ロッド44aの先端部がスプール
弁42の弁体42a先端部を押圧あるいは離間するよう
になっており、図外のマイクロコンピュータを備えたコ
ントローラからの0N−OFF信号によって作動が制御
されている。
Further, the electromagnetic actuator 44 is connected to the rocker cover 4.
5, the tip of the drive rod 44a presses or separates the tip of the valve body 42a of the spool valve 42, and is activated by an ON-OFF signal from a controller equipped with a microcomputer (not shown). is controlled.

このコントローラは、クランク角センサからの機関回転
数信号やエアーフローメータからの吸入空気量信号等に
基づいて現在の機関運転状態を検出して、電磁アクチュ
エータ44に制御信号を出力する。
This controller detects the current engine operating state based on the engine rotational speed signal from the crank angle sensor, the intake air amount signal from the air flow meter, etc., and outputs a control signal to the electromagnetic actuator 44.

以下、本実施例の作用を説明する。まず、例えば機関低
負荷域では、電磁アクチュエータ44にOFF信号が出
力され、したがって、スプール弁42は、コイルスプリ
ング43のばね力で第1図に示す左側位置に保持され、
弁体42aが第2通孔37を開成すると同時に、第1通
孔36を閉塞し、つまり第2高圧室22と外部とを連通
ずる−方、第2高圧室21と外部との連通を遮断する。
The operation of this embodiment will be explained below. First, for example, in a low engine load range, an OFF signal is output to the electromagnetic actuator 44, so that the spool valve 42 is held at the left position shown in FIG. 1 by the spring force of the coil spring 43.
At the same time as the valve body 42a opens the second passage hole 37, it closes the first passage hole 36, that is, communicates the second high pressure chamber 22 with the outside, and blocks communication between the second high pressure chamber 21 and the outside. do.

したがって、オイルポンプ33によって主通路34から
供給通路35.各連通路23,24.チーツクバルブ3
1.32を介して第1及び第2高圧室21.22の両方
に供給された圧油は、第1高圧室21内にのみ留どまる
。即ち、第2高圧室22内に流入した圧油は、小孔28
.排出溝26゜排出通路39.第2通孔37.制御穴4
0.連通孔42bを介して外部に排出されるため、第2
プランジヤ20は押圧部20aが圧縮スプリング30の
小さなばね力のみで第2傾斜面9aを押圧する一方、第
1プランジヤ19は、圧縮スプリング29と第1高圧室
21内の高油圧との合成力により収納穴12aから進出
して押圧部19aが第1傾斜面8aの低位部を押圧する
。したがって、この時点で、カムシャフト1に第3図中
時計方向の回転力(正の回転トルク)が作用すると、第
1プランジヤ19は、第1傾斜面8aから後退方向の力
を受けるが、前述の合成力によって該第1傾斜面8aを
逆に強く押圧してそれ以上のカムシャフト1の正方向の
回転(正回転)を阻止する。一方、同時にボディ4の各
凸部12.13が対応するストッパ1.Lllに突き当
たって負の回転(逆回転)を阻止する。依って、カムシ
ャフト11とスプロケット3との相対回動位置が第3図
に示す位置に確実に規制され、カムシャフト1を吸気バ
ルブの閉時期が遅くなる回動位置に保持する。
Therefore, the oil pump 33 moves the main passage 34 to the supply passage 35. Each communication path 23, 24. cheek valve 3
1.32 to both the first and second high pressure chambers 21.22 remains only in the first high pressure chamber 21. That is, the pressure oil that has flowed into the second high pressure chamber 22 flows through the small hole 28.
.. Discharge groove 26° discharge passage 39. Second through hole 37. control hole 4
0. Since it is discharged to the outside through the communication hole 42b, the second
In the plunger 20, the pressing part 20a presses the second inclined surface 9a only by the small spring force of the compression spring 30, while the first plunger 19 presses the second inclined surface 9a by the combined force of the compression spring 29 and the high oil pressure in the first high pressure chamber 21. The pressing part 19a advances from the storage hole 12a and presses the lower part of the first inclined surface 8a. Therefore, at this point, when a clockwise rotational force (positive rotational torque) in FIG. 3 acts on the camshaft 1, the first plunger 19 receives a force in the backward direction from the first inclined surface 8a. The resultant force strongly presses the first inclined surface 8a to prevent further rotation of the camshaft 1 in the forward direction (forward rotation). Meanwhile, at the same time, each convex portion 12.13 of the body 4 corresponds to the stopper 1. It hits Lll and prevents negative rotation (reverse rotation). Therefore, the relative rotational position between the camshaft 11 and the sprocket 3 is reliably regulated to the position shown in FIG. 3, and the camshaft 1 is held at a rotational position where the closing timing of the intake valve is delayed.

一方、機関が高負荷域に移行した場合は、電磁アクチュ
エータ44にON信号が出力され、したがって、スプー
ル弁42かコイルスプリング43のばね力に抗して右方
向に移動して油圧回路14を切り替える。つまり、弁体
42aにより第1通孔36を開成すると同時に、第2通
孔37を閉塞する。したがって、第2プランジヤ20は
、第2高圧室22内の高油圧と圧縮スプリング30の合
成力で進出して抑圧部20aで第2傾斜面9aを押圧す
る一方、第1プランジヤ19は、第1傾斜面8aを圧縮
スプリング29の小さなばね力のみで押圧している。し
たがって、この時点でカムシャツl−]に正の回転トル
クが発生すると、該カムシャフト1は凸部12.13が
ストッパ10,10に突き当たるまで正方向に回転する
(第3図−点鎖線位置)。この状態でカムシャフト1が
カムにより吸気バルブを最大リフトさせた以後に、バル
ブスプリングの反力を受けて第3図の反時計方向に負の
回転トルクを受けても、前述のように第2プランジヤ2
0が合成力で第2傾斜面9aの低位部を強く押圧してカ
ムシャフト1の負方向の回転(逆回転)を阻止する。一
方、同時にストッパ10.10がカムシャフト1の正回
転を阻止している。依って、カムシャフト1とスプロケ
ット3との相対回動位置が、第3図の一点鎖線位置に確
実に規制され、カムシャフト1を吸気バルブの閉時期が
早くなる回動位置に保持する。
On the other hand, when the engine shifts to a high load range, an ON signal is output to the electromagnetic actuator 44, and therefore it moves to the right against the spring force of the spool valve 42 or coil spring 43 to switch the hydraulic circuit 14. . That is, the first through hole 36 is opened by the valve body 42a, and the second through hole 37 is closed at the same time. Therefore, the second plunger 20 advances with the combined force of the high oil pressure in the second high pressure chamber 22 and the compression spring 30 and presses the second inclined surface 9a with the suppressing part 20a, while the first plunger 19 The inclined surface 8a is pressed only by the small spring force of the compression spring 29. Therefore, if a positive rotational torque is generated on the cam shirt l-] at this point, the camshaft 1 rotates in the positive direction until the convex portion 12.13 abuts against the stoppers 10, 10 (Fig. 3 - dotted chain line position) . In this state, even if the camshaft 1 receives a negative rotational torque in the counterclockwise direction in FIG. 3 due to the reaction force of the valve spring after the cam lifts the intake valve to the maximum, the second plunger 2
0 strongly presses the lower part of the second inclined surface 9a with the resultant force to prevent the camshaft 1 from rotating in the negative direction (reverse rotation). On the other hand, at the same time, the stopper 10.10 prevents the camshaft 1 from rotating in the forward direction. Therefore, the relative rotational position between the camshaft 1 and the sprocket 3 is reliably regulated to the position indicated by the dashed-dotted line in FIG. 3, and the camshaft 1 is held at the rotational position where the closing timing of the intake valve is early.

尚、機関が高負荷域から低負荷域に移行した場合は、前
述の低負荷域における作用となり、カムシャフトlがス
トッパ11.11に規制される負方向の最大回転後に、
第】プランジャ19の押圧力で正方向の回転を確実に阻
止する。
In addition, when the engine shifts from a high load area to a low load area, the effect will be in the low load area as described above, and after the camshaft l rotates to the maximum in the negative direction, which is regulated by the stopper 11.11,
] The pressing force of the plunger 19 reliably prevents rotation in the forward direction.

本発明は、前記実施例に限定されず、例えば切替機構を
別異の構成とすることが可能である。また、本実施例で
は吸気バルブ側に本装置を適用した例について説明した
が、排気バルブ側に本装置を適用することも可能である
The present invention is not limited to the embodiment described above, and, for example, the switching mechanism can be configured differently. Further, in this embodiment, an example in which the present device is applied to the intake valve side has been described, but it is also possible to apply the present device to the exhaust valve side.

発明の効果 以北の説明で明らかなように、本発明によれば、回転体
とカムシャフトとの相対回動を従来のような筒状歯車で
はなく、回転体に対する各油圧ロック機構の相対的な押
圧制御により行なうようにしたため、高精度かつ円滑な
制御が得られることは勿論のこと、特にはす歯が不要に
なるため構造が簡素化され、製造作業能率の向上とコス
トの低廉化が図れる。
Effects of the Invention As is clear from the explanation below, according to the present invention, the relative rotation between the rotating body and the camshaft is controlled not by the conventional cylindrical gear, but by the relative rotation of each hydraulic lock mechanism with respect to the rotating body. Since this is done through pressure control, not only high precision and smooth control can be obtained, but also the structure is simplified as no helical teeth are required, improving manufacturing efficiency and reducing costs. I can figure it out.

また、軸方向へ移動する筒状歯車を廃止したため、装置
全体の長さを短尺化でき、小型化が図れる。
Furthermore, since the cylindrical gear that moves in the axial direction is eliminated, the length of the entire device can be shortened, and the device can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るバルブタイミング制御装置の断面
図、第2図は本実施例の作用を示す装置の断面図、第3
図は第1図のI−]線断面図、第4図は第3図のA部拡
大図である。 1・・・カムシャフト、3・・・ドリブンスプロケット
(回転体)、4・・・ボディ、14・・・油圧回路、1
516・・・第1.第2油圧ロック機構、41・・切替
手段。 外3名 第3図 第4 図
FIG. 1 is a cross-sectional view of a valve timing control device according to the present invention, FIG. 2 is a cross-sectional view of the device showing the operation of this embodiment, and FIG.
The figure is a sectional view taken along line I-] in FIG. 1, and FIG. 4 is an enlarged view of section A in FIG. 3. 1... Camshaft, 3... Driven sprocket (rotating body), 4... Body, 14... Hydraulic circuit, 1
516...1st. Second hydraulic lock mechanism, 41... switching means. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)機関の駆動が伝達される内部中空状の回転体とカ
ムシャフトとを、該カムシャフトの正負の回転トルク変
動を利用して相対回動させて吸気・排気バルブの開閉時
期を制御するバルブタイミング制御装置であって、前記
カムシャフトの回転体内部に臨む端部に設けられて回転
体とカムシャフトの相対回動位置を規制する一対の油圧
ロック機構と、該各油圧ロック機構に対して相対的に油
圧を給排する油圧回路と、該油圧回路の流路を機関運転
状態に応じて切り替える切替手段とを備えたことを特徴
とする内燃機関のバルブタイミング制御装置。
(1) Control the opening/closing timing of intake and exhaust valves by relatively rotating the internal hollow rotary body to which engine drive is transmitted and the camshaft using positive and negative rotational torque fluctuations of the camshaft. The valve timing control device includes a pair of hydraulic lock mechanisms provided at an end of the camshaft facing inside the rotating body to regulate the relative rotational position of the rotating body and the camshaft, and a pair of hydraulic lock mechanisms for each of the hydraulic lock mechanisms. 1. A valve timing control device for an internal combustion engine, comprising: a hydraulic circuit that relatively supplies and discharges hydraulic pressure; and switching means that switches a flow path of the hydraulic circuit according to engine operating conditions.
JP17101990A 1989-10-30 1990-06-28 Valve timing control device for internal combustion engine Expired - Fee Related JP2760637B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP17101990A JP2760637B2 (en) 1990-06-28 1990-06-28 Valve timing control device for internal combustion engine
DE4034406A DE4034406A1 (en) 1989-10-30 1990-10-29 VALVE TIMING ADJUSTMENT DEVICE FOR INTERNAL COMBUSTION ENGINES WITH A HYDRAULIC CLUTCH FOR LOCKING THE INTERNAL COMBUSTION ENGINE REVOLUTION SYNCHRONOUS ELEMENT AND THE CAM DRIVE ELEMENT WITH ADJUSTABLE PHASE
US07/605,536 US5117785A (en) 1989-10-30 1990-10-29 Valve timing control device for internal combustion engine
FR9106821A FR2663981A1 (en) 1990-06-28 1991-06-05 Device for adjusting the control of the valves of an internal-combustion engine
US07/721,131 US5203291A (en) 1990-06-28 1991-06-26 Valve timing control system for internal combustion engine
FR9108118A FR2663982B1 (en) 1990-06-28 1991-06-28 DEVICE FOR ADJUSTING THE VALVE CONTROL OF AN INTERNAL COMBUSTION ENGINE.
DE4121475A DE4121475C2 (en) 1990-06-28 1991-06-28 Valve timing control device for internal combustion engine
FR9214471A FR2684135B1 (en) 1990-06-28 1992-12-01 DEVICE FOR ADJUSTING THE VALVE CONTROL OF AN INTERNAL COMBUSTION ENGINE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17101990A JP2760637B2 (en) 1990-06-28 1990-06-28 Valve timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0460101A true JPH0460101A (en) 1992-02-26
JP2760637B2 JP2760637B2 (en) 1998-06-04

Family

ID=15915585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17101990A Expired - Fee Related JP2760637B2 (en) 1989-10-30 1990-06-28 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2760637B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138725A (en) * 2005-11-15 2007-06-07 Denso Corp Valve timing adjusting device
JP2010031821A (en) * 2008-07-31 2010-02-12 Aisin Seiki Co Ltd Valve opening and closing timing control device
JP2011241711A (en) * 2010-05-17 2011-12-01 Toyota Motor Corp Bolt with built-in spool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138725A (en) * 2005-11-15 2007-06-07 Denso Corp Valve timing adjusting device
JP2010031821A (en) * 2008-07-31 2010-02-12 Aisin Seiki Co Ltd Valve opening and closing timing control device
JP2011241711A (en) * 2010-05-17 2011-12-01 Toyota Motor Corp Bolt with built-in spool

Also Published As

Publication number Publication date
JP2760637B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US5797361A (en) Variable valve timing mechanism for internal combustion engine
JP2570766Y2 (en) Valve timing control device for internal combustion engine
US6343581B2 (en) Variable valve timing and lift structure for four cycle engine
JP2002106312A (en) Variable valve system for internal combustion engine
JPH0547309U (en) Valve timing control device for internal combustion engine
US5893345A (en) Valve control apparatus for an internal combustion engine
JPH0533617A (en) Valve timing controller for internal combustion engine
JP2002070596A (en) Intake valve drive control device for internal combustion engine
JP2571417Y2 (en) Valve timing control device for internal combustion engine
JPH0533614A (en) Valve timing controller for internal combustion engine
JP2009264133A (en) Variable cam phase type internal combustion engine
JP4498976B2 (en) Valve timing control device for internal combustion engine
JPH0460101A (en) Valve timing control device of internal combustion engine
JPH04350311A (en) Valve timing control device for internal combustion engine
JPH03172515A (en) Valve timing controller for internal combustion engine
JP2958151B2 (en) Valve timing control device for internal combustion engine
JP3817067B2 (en) Valve timing control device for internal combustion engine
JPH03249311A (en) Valve timing control device for internal combustion engine
JP3507649B2 (en) Engine hydraulic circuit
JP2889586B2 (en) Valve timing control device for internal combustion engine
JP3817065B2 (en) Valve timing control device for internal combustion engine
JPH03145507A (en) Valve timing control device for internal combustion engine
JP2969284B2 (en) Engine valve gear
JP4109795B2 (en) Valve operating characteristic variable device
JP3077633B2 (en) Variable valve timing mechanism for internal combustion engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees