JPH045958A - Artificial food lump containing functional fine particle for evaluating mastication function - Google Patents

Artificial food lump containing functional fine particle for evaluating mastication function

Info

Publication number
JPH045958A
JPH045958A JP2107335A JP10733590A JPH045958A JP H045958 A JPH045958 A JP H045958A JP 2107335 A JP2107335 A JP 2107335A JP 10733590 A JP10733590 A JP 10733590A JP H045958 A JPH045958 A JP H045958A
Authority
JP
Japan
Prior art keywords
capsules
capsule
artificial
particles
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2107335A
Other languages
Japanese (ja)
Other versions
JP2900947B2 (en
Inventor
Fujio Miura
不二夫 三浦
Osamu Numata
沼田 収
Seiichiro Sawano
沢野 征一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankin Industry Co Ltd
Original Assignee
Sankin Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankin Industry Co Ltd filed Critical Sankin Industry Co Ltd
Priority to JP2107335A priority Critical patent/JP2900947B2/en
Publication of JPH045958A publication Critical patent/JPH045958A/en
Application granted granted Critical
Publication of JP2900947B2 publication Critical patent/JP2900947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Confectionery (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Medicinal Preparation (AREA)

Abstract

PURPOSE:To satisfy the condition of the specified and invariable ease of biting and ease of feeding as a food lump and to allow natural mastication at the time of measurement by incorporating functional fine particles for evaluating a mastication function to be compressed by a masticatory pressure into the artificial food lump. CONSTITUTION:Microcapsules, for example, spherical microcapsules made of polycarbonate (hereafter described as capsule) are more preferable as the functional fine particles to be masticated. The capsules have preferably the characteristic that the capsules are crushed flat from the spherical shape without being broken by the mastication and that the capsules maintain the flat shape thereafter. After the capsules are produced by an underwater drying method, the particle sizes thereof are uniformed by using stainless steel sieves of 177mum and 210mum openings specified in JIS. The chewing gum-like artificial food lump is produced by incorporating the capsule groups into adhesive polyisobutyrene. The artificial food lump is constituted of the two components; the capsule groups and the chewing gum. The preferable particle sizes of the capsules distribute in a 193.5mum+ or -8.5% range. The adequate number of the particles to be incorporated into the artificial food lump is about 8.10X10<4> (pieces).

Description

【発明の詳細な説明】 産業上の利用分野 この発明は川明機能評価用の機能性微粒子を含有する人
工金塊に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an artificial gold ingot containing functional fine particles for evaluating the performance of gold.

従来の技術 咀明機能を客観的に把握することは歯学の基本的な課題
といえる。これについて従来より多くの研究がなされて
きたが、自然の川明に近い状態で食品を噛む能力を定量
的に評価したものは、咀嚼能率の測定法のみである。
Conventional techniques Objectively understanding the mastication function can be said to be a fundamental challenge in dentistry. Many studies have been conducted on this subject, but the only method that quantitatively evaluates the ability to chew food under conditions close to natural chewing efficiency is the method of measuring mastication efficiency.

発明が解決しようとする問題点 食品が川明された結果は工学的には粉砕としてとらえら
れている。本来、粉砕は破壊のくり返しであり、通常、
この破壊は材料組成の均一性が乱れた部位から生じる。
The problem that the invention aims to solve The result of food being clarified is considered as pulverization from an engineering perspective. Originally, crushing is a process of repeated destruction, and usually,
This fracture occurs at a location where the uniformity of the material composition is disturbed.

そのため、この乱れが粉砕のメカニズムを複雑にして、
それを定量的に把握することが困難になっている。
Therefore, this turbulence complicates the crushing mechanism,
It has become difficult to grasp this quantitatively.

粉砕の把握には、とくに次の問題がある。In particular, there are the following problems in understanding pulverization.

すなわち、 1)食品毎に粉砕が変化する。That is, 1) Grinding varies depending on the food.

2)粉砕自体が定量しがたい。2) Pulverization itself is difficult to quantify.

以上2つの問題から、普遍性および再現性の面で従来の
咀嚼能率の測定法は最適な方法とは言いがたい。
Due to the above two problems, the conventional method for measuring masticatory efficiency cannot be said to be the optimal method in terms of universality and reproducibility.

発明の目的 本発明の目的は、咀嚼能力を定量的に測定できる川明機
能評価用の機能性微粒子を含有する人工素塊を提供する
ことである。
OBJECTS OF THE INVENTION An object of the present invention is to provide an artificial mass containing functional fine particles for the evaluation of Kamei's function that can quantitatively measure masticatory ability.

発明の要旨 前述の目的を達成するために、本発明は咬合圧で圧縮さ
せる川明機能評価用の機能性微粒子を含有することを特
徴とする咀嚼機能評価用の機能性微粒子を含有する人工
素塊を要旨としている。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides an artificial element containing functional fine particles for evaluating masticatory function, which is characterized by containing functional fine particles for evaluating masticatory function that are compressed by occlusal pressure. The gist is chunks.

咀嚼機能評価用の機能性微粒子の最適例は、咬合圧で圧
縮されるマイクロカプセルである。
The most suitable example of functional particles for evaluating masticatory function is microcapsules that are compressed by occlusal pressure.

また、人工素塊の最適例はポリイソブチレン、たとえば
市販のチューインガムである。
Further, the best example of the artificial mass is polyisobutylene, such as commercially available chewing gum.

実施例 粉砕工学では、粉砕過程を粒子の破砕(単粒子の粉砕)
後の粒子径分布を表す1粒度分布関数」と、これらの各
粒子がさらに破砕される確率である「選択関数」とを組
合わせて解析的にとらえている。
Examples In crushing engineering, the crushing process is defined as particle crushing (single particle crushing).
It is analyzed analytically by combining a "particle size distribution function" that represents the subsequent particle size distribution and a "selection function" that is the probability that each of these particles will be further crushed.

そこで、本発明者はこれを川明の圧縮能力を定量すると
いう課題に応用すべく、まず、この過程に潜在する、川
明される粒子における荷重と変形の関係を定量的にとら
え、次に、このための人工素塊の条件、並びに粒度分布
関数及び選択関数を単純化するための条件を検討した。
Therefore, in order to apply this to the problem of quantifying the compression ability of the river, the present inventor first quantitatively grasps the relationship between the load and deformation of the particles being released, which is latent in this process, and then For this purpose, we investigated the conditions for artificial agglomerates and the conditions for simplifying the particle size distribution function and selection function.

粒子に「潰れるのみで破砕されない」という機械的特性
を与えれば、「粒度分布関数jを「粒子における荷重と
変形の関係」に変えることができる。
If particles are given the mechanical property of being crushed but not crushed, it is possible to change the particle size distribution function j to the relationship between load and deformation in particles.

「選択関数」については、[各粒子とも一定不変の確率
」とするために、粒子径を微小かつ均一にする。
Regarding the "selection function," the particle diameter is made small and uniform in order to have a "constant and unchanging probability for each particle."

以上のことから、咀嚼の圧縮能力の定量は、人工素塊に
作用した圧縮荷重をそれに含有される微粒子群の圧縮変
形の総和からとられることで可能となる。加えて、人口
金塊に作用した咀嚼の圧縮エネルギーをも評価できる。
From the above, the compressive ability of mastication can be quantified by calculating the compressive load acting on the artificial mass from the sum of the compressive deformation of the fine particles contained therein. In addition, the compressive energy of mastication acting on the artificial gold bullion can also be evaluated.

均一な球形微粒子に「潰れるのみで破砕されない」とい
う機械的特性を付与し、かつ咬合の緊密状態を定量値に
反映できるようにするために、川明する粒子の径は可能
な限り小さくすることが望ましい。
In order to give uniform spherical particles the mechanical property of ``only being crushed but not crushed'' and to be able to reflect the tightness of occlusion in the quantitative values, the diameter of the particles should be made as small as possible. is desirable.

川明時における生理的な歯の動揺量(約100μm)と
粒子径の関係を考えて、粒子径は約200μmが適当で
ある。
Considering the relationship between the physiological amount of tooth movement (approximately 100 μm) and the particle size at dawn, the appropriate particle size is approximately 200 μm.

確率的に定量値が安定するように、人口金塊に含有され
る粒子の数は可能な限り多数にする 人工素塊に一定不変の咬みやすさと、いわゆる送りやす
さを与えて、自然に近い川明を可能にするために、粒子
群を粘着性の基材(ポリイソブチレン)に混入して、こ
れに素塊としての性状を付与する。
In order to stochastically stabilize the quantitative value, the number of particles contained in the artificial gold nugget is as large as possible.We give the artificial gold nugget constant biteability and so-called ease of feeding, and create a river that is close to natural. In order to make this possible, the particles are mixed into an adhesive base material (polyisobutylene) and given the properties of a raw mass.

咀嚼される機能性微粒子としては、マイクロカプセル、
たとえば球形のポリカーボネート製マイクロカプセル(
以下単にカプセルという)を採用するのが好ましい。
Functional particles to be chewed include microcapsules,
For example, spherical polycarbonate microcapsules (
It is preferable to employ a capsule (hereinafter simply referred to as a capsule).

カプセルは川明により破砕されずに球形から偏平に潰れ
、その後はその偏平な形を維持するという特性をもつよ
うにするのが好ましい。その場合、咀明時の破砕防止、
壁膜の穿孔防止のために、カプセルの壁膜は、ポリカー
ボネート製の強靭な皮膜とする。また、カプセルの硬度
の調節と潰れた後の形態維持のために、これにコースス
ターチを内容物として封入するのが望ましい。
It is preferable that the capsule has the characteristic that it is crushed from a spherical shape to a flat shape without being crushed by the Kawamei process, and then maintains its flat shape. In that case, to prevent crushing during chewing,
In order to prevent perforation of the wall membrane, the capsule wall membrane is made of a strong polycarbonate film. Further, in order to adjust the hardness of the capsule and maintain its shape after being crushed, it is desirable to encapsulate coarse starch as a content.

カプセルは水中乾燥法により作製した後、JIS規格、
目開き177 μmと210μmのステンレス製ふるい
を用いて、粒子径を揃える。
After the capsules are produced by an underwater drying method, they are prepared according to JIS standards.
Use stainless steel sieves with openings of 177 μm and 210 μm to make the particle size the same.

カプセル群を粘着剤ポリイソブチレンに混ぜ込んでチュ
ーインガム状の人工素塊を作製する。
A chewing gum-like artificial mass is created by mixing the capsules with a polyisobutylene adhesive.

このように人工素塊はカプセル群とチューインガムの2
つの成分から構成される。
In this way, there are two types of artificial lumps: capsules and chewing gum.
It consists of two components.

カプセルの好しい粒子径は193.5μm±8,5%の
範囲に分布する。
The preferred particle size of the capsules is distributed in the range of 193.5 μm±8.5%.

人工素塊に含有される好適な粒子数(以下、全粒子数と
いう)は約8.10X104  (個)である。
The preferred number of particles contained in the artificial mass (hereinafter referred to as the total number of particles) is about 8.10×10 4 (pieces).

「カプセルにおける荷重と変形の関係」を定量的にとら
えると、カプセルの荷重と変形の関係は、再現性のよい
単調増加の曲線関係となる。
When the "relationship between load and deformation in the capsule" is understood quantitatively, the relationship between the load and deformation in the capsule is a monotonically increasing curved relationship with good reproducibility.

人工素塊の大きさは、咀明しやすさを考慮して、球形時
に直径12.0mmとするのが最適である。これは咀明
時に常に一塊であり、歯への粘着性も問題にならず、硬
さは一定不変(300回咀明後明市販のチューインガム
に近い)である。
The optimal size of the artificial mass is 12.0 mm in diameter when spherical, considering ease of mastication. When chewed, it always stays in one lump, stickiness to the teeth is not a problem, and its hardness remains constant (after 300 chewings, it is close to commercially available chewing gum from Meiji).

さらに、人工素塊は無味、無臭で、かつ保存性が良好な
ものにする。
Furthermore, the artificial raw mass should be tasteless, odorless, and have good storage stability.

以下に圧縮能力定量法の一例について述べる。An example of the compression capacity determination method will be described below.

1回ごとに肉を噛みしめる程度に、片側で原則として1
00回咀嚼咀明る。
As a general rule, 1 bite on each side, just enough to chew the meat each time.
00 times chewing bright.

咀明後の人工素塊のカプセル群を抽出した後、これを潰
されたカプセル(以下これを偏平カプセルという)と潰
されていないカプセル(以下これを球形カプセルという
)に選別して分析する。
After extracting the capsules of the artificial mass after mastication, they are separated into crushed capsules (hereinafter referred to as flat capsules) and uncrushed capsules (hereinafter referred to as spherical capsules) for analysis.

人工素塊を有機溶媒n−へキサンに浸し、ガム成分のポ
リイソブチレンを完全に溶解させて、カプセル群だけを
抽出する。
The artificial raw mass is immersed in an organic solvent, n-hexane, and the polyisobutylene of the gum component is completely dissolved, and only the capsule group is extracted.

偏平カプセルを選別する際に、咀−時の平均咬合圧を測
定値に反映させるために、偏平カプセルの選別基準はカ
プセルの短径が125μm以下のものとする。
When selecting flat capsules, in order to reflect the average occlusal pressure during mastication in the measured value, the standard for selecting flat capsules is that the short diameter of the capsule is 125 μm or less.

125μmのスリット状のふるい目を持つ選別器を用い
て、偏平カプセルと球形カプセルを両者の短径の差を利
用して選別する。選別器の効率が低いため、これらの選
別は全粒子数の1/10をサンプリングして行う。
Using a sorter with a 125 μm slit-like sieve, flat capsules and spherical capsules are sorted using the difference in their short diameters. Due to the low efficiency of the sorter, these sorts are performed by sampling 1/10 of the total number of particles.

まず、を回咀明後人工素塊において、偏平カプセルの全
カプセルに対する数量比を偏平カプセル率p (t)と
定義し、この値と全粒子数との積を偏平カプセル数n 
(t)と定義し、次に、1回咀明後の偏平カプセル率p
(1)と偏平カプセル数n(1)の2つの値を算出して
、これを圧縮能力値(すなわち偏平粒子率と偏平粒子数
)とする。
First, in the artificial mass after being chewed, the ratio of flat capsules to all capsules is defined as the flat capsule ratio p (t), and the product of this value and the total number of particles is the number of flat capsules n
(t), and then the flattened capsule ratio after one mastication p
(1) and the number of flat capsules n(1) are calculated, and these are used as the compression capacity value (that is, the flat particle ratio and the number of flat particles).

本発明に用いるマイクロカプセルは、前述の例以外にも
種々のものが採用できる。たとえば粒子径として、上記
の177〜21−0μmのものの他に、成人不正咬合古
川として直径88〜177μmのもの、乳歯咬合音用又
は義歯装着患者用としては、直径210〜350μmの
もの、歯周病患者用としては、直径350〜550μm
のものがある。
Various types of microcapsules can be used in the present invention in addition to the above-mentioned examples. For example, in addition to the above-mentioned particle size of 177-21-0 μm, particle size of 88-177 μm for adult malocclusion Furukawa, particle size of 210-350 μm for use in deciduous occlusal sounds or patients wearing dentures, and particle size of 210-350 μm for periodontal For sick patients, the diameter is 350 to 550 μm.
There is something like that.

他方、壁膜として、ポリカーボネートの他に、これより
も軟性なプラスチックたとえばAs樹脂(スチレン・ア
クリロニトル共重合樹脂)、PS樹脂(ポリスチレン)
等を使用したものもある。
On the other hand, as a wall film, in addition to polycarbonate, plastics that are softer than polycarbonate, such as As resin (styrene-acrylonitrile copolymer resin), PS resin (polystyrene), etc.
There are also some that use .

実験例 粉砕における変形過程 粉砕工学では、粒子の破砕(単粒子の粉砕を破砕という
)後の粒子径分布を表す「粒度分布関数」と、これらの
各粒子がさらに破砕される確率である「選択関数」とを
組合わせて粉砕過程を解析的にとらえている。
Experimental example Deformation process in crushing In crushing engineering, we use the ``particle size distribution function,'' which represents the particle size distribution after particle crushing (pulverization of single particles is called crushing), and the ``selection function'', which is the probability that each of these particles will be further crushed. The pulverization process is analyzed analytically by combining ``functions''.

粒度分布関数は砕料の性質と荷重条件によって決まり、
他方、選択関数は粉砕機構や砕料の性質、粒子径などに
よって決まる。
The particle size distribution function is determined by the properties of the crushed material and the loading conditions.
On the other hand, the selection function is determined by the crushing mechanism, the properties of the crushed material, the particle size, etc.

そこで、上記の粉砕過程を川明の圧縮能力を定量すると
いう課題に応用すべく、まず、この過程に潜在する、粒
子における荷重と変形の関係を定量的にとらえ、次に、
このための人工金塊の条件、ならびに粒度分布関数及び
選択関数を単純化するための条件を検討した。
Therefore, in order to apply the above-mentioned crushing process to the problem of quantifying Kawamei's compression capacity, we first quantitatively grasp the relationship between the load and deformation of the particles latent in this process, and then:
The conditions for the artificial gold nugget and the conditions for simplifying the particle size distribution function and selection function were investigated for this purpose.

粒子における荷重と変形については、「潰れるのみで破
砕されないjという機械的特性を与える。こうすれば、
粒度分布関数については、粒子が荷重されて潰れるとい
う関係、すなわち、先の「粒子における荷重と変形の関
係」に変えられる。このようにすることで、粒子の変形
量から、これに作用した圧縮荷重を直接求めることがで
きる。
Regarding the load and deformation on the particles, it is said that ``give them the mechanical properties of being crushed but not crushed.'' In this way,
The particle size distribution function can be changed to the relationship that particles are crushed under load, that is, the above-mentioned "relationship between load and deformation on particles." By doing so, the compressive load acting on the particles can be directly determined from the amount of deformation of the particles.

なお、人工金塊は上記の特性を持つ球形の粒子群から構
成することで、荷重により人工金塊がどのように変形さ
れても、各粒子の変形は圧縮方向のみになる。こうすれ
ば、川明による人工金塊への荷重は、各粒子の圧縮方向
の変形量の総和として求められる。
Furthermore, by constructing the artificial gold ingot from a group of spherical particles having the above characteristics, no matter how the artificial gold ingot is deformed by the load, each particle deforms only in the compression direction. In this way, the load on the artificial gold ingot by Kawaaki can be obtained as the sum of the deformation amounts of each particle in the compression direction.

他方、選択関数については、「各粒子とも一定不変の確
率」とするために、粒子径を微小かつ均一にする。これ
により、各粒子が噛まれる確率を咀−時に各咀明回を通
じてほぼ一定不変にできる。
On the other hand, regarding the selection function, the particle diameter is made small and uniform in order to have "a constant probability for each particle." As a result, the probability that each particle is bitten can be kept almost constant throughout each chewing cycle.

以上の考えから、咀嚼の圧縮能力の定量は、人工金塊に
作用した荷重を、それに含有される球形微粒子群の圧縮
変形の総和からとらえる。
Based on the above considerations, the compression ability of mastication can be determined by determining the load acting on the artificial gold ingot from the sum of the compressive deformation of the spherical fine particles contained therein.

加えて、粒子における荷重と変形の関係を元にして、川
明の圧縮エネルギーをも評価する。すなわち、各粒子に
作用した圧縮荷重を変形方向について積分して得たエネ
ルギーの総和から、人工金塊に作用した川明の圧縮エネ
ルギーを求める。
In addition, we will also evaluate Kawamei's compression energy based on the relationship between load and deformation on particles. That is, the compressive energy of Kawamei acting on the artificial gold ingot is determined from the sum of the energy obtained by integrating the compressive load acting on each particle in the deformation direction.

人工金塊の具備条件 人工金塊を作製するにあたり、以下の条件を具備させた
Conditions for the artificial gold nugget In producing the artificial gold nugget, the following conditions were met.

1)機械的特性 均一な球形微粒子に「潰れるのみで破砕されない」とい
う機械的特性を付与する。
1) Mechanical properties Uniform spherical fine particles are given the mechanical properties of "only being crushed but not crushed".

2)粒子径 咬合の緊密状態を定量値に反映できるようにする目的か
ら、粒子径は可能な限り小さくする。
2) Particle size In order to be able to reflect the tightness of occlusion in the quantitative value, the particle size is made as small as possible.

しかし、川明時の平均的な咬合圧で粒子が潰れるように
するためには、川明時における生理的な歯の動揺量と粒
子径の関係を考えれば、ある程度の大きさが必要である
。この種の動揺量が約100μmとされていることから
、粒子は、潰れたときの短径がこの値より、(与い必要
がある。
However, in order for the particles to be crushed by the average occlusal pressure at the time of opening, a certain size is required, considering the relationship between the physiological amount of tooth movement and the particle size at the time of opening. . Since the amount of oscillation of this type is approximately 100 μm, the short axis of the particles when crushed must be larger than this value.

、”Jがって、粒1径は約200μmが最適と考えた。Accordingly, it was considered that the optimum grain diameter was approximately 200 μm.

3)粒子数 確率的に定量値が安定するように、人工金塊に含有され
る粒子の数は可能な限り多数にする。
3) Number of particles The number of particles contained in the artificial gold bullion should be as large as possible so that the quantitative value is stochastically stable.

粒子が潰される現象を2項分布としてとらえ、この期待
値を50%と仮定したときの変動係数を数%程度に抑え
るために、粒子数は1万個以上にした。
The number of particles was set to 10,000 or more in order to suppress the coefficient of variation to a few percent when assuming that the phenomenon of particle crushing is a binomial distribution and that the expected value is 50%.

4)金塊としての性状 川明時に粒子が散逸せず、かつ、人工金塊に一定不変の
噛みゃさすさと、いわゆる送りやすさを与えることで、
自然に近い川明を可能にするために、粒子群を粘着性の
基材(市販のチューインガムの成分であるポリイソブチ
レン)に混入して人工金塊とし、これに金塊としての性
状を付与した。
4) Properties as a gold nugget By not causing particles to dissipate when flowing, and by giving the artificial gold nugget constant chewability and so-called ease of feeding,
In order to make the river light as close to natural as possible, the particles were mixed into a sticky base material (polyisobutylene, a component of commercially available chewing gum) to create an artificial gold nugget, which was given the properties of a gold nugget.

これにより、粒子が噛まれる確率は川明時−j3 に各咀明回を通じて一定不変にできる。As a result, the probability that a particle will be bitten is Kawamei-j3 It can be kept constant throughout each chewing session.

マイクロカプセルの作製 マイクロカプセルの最適例として水中乾燥法により作製
された球形のポリカーボネート製マイクロカプセル(以
下、単にカプセルという)を採用した。
Preparation of Microcapsules As an optimal example of microcapsules, spherical polycarbonate microcapsules (hereinafter simply referred to as capsules) prepared by an underwater drying method were employed.

1−)カプセルの機械的特性 カプセルは粒子の機械的特性に関する具備条件を満たし
、つまり、川明により破砕されずに球形から偏平に潰れ
、加えて、その後はその偏平な形を維持するという特性
をもつようにした。
1-) Mechanical properties of capsules Capsules satisfy the requirements regarding the mechanical properties of particles, that is, they are crushed from a spherical shape to a flat shape without being crushed by the river, and in addition, they maintain their flat shape thereafter. It was made to have .

つまり、咀−時の破砕防止はもとより、壁膜の穿孔をも
防ぐために、カプセルの壁膜は、すぐれた機械的特性を
もつポリカーボネートで作ることで強靭な皮膜を設けた
のである。
In other words, the capsule wall is made of polycarbonate, which has excellent mechanical properties, to provide a strong coating in order to prevent not only crushing during chewing but also perforation of the wall membrane.

このようにすれば、川明によりカプセルが潰されるとき
に、内容物の散逸をも完全に防止することができ、潰さ
れる前後で、カプセルの総粒子数はもとより、個々の重
さが不変となる。
In this way, when the capsule is crushed by Kawamei, it is possible to completely prevent the contents from escaping, and the total number of particles in the capsule as well as the individual weights remain unchanged before and after the capsule is crushed. Become.

また、カプセルの硬度の調節と潰れた後の形態維持のた
めに、これにコーンスターチを内容物として封入した。
In addition, cornstarch was encapsulated in the capsule to adjust its hardness and maintain its shape after being crushed.

コーンスターチを選定した理由は、200μmのカプセ
ルの粒子径に対して、その粒子径が2〜10μmと内容
物として適当な大きさであること、また、それが有機溶
媒に不溶である性質がカプセルの作製を容易にすること
、さらに、その化学的な発色性がカプセルの分析に応用
できる可能性をもつことによる。
The reason for choosing corn starch is that its particle size is 2 to 10 μm, which is an appropriate size for the content compared to the 200 μm particle size of the capsule, and its insolubility in organic solvents makes it suitable for capsules. This is because it is easy to produce, and furthermore, its chemical coloring properties have the potential to be applied to capsule analysis.

2)カプセルの作成 カプセル作成には水中乾燥法を採用した。2) Creation of capsule An underwater drying method was used to create the capsules.

これは第1図のように2段階からなる。This consists of two stages as shown in Figure 1.

解している有機溶媒(ジクロルメタン)′にカプセル内
容物(コーンスターチ)を分散させた。
The contents of the capsule (corn starch) were dispersed in a dichloromethane solution.

第2段階(2次分散) さらに、これらをカプセル化の媒体である界面活性剤(
和光純薬工業社製、Tween20)の水溶液に滴状に
分散させ、この状態で有機溶媒を蒸発させることで内容
物の周りに壁材を析出させて壁膜を形成し、カプセルを
作製した。
Second stage (secondary dispersion) Furthermore, these are mixed with a surfactant (
It was dispersed dropwise in an aqueous solution of Tween 20 (manufactured by Wako Pure Chemical Industries, Ltd.), and in this state, the organic solvent was evaporated to precipitate a wall material around the contents to form a wall film, thereby producing capsules.

(A)準備 ■コーンスターチの処理 コーンスターチが、1次分散媒に良好に分散されるよう
に、しかもカプセルの壁材となじむように、これを処理
した。
(A) Preparation ■ Treatment of Corn Starch Corn starch was treated so that it was well dispersed in the primary dispersion medium and blended with the wall material of the capsule.

コーススターチ100gに対し、0゜1mlのTwee
n20(非イオン親水界面活性剤、ポリオキシエチレン
(20)・ソルビタン・モノラウレート:H,L、B価
16.7)と蒸留水を加え、よく攪拌したものをすり潰
して粉体状にした。
0゜1ml of Twee for 100g of course starch
n20 (nonionic hydrophilic surfactant, polyoxyethylene (20), sorbitan, monolaurate: H, L, B value 16.7) and distilled water were added, stirred well, and ground into powder. .

■1次分散媒の調製 1次分散媒としては、有機溶媒ジクロルメタン100 
mlに対し、壁材としてのポリカーボネート(帝人化成
社製、パンライト)10gを溶解させたものを調整した
■Preparation of the primary dispersion medium As the primary dispersion medium, the organic solvent dichloromethane 100
ml was prepared by dissolving 10 g of polycarbonate (manufactured by Teijin Chemicals, Panlite) as a wall material.

■2次分散媒としては、500 mlビーカーにT w
 e e n 20を75m1入れ、これに蒸留水ヲ加
えて500 mlの水溶液としたものを調製した。
■As a secondary dispersion medium, add T w to a 500 ml beaker.
A 500 ml aqueous solution was prepared by adding 75 ml of e en 20 and adding distilled water.

(B)1次分散 30m1のビーカーに■のポリカーボネート溶液(1次
分散媒)10mlを入れ、■のコーンスターチ1gを加
えて、これらをマグネチックスターラーにて攪拌して、
十分に分散させた(1次分散)。このとき、溶液に気泡
が発生しないように、攪拌子が液面下にあるような回転
数にした。
(B) Primary dispersion Put 10 ml of the polycarbonate solution (primary dispersion medium) in a 30 ml beaker, add 1 g of cornstarch (■), and stir them with a magnetic stirrer.
Well dispersed (first order dispersion). At this time, the rotation speed was set so that the stirrer was below the liquid surface to prevent bubbles from forming in the solution.

(C)2次分散とマイクロカプセル化 ■の溶液(2次分散媒)を、加熱機能をもつマグネチッ
クスターラーによって高速に(1200回/分)攪拌し
、(B)で1次分散した溶液をこれに少しずつ加え、さ
らに分散させて[O/ W ]型エマルジョンをつくっ
た(2次分散)。
(C) Secondary dispersion and microencapsulation The solution (secondary dispersion medium) in (Secondary dispersion medium) is stirred at high speed (1200 times/min) using a magnetic stirrer with a heating function. It was added little by little to this and further dispersed to create an [O/W] type emulsion (secondary dispersion).

この状態で徐々に温度をあげていき、約30分かけて室
温から40℃にした後、この温度を約2時間維持して、
ジクロルメタンの蒸発を調節することで、コーンスター
チの周りにポリカーボネートを析出させて壁膜を形成さ
せた(マイクロカプセル化)。
In this state, the temperature was gradually raised from room temperature to 40℃ over about 30 minutes, and this temperature was maintained for about 2 hours.
By controlling the evaporation of dichloromethane, polycarbonate was precipitated around the cornstarch to form a wall film (microencapsulation).

ジクロメタンを完全に蒸発させるために、これらのカプ
セルを分散媒中で少なくとも1日は室温に放置した。
The capsules were left in the dispersion medium at room temperature for at least one day to completely evaporate the dichloromethane.

(D)カプセルの分散と保存 JIS規格、目開き177μと210μmのステンレス
製ふるいを用いてカプセルの粒子径をそろえた(分級)
(D) Dispersion and preservation of capsules The particle size of capsules was made uniform using JIS standard stainless steel sieves with openings of 177 μm and 210 μm (classification)
.

分級は2次分散媒でカプセルを洗い流すようにして行っ
た。数回利用後の2次分散媒で作製したカプセルを分級
するときには、これらが静電気により凝集し、分級が不
可能になることもあったが、分級前に2次分散媒中にて
超音波でカプセルを強制振動させて、これを防止した。
Classification was performed by washing away the capsules with a secondary dispersion medium. When classifying capsules made with a secondary dispersion medium that has been used several times, the particles sometimes aggregate due to static electricity, making classification impossible. This was prevented by forcing the capsule to vibrate.

分級後のカプセルを自然に乾燥させた後、室温で保存し
た。
After the classified capsules were dried naturally, they were stored at room temperature.

なお、マイクロカプセル化において、薬品の量や、ビー
カーの大きさは、液体のレオロジー的性質を左右する要
素であり、すべての過程を上記の条件のもとに忠実に行
うことが必要であった。
In addition, in microencapsulation, the amount of chemicals and the size of the beaker are factors that affect the rheological properties of the liquid, so it was necessary to carry out all processes faithfully under the above conditions. .

3)人工素塊の作製 計量器にて、容積0.5mg (0,3417±0. 
0001 g)を計量済みのカプセル群を、市販のチュ
ーインガムの1成分である粘着剤ポリイソブチレン(エ
クソン化学社製。
3) Preparation of artificial ingots Using a measuring device, measure the volume of 0.5 mg (0,3417±0.
0001 g) of weighed capsules were added to the adhesive polyisobutylene (manufactured by Exxon Chemical Co., Ltd.), which is one of the components of commercially available chewing gum.

ビスタネックス・LM−MS)0.5gに混ぜ込んでチ
ューインガム状の人工素塊を作製した。
Vistanex LM-MS) was mixed with 0.5 g to prepare a chewing gum-like artificial mass.

人工素塊の検討 作製した人工素塊の具備条件を各項目ごとに検討した。Study of artificial blocks We examined the conditions for each of the manufactured artificial blocks.

1)カプセルの性状 (A)粒子径 目開き177μmと210μmの連続する2組のふるい
により選別した結果、カプセルの粒子径は193.5μ
m±8.5%の範囲に分布した。
1) Capsule properties (A) Particle size As a result of screening using two consecutive sieves with openings of 177 μm and 210 μm, the particle size of the capsules was 193.5 μm.
It was distributed in the range of m±8.5%.

粒子径は200μmを目標にしていたので、その大きさ
やバラツキは具備条件を満足したものといえる。
Since the target particle diameter was 200 μm, it can be said that the size and variation satisfied the specified conditions.

(B)粒子数 粒子数の測定には、以下の方法を用いた。(B) Number of particles The following method was used to measure the number of particles.

まず、人工素塊を2枚のガラス板の間に挾んで210μ
mまで押し潰し、これをガラス板を通して観察すること
で、面積当たりのカプセル数の密度を測定したところ、
18.8個/mm2  (18,75〜18..80個
/mm2)であった。
First, the artificial mass was sandwiched between two glass plates and
By crushing it to m and observing it through a glass plate, we measured the density of the number of capsules per area.
It was 18.8 pieces/mm2 (18.75 to 18..80 pieces/mm2).

次に、人工素塊の球形時の直径の計測値、12.0mm
(バラツキは±0.05mm未満)から、その体積を9
05 mm3と求めた。
Next, the measured value of the diameter of the artificial mass when it is spherical is 12.0 mm.
(The variation is less than ±0.05 mm), the volume is 9
05 mm3.

この二つの値をもとに、人工素塊に含有された粒子数を
以下の式から求め、全粒子数Nとした。
Based on these two values, the number of particles contained in the artificial agglomerate was determined from the following formula, and was determined as the total number of particles N.

N−(905X18.8)10.210−8.10X1
04  C個〕 この値は、粒子数における具備条件として、可能な限り
多く含有させるという条件を十分に満足するものであっ
た。
N-(905X18.8)10.210-8.10X1
04C pieces] This value sufficiently satisfied the condition for the number of particles to be contained as much as possible.

(C)機械的特性 カプセルの壁膜をポリカーボネート製にしたことで、こ
れが「潰屯るのみで破砕されない」という機械的特性を
もつものと考えて、「カプセルにおける荷重と変形の関
係」を定量的にとらえることとした。
(C) Mechanical characteristics Since the capsule wall is made of polycarbonate, it is assumed that it has the mechanical property of ``only being crushed but not crushed'', and the ``relationship between load and deformation in the capsule'' was quantified. I decided to take this into account.

これはカプセルをアクリル板の間に挾み、側方から圧縮
荷重を付与し、0から170gW程度まで、5ないし1
0gwの加重ごとに潰されたカプセルの短径を実体顕微
鏡写真に撮り、これらを計測することで求めた。その結
果、測定時にカプセルの破砕は見られなかった。
This is done by sandwiching the capsule between acrylic plates and applying a compressive load from the side, from 0 to about 170 gW, from 5 to 1
The short diameter of the capsule crushed under each load of 0 gw was taken with a stereomicroscope and was determined by measuring these. As a result, no capsule fragmentation was observed during the measurement.

まず、平均的な粒子径194μmのカプセルにおいては
、第2図に示すとおり、荷重と変形の間には、再現性の
よい単調増加の曲線関係があることが確認された。
First, in capsules with an average particle diameter of 194 μm, as shown in FIG. 2, it was confirmed that there was a monotonically increasing curved relationship between load and deformation with good reproducibility.

次に最小径178μm1最大径210μmのカプセルを
加えてこの関係を検討したところ、第3図に示すとおり
、粒子径の違い(193,5μm±8.5%)によると
推測される違いが確認された。
Next, we examined this relationship by adding capsules with a minimum diameter of 178 μm and a maximum diameter of 210 μm, and as shown in Figure 3, we confirmed a difference that was assumed to be due to a difference in particle size (193.5 μm ± 8.5%). Ta.

また、この図から、潰されたカプセルの短径は、元の粒
子径や、そのときの変形量を問わず、荷重除去後に8μ
mに戻ることも確認された。
Also, from this figure, the minor axis of the crushed capsule is 8μ after the load is removed, regardless of the original particle size or the amount of deformation at that time.
It was also confirmed that M.

したがって、カプセルは粒子の機械的特性に関する具備
条件をみたすことが確認された。
Therefore, it was confirmed that the capsules met the requirements regarding the mechanical properties of particles.

2)咬合試料の性状 粒子の具備条件を満たすことが確認されたカプセルを含
有する人工素塊が、素塊としての一定不変の噛みやすさ
と送りやすさという、人工素塊の具備条件を満足するか
否かを確認するために、以下のような検討を加えた。
2) An artificial mass containing a capsule that has been confirmed to satisfy the conditions of the quality particles of the occlusal sample satisfies the conditions of the artificial mass, which is constant chewability and ease of feeding as a mass. In order to confirm whether this is the case, we conducted the following considerations.

(a)機械的特性 人工素塊の硬さをレオロジーの分野における粘性として
とらえ、粘性率を、硬さを示すパラター、ターとして測
定した。
(a) Mechanical properties The hardness of the artificial mass was regarded as viscosity in the field of rheology, and the viscosity coefficient was measured as a parameter indicating hardness.

粘性は流体内部でその流動を妨げる一種の摩擦であり、
粘性率はその程度を示す物理定数であるから、これを測
定することで人工素塊の硬さが求められると考えた。
Viscosity is a type of friction within a fluid that impedes its flow.
Since the viscosity coefficient is a physical constant that indicates the degree of viscosity, we thought that by measuring it we could determine the hardness of the artificial mass.

粘性率は、第4図に示すような平行板プラストメーター
を参考にした装置において、半径rの2枚の平行円板の
間に人工素塊を満たし、これを一定荷重で圧縮したとき
の変形速度から求めた。このとき、一定荷重P1時間t
1粘性率η、円の半径r1円板間の距離H(Hoは初期
値)の間に成立する以下の式から粘性率ηを求めた。
The viscosity is calculated from the deformation rate when an artificial mass is filled between two parallel disks of radius r and compressed under a constant load in a device based on a parallel plate plastometer as shown in Figure 4. I asked for it. At this time, constant load P1 time t
The viscosity coefficient η was determined from the following equation, which holds true between 1 viscosity coefficient η, 1 radius r of the circle, and 1 distance H between the disks (Ho is an initial value).

P  t −(3πη r’  /4)x  (1/H
2−1/Ho  2 )なお、測定条件は、P=1kg
w(分銅による一定荷重) 、r=7.5mm、温度3
7°Cとした。
P t −(3πη r' /4)x (1/H
2-1/Ho2) The measurement conditions are P=1kg
w (constant load by weight), r=7.5mm, temperature 3
The temperature was 7°C.

第5図には、0回、100回、200回。Figure 5 shows 0 times, 100 times, and 200 times.

300回咀明後明人工素塊の粘性率を示す。The viscosity of the Meiji synthetic mass after chewing 300 times is shown.

また、参考として、市販のチューインガムの粘性率も示
す。
For reference, the viscosity of commercially available chewing gum is also shown.

第5図が示すとおり、人工素塊の粘性率は川明により変
化しないことから、人工素塊は咀明時に一定不変の硬度
を維持することが確認された。この性質は人工素塊のガ
ム成分ポリイソブチレンの唾液に対する安定性によるも
のと思われる。
As shown in FIG. 5, the viscosity of the artificial mass does not change due to chewing, so it was confirmed that the artificial mass maintains a constant hardness during mastication. This property is thought to be due to the stability of polyisobutylene, the gum component of the artificial mass, against saliva.

これに対し、市販のチューインガムは咀明前は硬く、噛
み始めると急速に軟化し、約10明後明後には逆に硬化
を始めて、それ以後は硬化を続けた。この性質は、成分
として約80%を占める糖が、川明開始時に唾液にて急
速に溶解し、その後徐々にガムから溶出していくことに
よるものと推測された。
On the other hand, commercially available chewing gum was hard before chewing, rapidly softened after chewing, began to harden about 10 days after dawn, and continued hardening thereafter. This property was presumed to be due to the fact that sugar, which accounts for about 80% of the ingredients, rapidly dissolves in saliva at the beginning of the process and then gradually dissolves from the gum.

また2、人工素塊は300回咀明後の市販のチューイン
ガムに近い硬さをもつことから、金塊としての硬さを満
足する。
2. Since the artificial ingot has a hardness close to that of commercially available chewing gum after being chewed 300 times, it satisfies the hardness of a gold ingot.

一方、11人の被験者の経験例より、咀−時に人工素塊
は常に一塊であること、また、不良なインレーなどがな
ければ、歯への粘着性も問題にならないことが確認され
た。
On the other hand, based on the experiences of 11 test subjects, it was confirmed that the artificial lump always remains in one lump during mastication, and that as long as there is no defective inlay, adhesion to the teeth will not be a problem.

人工素塊の大きさは、市販のガムの大きさ、すなわち、
球形時の直径12mmを中心に、前後、lln1mと1
3mmの3種のものについて咀嚼しやすさを比較して、
最良であった球形時の直径12.0mmとした。
The size of the artificial lump is the size of commercially available gum, that is,
Around the diameter of 12mm when spherical, front and back, lln1m and 1
Comparing the ease of chewing three types of 3mm,
The diameter when spherical was the best was 12.0 mm.

(b)味と匂 人口金塊の構成成分は無味、無臭のコーンスターチ、ポ
リカーボネートおよびポリイソブチレンであり、人口金
塊は無味、無臭であった。
(b) Taste and Odor The constituent components of the artificial gold bullion were tasteless and odorless cornstarch, polycarbonate, and polyisobutylene, and the artificial gold bullion was tasteless and odorless.

(C)保存性 人口金塊を水中にて冷蔵保存、ならびに、カプセルを乾
燥状態で室温保存したところ、前者は1年、後者は2年
経過後も性状に変化はみられなかった。このことから、
これらの保存性は良好であることが確認された。
(C) Preservability When the artificial gold bullion was stored in water under refrigeration, and the capsules were stored in a dry state at room temperature, no change was observed in the properties of the former for 1 year and for the latter after 2 years. From this,
It was confirmed that these had good storage stability.

以上の3項目の検討結果から、人口金塊は金塊としての
一定不変の噛みやすさと送りやすさという具備条件を満
足し、測定時に自然な咀−を可能とすることが確認され
た。
From the results of the above three items, it was confirmed that the artificial gold bullion satisfies the conditions of constant chewability and ease of feeding as a gold bullion, and allows natural chewing during measurement.

圧縮能力定量法 1)咀嚼方法 人口金塊を被験者に与え、1回ごとに肉を噛みしめる程
度に、片側で、原則として100回咀嚼咀明た。
Compressive Capacity Quantification Method 1) Chewing Method An artificial gold bullion was given to the test subject, and the test subject was chewed on one side, in principle, 100 times, to the extent of biting the meat each time.

2)分析法 まず、咀明後の人口金塊のガム成分を除去してカプセル
群を抽出した。次に、これを潰されたカプセル(以下、
偏平カプセルとする)と清さ、れていないカプセル(以
下、球形カプセルとする)に選別して分析した。
2) Analysis method First, the gum component of the artificial gold bullion after chewing was removed to extract the capsule group. Next, this crushed capsule (hereinafter referred to as
The capsules were sorted into two types: flat capsules (hereinafter referred to as flat capsules) and clean capsules (hereinafter referred to as spherical capsules).

(ア)カプセル群の抽出法 被験者が噛んだ人工素塊を口腔の外に取り出し、これを
有機溶媒n−ヘキサンに浸し、ガム成分のポリイソブチ
レンを完全に溶解させて、カプセル群を抽出した。なお
、n−ヘキサンはポリイソブチレンのみを溶解し、カプ
セル群は溶解しない有機溶媒である。
(A) Extraction method of capsule group The artificial mass chewed by the test subject was taken out of the oral cavity, and it was immersed in organic solvent n-hexane to completely dissolve the polyisobutylene of the gum component, and the capsule group was extracted. Note that n-hexane is an organic solvent that dissolves only polyisobutylene and does not dissolve the capsule group.

(イ)偏平カプセル群の選別基準 偏平カプセルを選別するにあたり、選別基準を設ける必
要がある。
(B) Selection criteria for flat capsule groups When selecting flat capsules, it is necessary to establish selection criteria.

そこで次のような概算を行ってみた。咀−時の平均咬合
圧をこの基準に反映させるため、これを計算すると、約
2.0kgw/mni’の値を得た。これを先のカプセ
ル数の密度をもとにカプセル1個当たりの荷重に換算し
たところ、106gw/個となった。
So I made the following calculation. In order to reflect the average occlusal pressure during mastication in this standard, this was calculated and a value of approximately 2.0 kgw/mni' was obtained. When this was converted into a load per capsule based on the density of the number of capsules, it was 106 gw/piece.

一方、平均的な粒子径194μmのカプセルにこれと同
じ荷重を作用させたところ、第3図のカプセルの荷重と
変形の関係から、荷重除去後のその短径は約125μm
になった。
On the other hand, when the same load was applied to a capsule with an average particle diameter of 194 μm, from the relationship between the load and deformation of the capsule in Figure 3, the short diameter of the capsule after the load was removed was approximately 125 μm.
Became.

以上の結果から、偏平カプセルの選別基準は、カプセル
の短径が125μm以下のものとした。
Based on the above results, the selection criteria for flat capsules was that the short diameter of the capsules was 125 μm or less.

(つ)偏平カプセルの選別方法 125μmの選別基準に即したスリット状のふるい目を
もつ選別器を用いて、偏平カプセルと球形カプセルを両
者の短径の差を利用して選別した。なお、選別器の効率
が低いため、これらの選別は全粒子数の約1/10をサ
ンプリングして行った。
(1) Method for sorting flat capsules Using a sorter with slit-shaped sieves that conform to the 125 μm sorting standard, flat capsules and spherical capsules were sorted by taking advantage of the difference in their short diameters. Note that because the efficiency of the sorter is low, these sorts were performed by sampling approximately 1/10 of the total number of particles.

まず、抽出したカプセル群の1/10をnヘキサンに浸
し、これを選別器に入れ、次に、超音波によるカプセル
の強制振動を併用して、偏平カプセルのみスリットを通
過させることで選別した。
First, 1/10 of the extracted capsule group was immersed in n-hexane and placed in a sorter, and then forced vibration of the capsules by ultrasonic waves was used in combination to force only the flat capsules to pass through the slit to sort them.

(1)咀−時のカプセル 咀哩時のカプセルの動態を以下の三つの点について調べ
た。
(1) Capsule during chewing The dynamics of the capsule during chewing was investigated with regard to the following three points.

■人工金塊内での潰され方 咀明時のカプセルの潰され方を調べるために、0回およ
び300回咀明後明人工素塊を硝子板の間に挾み、21
0μmまで圧縮しつつ、内部のカプセルの形態を実体顕
微鏡で調べたところ、これらに変化がみられなかった。
■How to crush the artificial gold ingot In order to examine how the capsule is crushed during chewing, the artificial gold bullion was placed between glass plates after chewing for 0 and 300 times.
When the morphology of the internal capsule was examined using a stereomicroscope while compressed to 0 μm, no changes were observed in these.

このことから、偏平カプセルが生じた場合、これは直接
噛み潰されたことによるものであることが確認された。
From this, it was confirmed that if a flat capsule was produced, it was due to direct chewing.

また、咀明時の偏平カプセルの変化を調べるために、選
別後の偏平カプセルのみをポリイソブチレンに混入して
20回咀咀明た後に再び選別した。この結果、すべて偏
平カプセルと判定されたことから、偏平カプセルが咀喘
により球形に戻らないことが確認された。
In addition, in order to examine changes in the flat capsules during chewing, only the flat capsules after sorting were mixed in polyisobutylene, masticated 20 times, and then sorted again. As a result, all of the capsules were determined to be flat, confirming that the flat capsules do not return to their spherical shape due to mastication.

以上の2点から、偏平カプセルはカプセルが対顎の歯と
の間で直接噛み潰された事実の記録に相当し、これは二
度と消滅しないことが確認できた。
From the above two points, it was confirmed that the flat capsule corresponds to a record of the fact that the capsule was crushed directly between the teeth of the opposite jaw, and that this will never disappear again.

■内容物の散逸 咀喘によるカプセル内容物の散逸を調べる目的で、まず
、人工素塊に含有される規定量のカプセル群の重量をあ
らかじめ測定し、次に、これらを含有させた人工素塊を
100回咀嘴咀明後にカプセル群を抽出して、再度、重
量を測定したところ、これらの値は咀喘前後で、0.3
416gから0.3418gへ、つまり、6/10.0
00だけ微少量増加していた。なお、この増加はカプセ
ル表面に残留した粘着剤によるものと考えられる。
■ Dissipation of Contents In order to investigate the dissipation of capsule contents due to mastication, we first measured the weight of a specified amount of capsules contained in the artificial mass, and then After chewing 100 times, the capsule group was extracted and weighed again. These values were 0.3 before and after mastication.
From 416g to 0.3418g, that is, 6/10.0
There was a slight increase of 00. Note that this increase is considered to be due to the adhesive remaining on the capsule surface.

したがって、すくなくとも川明によるカプセル内容物の
散逸はないと考えてよいであろう。
Therefore, at the very least, it is safe to assume that Kawaaki did not dissipate the contents of the capsule.

以上から、球形カプセルが偏平カプセルになる前後で重
量が不変であることが確認された。
From the above, it was confirmed that the weight of a spherical capsule remains unchanged before and after becoming a flat capsule.

■人工素塊からの散逸 咀明時に人工素塊から散逸するカプセル数を調べるため
に、3名の被験者において人工素塊を100回咀明後せ
た後、これらを取り出し、良く注口させた後の廃液中の
粒子数を計測したところ、2ないし4個であった。
■ Dissipation from the artificial agglomerates In order to investigate the number of capsules dissipated from the artificial agglomerates during mastication, three subjects chewed the artificial agglomerates 100 times, then removed them and poured them well. When the number of particles in the waste liquid was counted, it was found to be 2 to 4 particles.

したがって、全粒子数から考えると、逸脱した粒子が定
量値に与える影響は無視できる。
Therefore, considering the total number of particles, the influence of deviating particles on the quantitative value can be ignored.

以」二述べた人工素塊に対する検討結果から、本発明の
人工素塊(マイクロカプセル含有チューインガム)は圧
縮能力を忠実に表すものであるといえる。
From the results of the study on the artificial raw mass described below, it can be said that the artificial raw mass (microcapsule-containing chewing gum) of the present invention faithfully represents the compression ability.

加えて、偏平カプセルの発生率を確率論における瞬時故
障率の問題としてとらえれば、ある1個のカプセルが噛
まれる確率は、咀明時に各咀明回を通じて一定不変とな
ると考えられるから、その発生率は指数分布に従うとい
える。
In addition, if we consider the incidence of flattened capsules as a problem of instantaneous failure rate in probability theory, the probability that a capsule will be bitten is considered to be constant throughout each mastication cycle, so the occurrence of flattened capsules is It can be said that the rate follows an exponential distribution.

3)圧縮能力値の算出法 (A)圧縮能力値の定義 まず、を回咀明後の人工素塊において、偏平カプセルの
全カプセル(球形カプセルと偏平カプセル)に対する数
量比を偏平カプセル率p (t)と定義し、この値と全
粒子数との積を偏平カプセル数n (t)と定義する。
3) Calculation method of compression ability value (A) Definition of compression ability value First, in the artificial mass after remunching, the ratio of the number of flat capsules to all capsules (spherical capsules and flat capsules) is calculated as the flat capsule ratio p ( t), and the product of this value and the total number of particles is defined as the number of flat capsules n (t).

次に、普遍性という観点からは、咀喘の圧縮能力の表記
は、1回咀明後にカプセルが潰される割合(すなわち1
回咀明後の偏平カブセル率)が好ましい。他方、具体性
という観点からは、1回咀明後にカプセルが潰される個
数(すなわち1明後明後の偏平カプセル数)が臨床的に
は有用である。
Next, from the perspective of universality, the expression of the compressive capacity of mastication is based on the rate at which the capsule is crushed after one mastication (i.e., 1
The flattened capsule rate after mastication is preferred. On the other hand, from the viewpoint of specificity, the number of crushed capsules after one mastication (ie, the number of flattened capsules after one morning) is clinically useful.

そこで、本実験では、1回咀明後の偏平カプセル率p(
1)と1回咀明後の偏平カプセル数n(1)の二つを圧
縮能力値、すなわち偏平粒子率と偏平粒子率と定義した
Therefore, in this experiment, the flat capsule ratio p(
1) and the number of flat capsules n(1) after one mastication were defined as the compression capacity value, that is, the flat particle ratio and the flat particle ratio.

(B)圧縮能力値の算出法 を回咀明後の人工金塊から抽出した偏平カプセルと球形
カプセルの各重量から数量比を求め、先に述べた指数分
布を考慮して圧縮能力値を以下の式で算出した。
(B) Calculation method of compression capacity value Calculate the quantitative ratio from the respective weights of flat capsules and spherical capsules extracted from artificial gold bullion after machining, and taking into account the exponential distribution mentioned above, calculate the compression capacity value as follows: It was calculated using the formula.

全粒子数二N =8.10x104  [個] を回咀明後の偏平カプセル率:p(t)=偏平カプセル
の重量/全カプセルの重量圧縮能力値: 偏平粒子率:p(1) =1−(1−p (t)  1/ を 偏平粒子数:n(1) =p (1) xN [個] 圧縮能力定量法の試行結果および考察 歯科疾患および顎運動障害のない20歳代の男女11人
を被験者として、圧縮能力定量法を試行した。その内訳
は、正常咬合者としては、個性正常咬合を有する男子5
人と女子4人であり、また、不正咬合者としては、臼歯
部が咬頭対咬頭で咬合するアングル■級1類女子1人と
、顎変形症による開校を呈するアングル■級男子1人で
あった。
Total number of particles N = 8.10 x 104 [pcs] Flat capsule ratio after chewing: p (t) = weight of flat capsule / weight of all capsules Compressibility value: flat particle ratio: p (1) = 1 -(1-p (t) 1/ is the number of flattened particles: n(1) = p (1) xN [pieces] Trial results and discussion of compressive capacity determination method Men and women in their 20s without dental disease or jaw movement disorders The compressive capacity quantitative method was tested on 11 subjects.
In addition, the malocclusion patients included one female who had an angle class 1 condition in which the molars occluded cusp-to-cusp, and one male student who had an angle class 1 condition with opening due to jaw deformity. Ta.

1)試行結果 本定量法の試行で得られた川明後の偏平カプセル率を表
1および表2に示す。これらをもとに偏平粒子率ならび
に偏平粒子数を算出するとともに、川明回数と偏平カプ
セル率、ならびに圧縮能力値の個人的変動、および個体
間変動を検討した。
1) Trial Results Tables 1 and 2 show the percentage of flattened capsules after Kawamei obtained in trials of this quantitative method. Based on these, we calculated the flat grain ratio and the number of flat grains, and also examined individual and interindividual variations in the number of rivers, the flat capsule ratio, and the compressibility value.

a)川明回数と偏平カプセル率 同−被験者(A)において、100回、200回、30
0回咀噌咀明行したところ、第6図に示すように、偏平
カプセル率は指数分布の分布係数に従って変化した(を
検定、危険率1%)。
a) Kawaaki number of times and flat capsule rate same - Subject (A), 100 times, 200 times, 30 times
When chewing was performed 0 times, as shown in FIG. 6, the flat capsule rate changed according to the distribution coefficient of an exponential distribution (tested, risk rate 1%).

したがって、圧縮能力値の計算式の成立が確認された。Therefore, it was confirmed that the formula for calculating the compression capacity value was established.

b)圧縮能力値の個人的変動 同−被験者(A)において、100回咀噌咀明回試行し
たときの、圧縮能力値の個人白変動量を調べるために変
動係数を算出した。
b) Individual variation in compression ability value In the same subject (A), a coefficient of variation was calculated to examine the amount of individual variation in compression ability value when the same subject (A) tried chewing and chewing 100 times.

変動係数は、標準偏差/平均で算出される。The coefficient of variation is calculated as standard deviation/mean.

その結果、偏平粒子率、偏平粒子数ともに変動係数は4
.24%であった(表3)。
As a result, the coefficient of variation for both the flat grain ratio and the number of flat grains was 4.
.. It was 24% (Table 3).

C)圧縮能力値の個体間変動 11人の被験者の圧縮能力値を表4ならびに第7図に示
す。
C) Interindividual variation in compression ability values The compression ability values of 11 subjects are shown in Table 4 and FIG. 7.

これらの圧縮能力値が示すように、正常咬合者の値は、
偏平粒子数にして、106個から321個まで、最小値
の最大値に対する比率にして、1:3.0の広い範囲に
分布した。
As these compressive capacity values show, the values for people with normal occlusion are
The number of flattened particles was distributed over a wide range from 106 to 321, and the ratio of the minimum value to the maximum value was 1:3.0.

また、男子の値は女子の値より高い値を示した。Furthermore, the values for boys were higher than those for girls.

アングル■級1類の女子のその値は55個であり、正常
咬合者の1/2以下であった。
The number of female patients with angle ■ class 1 was 55, which was less than 1/2 that of those with normal occlusion.

アングル■級開校男子のその値は44個と、男子正常咬
合者の1/3以下を示した。
The value for boys who opened school in the Angle ■ class was 44, less than 1/3 of the number of boys with normal occlusion.

2)考察 (A)圧縮能力値について ■指数分布 咀噌を食品の粉砕ではなく、人工金塊の圧縮過程でとら
えた。これに対して川明後の偏平カプセル率が指数分布
に従うことが確認されたことから、圧縮能力定量法は忠
実に咀明機能をとらえているものといえる。
2) Discussion (A) Regarding the compression capacity value ■ Exponential distribution mastication was captured not in the crushing of food, but in the compression process of artificial gold bullion. On the other hand, since it was confirmed that the flattened capsule ratio after Kawamei followed an exponential distribution, it can be said that the compressive capacity quantitative method faithfully captures the Kamei function.

■個人内変動 圧縮能力値の個人白変動量が小さいことから、これは各
個人の咀哩の圧縮能力を確実に表していると考えられる
■Intra-individual variation Since the amount of individual variation in the compression ability value is small, it is considered that this reliably represents the chewing compression ability of each individual.

■個体間変動 圧縮能力値の個体間変動量が大きいことから、これは咀
明の圧縮能力の個体間における違いを明確にとらえてい
ると思われる。
■ Inter-individual variation Since the amount of inter-individual variation in the compression ability value is large, this seems to clearly capture the difference between individuals in the compression ability of Tsuiming.

以上■〜■から、圧縮能力定量法は臨床的に有用な新し
い咀明機能の評価法といえる。
From the above (■ to ■), the compression ability quantitative method can be said to be a clinically useful new method for evaluating masticatory function.

(B)圧縮能力定量法の数理的解釈について圧縮能力定
量法に関して、指数分布と圧縮能力値、圧縮能力値の個
人的変動、ならびに咀明の圧縮エネルギーおよび咬合接
触面積の三つについて、数理的観点から検討した。
(B) Regarding the mathematical interpretation of the compressive ability quantitative method Regarding the compressive ability quantitative method, we have mathematically explained It was considered from this point of view.

■指数分布と圧縮能力値 偏平カプセル率が指数分布に従った、つまり指数分布の
分布関数に従った理由を、次の二つの数理的観点から考
察した。
■Exponential Distribution and Compressibility Value The reason why the flattened capsule ratio follows an exponential distribution, that is, it follows the distribution function of an exponential distribution, was considered from the following two mathematical viewpoints.

a)確率論的解釈 を明後明後の偏平カプセル率p(t)が指数分布の分布
関数に従うというのは、λを定数として、これらの間に
、 1) (t) =1−exp (−λt)・・・・・・
式1%式% この式1を分かりやすい形に変えれば、1−p (t)
 −exp (−λt)・・・・・・式1′となる。
a) Probabilistic interpretation: The fact that the flattened capsule rate p(t) follows the exponential distribution function means that between these, with λ as a constant, 1) (t) = 1-exp ( −λt)・・・・・・
Formula 1% Formula % If we change this formula 1 into an easy-to-understand form, 1-p (t)
-exp (-λt)...Equation 1' is obtained.

なお、exp (−λ)は圧縮能力値の偏平粒子率であ
る。
Note that exp (-λ) is the flattened grain ratio of the compression ability value.

ところで、式1の両辺をtで微分すると、確率密度関数
、 dp(t)/dt (λexp(−λ1))・・・・・・式2が得られる。
By the way, when both sides of Equation 1 are differentiated by t, the probability density function, dp(t)/dt (λexp(−λ1))...Equation 2 is obtained.

これは微小区間dtに存在する確率の密度を示している
。指数分布では、この式2の右辺を(1−p(t))で
割った値は、式1′より、以下のように、 (λexp (−λt)/exp(−λt)λ・・・・
・・・・・法則1 定数λとなる。
This indicates the density of probabilities existing in the minute interval dt. In the exponential distribution, the value obtained by dividing the right side of Equation 2 by (1-p(t)) is obtained from Equation 1' as follows: (λexp (-λt)/exp(-λt)λ...・
...Law 1 The constant λ.

したがって、法則1から咀#1回ごとに新しく偏平カプ
セルにされる粒子数と、その時点における偏平でないカ
プセル(球形カプセル)の粒子数との比は、咀明時に各
咀嘲目を通して一定不変であることが証明された。
Therefore, from Law 1, the ratio between the number of particles that are newly formed into flat capsules each time of chewing and the number of particles that are not flat (spherical capsules) at that time remains constant throughout each chewing process. It has been proven that there is.

b)幾何学的解釈 指数分布をシルピンスキーのギヤスケットと呼ばれる幾
何学的な三角形模様をもとに第8図のように表記するこ
とで、単純化して解釈してみた。
b) Geometrical Interpretation I attempted to simplify and interpret the index distribution by representing it as shown in Figure 8 based on a geometric triangular pattern called Szilpinski's gear sket.

まず、三角形模様において、人工金塊に含有されたカプ
セルを2色、すなわち、白を偏平でないカプセル、黒を
偏平カプセルとし、それらの粒子数を二角形の面積に対
応させた。
First, in the triangular pattern, the capsules contained in the artificial gold ingot were of two colors: white for non-flat capsules and black for flat capsules, and the number of particles was made to correspond to the area of the diagonal.

第1段階目として、100回咀明後明■の全カプセルの
1/4のカプセルが噛み潰されて偏平カプセルになり、
3/4が潰されずに残れば、白い三角形の1/4が黒く
なることであるから、偏平カプセル率は■のように表記
できる。
As the first step, after chewing 100 times, 1/4 of the total capsules of Ming ■ are chewed and crushed into flat capsules.
If 3/4 remains without being crushed, 1/4 of the white triangle becomes black, so the flat capsule ratio can be expressed as ■.

次に、第2段階目として、さらに100回咀明後、延べ
200回咀明後明偏平カプセル率は、これが指数分布に
従うとすれば、法則1から常に白い三角形の1/4が黒
くなるから、■のように表せる。
Next, as the second step, after chewing an additional 100 times, the percentage of bright flat capsules after chewing a total of 200 times is, if this follows an exponential distribution, then from Law 1, 1/4 of the white triangle will always be black. It can be expressed as , ■.

以上は白い三角形の面積、すなわち、偏平でないカプセ
ル数の割合が3/4ずつ変化したことに注目すると、 0回咀明後のその割合は、 (3/4)  0 (−1) 100回咀明後明、 (3/4)+  (−3/4) 200回咀明後明、 (3/4)2  (=9/16) と表せ、Tを何段階目かを示す自然数とすれば、以後は
、 (3/4)” と帰納できる。
If we pay attention to the fact that the area of the white triangle, that is, the ratio of the number of capsules that are not flat, changes by 3/4, the ratio after 0 chewings is (3/4) 0 (-1) 100 chewings. Light after light, (3/4) + (-3/4) 200 times light after light, (3/4)2 (=9/16) If T is a natural number indicating the stage, then , henceforth, it can be deduced as (3/4).

これを式1′にならって表せば、 1−p (T)= (3/4) T・・・・・・・・・
式3ただし、T= t/100 となる。これは式1′に相当し、1/4は法則1のλに
相当する。なお、式3と式1′から求めたλの値は−A
n(3/4)、(+0288)であり、1/4と異なる
が、これは100回ごとの咀明回数を対象としているた
めであり、Tの値を小さくしていくと、これらは極限で
は等しくなる。この式から、三角形模様による偏平カプ
セル率が指数分布に従うことが確認された。
If we express this according to equation 1', 1-p (T) = (3/4) T...
Equation 3 However, T=t/100. This corresponds to equation 1', and 1/4 corresponds to λ in law 1. Note that the value of λ obtained from equation 3 and equation 1' is -A
n(3/4) and (+0288), which are different from 1/4, but this is because the target is the number of mastications every 100 times, and as the value of T is decreased, these values reach the limit. So it becomes equal. From this equation, it was confirmed that the flattened capsule ratio due to the triangular pattern follows an exponential distribution.

さらに、指数分布の意味を解釈するにあたり、三角形模
様において黒い三角形を重複して黒くすることは白い三
角形には影響しないので、これを条件として与えてみた
Furthermore, when interpreting the meaning of the exponential distribution, we set this as a condition since making black triangles redundantly black in a triangular pattern does not affect the white triangles.

この条件のもとに、圧縮能力が一定不変、すなわち咀明
1回ごとに噛まれるカプセルの確率が一定不変の場合を
考えれば、このときの偏平カプセル率は、各段階ごとに
常に三角形全体の1/4が黒くなることと単純に表記で
きる。これは各段階ごとに三角形のすべての微小部分が
同じ割合で黒くなることであるから、白い部分に注目す
れば、式3が成り立つことが分かる。
Under this condition, if we consider that the compression capacity remains constant, that is, the probability of a capsule being chewed per mastication remains constant, the flat capsule ratio in this case is always equal to the proportion of the entire triangle at each stage. It can be simply written as 1/4 becoming black. This means that all the minute parts of the triangle turn black at the same rate at each stage, so if we pay attention to the white parts, we can see that Equation 3 holds true.

したがって、咀明時に各咀明回を通じて圧縮能力値が一
定不変の場合には、偏平カブセル率が指数分布に従うこ
とが幾何学的に証明できた。
Therefore, it was geometrically proven that the flattened capsule ratio follows an exponential distribution if the compression capacity value remains constant throughout each mastication cycle during mastication.

以上、偏平カプセル率が指数分布に従ったことを確率論
的ならびに幾何学的に考察して、圧縮能力定量法は、期
待したとおりに、各咀明回を通して一定不変の圧縮能力
をとらえていることが証明された。
As described above, considering the fact that the flattened capsule ratio follows an exponential distribution from a stochastic and geometrical perspective, the compressive ability quantitative method captures the compressive ability that remains constant throughout each mastication cycle, as expected. This has been proven.

■圧縮能力値の変動係数について 試行結果での圧縮能力値の変動係数は4゜24%であっ
たが、全粒子数N5咀噌回数t1偏平粒子率p(1)お
よびサンプリング率Sの関係を、2項分布に近似させて
、理論的に概算される変動係数を以下の式から求めてみ
た。
■About the coefficient of variation of the compression capacity value The coefficient of variation of the compression capacity value in the trial results was 4°24%. , the coefficient of variation that can be theoretically estimated by approximating the binomial distribution was obtained from the following formula.

理論的に概算される変動係数は次のとおりb)る。The coefficient of variation that can be theoretically estimated is as follows b).

[(Np  (1)  (i−p  (1)  1  
j/2/Np  (1)]  X  (1/ tl/2
)× (1/81/2) この値は2.51%であったが、これと試行結果の値と
の差が1.73%と小さいことから、圧縮能力定量法の
信頼性が確率論的にも確認された。
[(Np (1) (i-p (1) 1
j/2/Np (1)]
) × (1/81/2) This value was 2.51%, but since the difference between this and the trial result value was as small as 1.73%, the reliability of the compression capacity quantitative method was determined by probability theory. It was also confirmed.

上記の式からすれば、t】/2、すなわち、川明回数の
平方根に比例して変動量は小さくなるわけである。この
式をもとに、定量法の咀明回数を変えた場合の変動係数
を推定して、試行結果の100回咀噌咀明4.24%と
比較し、てみると、200回に増やせば3.0i%と小
さくなり、逆に、50回に減らせば、5.98%と大き
くなることが推測される。
According to the above equation, the amount of variation decreases in proportion to t]/2, that is, the square root of the number of river changes. Based on this formula, we estimate the coefficient of variation when changing the number of mastications in the quantitative method, and compare it with the trial result of 4.24% for 100 mastications, and find that it can be increased to 200. It is estimated that if the number of times is reduced to 50 times, it will be as small as 3.0i%, and on the other hand, it will be as large as 5.98%.

これ(、゛、対して、11人の被験者の経験例からすれ
ば、疲労を考えると、臨床的には100回が妥当と思わ
れる。
On the other hand, based on the experience of 11 subjects, 100 times seems clinically appropriate considering fatigue.

また、同じ式からすれば、選別の項で述べたサンプリン
グの影響で、以−ヒの変動量は、真の値よりも見かけ上
、(1/S1/2)倍大きいと考えられる。したがって
、選別の効率を上げて全カプセルを選別するならば、こ
れらを約1 / 101/2倍にまで小さくできる。
Also, from the same equation, it can be considered that due to the influence of sampling mentioned in the selection section, the amount of variation below is apparently (1/S1/2) times larger than the true value. Therefore, if all capsules are sorted by increasing the efficiency of sorting, these can be reduced to about 1/101/2 times.

■川明の圧縮エネルギーおよび咬合接触面積圧縮能力が
定量できれば、すでに述べたように、粒子における荷重
と変形の関係をもとに川明の圧縮エネルギーも評価でき
る。すなわち、圧縮能力値から、片側1回咀明時の圧縮
エネルギー(川明の圧縮エネルギーとする)を算出でき
る。
■If the compressive energy and occlusal contact area compression ability of Kawamei can be quantified, the compressive energy of Kawamei can also be evaluated based on the relationship between load and deformation in particles, as already mentioned. That is, from the compression ability value, the compression energy when masticating once on one side (referred to as Kawaaki's compression energy) can be calculated.

これとともに、先に述べたカプセル数の密度をもとに、
圧縮能力値から片側1−回咀明時のカプセルの圧縮に機
能した咬合面積(咬合接触面積とする)も算出できる。
Along with this, based on the density of the number of capsules mentioned earlier,
From the compression ability value, the occlusal area (referred to as occlusal contact area) that functions in compressing the capsule during 1-time chewing on one side can also be calculated.

なお、川明には、人工素塊の圧縮、およびカプセル群の
圧縮に要する2種のエネルギーが考えられるが、人工素
塊の粘性率から推定すれば、前者は後者の5%程度であ
り、川明運動の速さにも依存するため、算出の対象から
除外した。
In addition, in Kawamei, there are two types of energy required for compression of the artificial mass and the compression of the capsule group, but if estimated from the viscosity of the artificial mass, the former is about 5% of the latter. Since it also depends on the speed of Kawamei's movement, it was excluded from the calculations.

まず、第3図のカプセルにおける荷重と変形の関係をも
とに、第9図に示すように荷重を作用距離で積分して、
偏平カプセルの変形に要したエネルギーを各粒子径ごと
に計算し、これらの平均値を4.5X10−”J/個と
求めた。
First, based on the relationship between the load and deformation in the capsule shown in Figure 3, the load is integrated over the action distance as shown in Figure 9.
The energy required to deform the flat capsule was calculated for each particle size, and the average value was determined to be 4.5 x 10-''J/piece.

この値と偏平粒子数との積から、川明の圧縮エネルギー
を求めた(表5)。
Kawamei's compression energy was determined from the product of this value and the number of flattened particles (Table 5).

また、先のカプセル密度の逆数0.532mm27個と
偏平粒子数との積から、咬合接触面積を求めた(同じく
表5)。
In addition, the occlusal contact area was determined from the product of the reciprocal of the capsule density (0.532 mm27) and the number of flattened particles (also shown in Table 5).

たとえば、本実験の5人の男子正常咬合者の圧縮能力値
の中央値に対して、以上の計算を行うと、川明の圧縮エ
ネルギーは9.45xlQ−3J、咬合接触面積は11
.2mm2であった。
For example, when performing the above calculations on the median compressive ability value of the five male subjects with normal occlusion in this experiment, Kawaaki's compressive energy is 9.45xlQ-3J, and the occlusal contact area is 11
.. It was 2 mm2.

咬合接触面積については、プレスケールによる成人男子
正常咬合者の咬合接触面積は、11人の平均値が11.
74+n+n2と報告されているので、得られた計算値
と近似していた。
Regarding the occlusal contact area, the average value of the occlusal contact area of 11 male adults with normal occlusion according to the prescale was 11.
74+n+n2, which was close to the calculated value obtained.

以上のように圧縮能力定量法を数理的に検討することで
、圧縮能力値の変動係数をはじめ、川明の圧縮エネルギ
ーおよび咬合接触面積をも推定しうることは、この方法
が咀噌機能の評価法としての有用性ないし発展性をもつ
ことを示唆している。
By mathematically examining the compressive capacity quantification method as described above, it is possible to estimate the coefficient of variation of the compressive capacity value, as well as Kawaaki's compressive energy and occlusal contact area. This suggests that it has usefulness or potential for development as an evaluation method.

結  論 本実験は咀噌機能を客観的に評価するにあたり、川明の
圧縮能力の定量を目的として行った。
Conclusion This experiment was conducted for the purpose of quantifying the compressive ability of kawamei in order to objectively evaluate the masticatory function.

このために、まず、川明の圧縮エネルギーを食品が粉砕
に至る以前の圧縮変形でとらえ、これを意図した人工素
塊としてポリカーボネート製のマイクロカプセルを含有
したチューインガムを作製し、次に、これによる圧縮能
力定量法を設定して試行した。
To this end, we first captured Kawamei's compression energy in the compressive deformation of food before it is crushed, produced chewing gum containing polycarbonate microcapsules as an artificial mass intended for this purpose, and then A compression capacity determination method was set up and tested.

20歳代男女11人(男子6人、女子5人)を被験者に
して得た試行結果から、圧縮能力値の個人内変動は4.
24%と小さいこと、一方、個体間変動は9人の正常咬
合者における最小値の最大値に対する比率にして、1:
3.0と大きいことが分かった。
Based on the trial results obtained with 11 men and women in their 20s (6 boys, 5 girls) as subjects, the intra-individual variation in compression ability value was 4.
On the other hand, the interindividual variation was as small as 24%, and the ratio of the minimum value to the maximum value in nine normal occlusion patients was 1:
It turned out to be as large as 3.0.

さらに、この方法を数理的に検討することで、個人白変
動量、咀噌の圧縮エネルギーおよび咬合接触面積をも推
定できた。
Furthermore, by mathematically examining this method, we were able to estimate individual white variation, chewing compression energy, and occlusal contact area.

【図面の簡単な説明】 第1図は本発明に用いるカプセルを作製する工程の一例
を示す説明図、 第2図は同一粒子径のカプセルにおける荷重と変形の関
係を示すグラフ、 第3図は異なる粒子径のカプセルにおける荷重と変形の
関係を示すグラフ、 第4図は人工素塊の粘性率の測定方法を示す図、 第5図は咀明時の人工素塊の粘性率を示すグラフ、 第6図は咀明回数と偏平カプセル率との関係を示すグラ
フ、 第7図は圧縮能力値の個体間変動を示す図、第8図は指
数分布の幾何学的解釈法を示す説明図、 第9図はカプセルにおける荷重と変形量およびエネルギ
ーとの関係を示すグラフである。 第4 図 2υυ 50〔メtm[ ■(3/4)’ 二l ■(3/4)’ =374 ■<3/4 )2 =9/16 1υO(μm) 手続補正書(自制 平成2年4月)7日
[Brief Description of the Drawings] Figure 1 is an explanatory diagram showing an example of the process of producing capsules used in the present invention, Figure 2 is a graph showing the relationship between load and deformation in capsules with the same particle size, and Figure 3 is Graph showing the relationship between load and deformation in capsules of different particle sizes, Figure 4 is a diagram showing the method for measuring the viscosity of the artificial mass, Figure 5 is a graph showing the viscosity of the artificial mass during chewing, Figure 6 is a graph showing the relationship between the number of times of chewing and the flat capsule ratio, Figure 7 is a graph showing inter-individual variation in compression ability value, Figure 8 is an explanatory diagram showing the geometric interpretation method of exponential distribution, FIG. 9 is a graph showing the relationship between load, deformation amount, and energy in the capsule. 4th Figure 2υυ 50 [metm[ ■(3/4)' 2l ■(3/4)' = 374 ■<3/4 )2 = 9/16 1υO (μm) Procedural Amendment (Self-restraint 1990 April) 7th

Claims (1)

【特許請求の範囲】[Claims]  咬合圧で圧縮させる咀嚼機能評価用の機能性微粒子を
含有することを特徴とする咀嚼機能評価用の機能性微粒
子を含有する人工食塊。
An artificial food bolus containing functional fine particles for evaluating masticatory function, characterized in that it contains functional fine particles for evaluating masticatory function that are compressed by occlusal pressure.
JP2107335A 1990-04-25 1990-04-25 Artificial bolus containing functional fine particles for evaluation of masticatory function Expired - Lifetime JP2900947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107335A JP2900947B2 (en) 1990-04-25 1990-04-25 Artificial bolus containing functional fine particles for evaluation of masticatory function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107335A JP2900947B2 (en) 1990-04-25 1990-04-25 Artificial bolus containing functional fine particles for evaluation of masticatory function

Publications (2)

Publication Number Publication Date
JPH045958A true JPH045958A (en) 1992-01-09
JP2900947B2 JP2900947B2 (en) 1999-06-02

Family

ID=14456445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107335A Expired - Lifetime JP2900947B2 (en) 1990-04-25 1990-04-25 Artificial bolus containing functional fine particles for evaluation of masticatory function

Country Status (1)

Country Link
JP (1) JP2900947B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183886A (en) * 2009-02-13 2010-08-26 Tokyo Dental College Method for designing gum base
EP2052696A4 (en) * 2006-08-15 2013-02-06 Examastica Co System for evaluating mastication function and artificial food mass
CN103906481A (en) * 2011-10-26 2014-07-02 罗蒂株式会社 Color scale for assessing xylitol chewing gum mastication force
JP2020031764A (en) * 2018-08-28 2020-03-05 株式会社エグザマスティカ Mastication function evaluation system and mastication function evaluation method, and mastication function evaluation program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151101B2 (en) * 2013-06-13 2017-06-21 タカハタプレシジョンジャパン株式会社 Sample preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2052696A4 (en) * 2006-08-15 2013-02-06 Examastica Co System for evaluating mastication function and artificial food mass
JP2010183886A (en) * 2009-02-13 2010-08-26 Tokyo Dental College Method for designing gum base
CN103906481A (en) * 2011-10-26 2014-07-02 罗蒂株式会社 Color scale for assessing xylitol chewing gum mastication force
CN103906481B (en) * 2011-10-26 2016-05-04 罗蒂株式会社 Xylitol chewing gum masticatory force judgement colour code
JP2020031764A (en) * 2018-08-28 2020-03-05 株式会社エグザマスティカ Mastication function evaluation system and mastication function evaluation method, and mastication function evaluation program

Also Published As

Publication number Publication date
JP2900947B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
Wilding The association between chewing efficiency and occlusal contact area in man
de Abreu et al. Masticatory efficiency and bite force in individuals with normal occlusion
Prinz et al. Swallow thresholds in human mastication
Agrawal et al. Mechanical properties of foods responsible for resisting food breakdown in the human mouth
Van der Bilt et al. Comparing masticatory performance and mixing ability
Issa et al. Healing of oral lichenoid lesions after replacing amalgam restorations: a systematic review
Buschang et al. The effects of bolus size and chewing rate on masticatory performance with artificial test foods
Van der Bilt et al. Comparison of single and multiple sieve methods for the determination of masticatory performance
JP4819124B2 (en) Chewing function evaluation system and artificial bolus
Kaya et al. Two‐colour chewing gum mixing ability test for evaluating masticatory performance in children with mixed dentition: validity and reliability study
Van der Glas et al. Measurement of selection chances and breakage functions during chewing in man
Eberhard et al. Comparison of particle‐size distributions determined by optical scanning and by sieving in the assessment of masticatory performance
Olthoff et al. Comparison of force‐deformation characteristics of artificial and several natural foods for chewing experiments
Prati et al. Dentin morphology and permeability after brushing with different toothpastes in the presence and absence of smear layer
JPH045958A (en) Artificial food lump containing functional fine particle for evaluating mastication function
Khoury-Ribas et al. Reliability of a new test food to assess masticatory function
Anastassiadou et al. The development of a simple objective test of mastication suitable for older people, using chewing gums
Sheine et al. A model for comparison of masticatory effectiveness in primates
Moritaka et al. Effects of the gel size before ingestion and agarose molecular weight on the textural properties of a gel bolus
Van Den Braber et al. Chewing efficiency of pre‐orthognathic surgery patients: selection and breakage of food particles
Sierpinska et al. The effect of mastication on occlusal parameters in healthy volunteers
Mair Wear patterns in two amalgams and three posterior composites after 5 years' clinical service
Schneider et al. Coffee beans as a natural test food for the evaluation of the masticatory efficiency
Odeku et al. Effects of interacting variables on the tensile strength and the release properties of paracetamol tablets
Prinz et al. ‘The first bite of the cherry’Intra‐oral manipulation prior to the first bite in humans

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12