JPH0459442B2 - - Google Patents

Info

Publication number
JPH0459442B2
JPH0459442B2 JP57022717A JP2271782A JPH0459442B2 JP H0459442 B2 JPH0459442 B2 JP H0459442B2 JP 57022717 A JP57022717 A JP 57022717A JP 2271782 A JP2271782 A JP 2271782A JP H0459442 B2 JPH0459442 B2 JP H0459442B2
Authority
JP
Japan
Prior art keywords
disk
bolt
rotor
stacking
disks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57022717A
Other languages
Japanese (ja)
Other versions
JPS58140406A (en
Inventor
Toshio Hatsutori
Hiroo Oonishi
Yasunari Kashiwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2271782A priority Critical patent/JPS58140406A/en
Publication of JPS58140406A publication Critical patent/JPS58140406A/en
Publication of JPH0459442B2 publication Critical patent/JPH0459442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/066Connecting means for joining rotor-discs or rotor-elements together, e.g. by a central bolt, by clamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多段のデイスクをボルトによつて締
め付けて構成されるターボ機械のスタツクドロー
タに係り、特に圧縮機側から負荷を取り出すガス
タービンシステムの軸流圧縮機に好適なターボ機
械のスタツクドロータの関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a stacked rotor for a turbomachine constructed by tightening multi-stage disks with bolts, and is particularly applicable to a gas turbine system in which load is taken out from the compressor side. The present invention relates to a stacked rotor for a turbomachine suitable for an axial compressor.

〔従来の技術およびその課題〕[Conventional technology and its problems]

従来の軸流圧縮機のスタツクドロータを第1図
により説明する。図はロータの断面図で、左側が
前段側で、右側が後段側であり、1はデイスク、
2は動翼、3はスタツキングボルトで、多数枚の
デイスク1をこのスタツキングボルト3とナツト
4,5で締め付けることによつてロータを構成し
ている。またこれらデイスク1間の径方向の拘束
はいんろう7により行われている。スタツキング
ボルト3とデイスク1のボルト孔とのはめ合い
は、各デイスク1のボルト孔ピツチ等の工作誤差
を許容して組立られるように、第2図に示すよう
に1段おきにバカ穴とし、デイスク1とスタツキ
ングボルト3との隙間8を設け、他の段は隙間の
ほとんどないリーマ孔としていた。したがつて、
ロータに加わるトルクに対する隣接デイスク間の
相対ずれの抵抗は、隣接デイスク間の接触面6の
摩擦にのみ頼つていた。ここで従来の一般的なガ
スタービンシステムの配置を第3図に示す。この
図に示すように、軸流圧縮機11、タービン1
2、負荷14は、軸流圧縮機11−タービン12
−負荷(発電機)14の順に配置され、軸流圧縮
機及びタービンは、軸流圧縮機側軸受17、中間
軸受18及びタービン側軸受19によつて支持さ
れている。したがつて、軸流圧縮機ロータに加わ
るトルクは、前段側15で0、後段側16で軸流
圧縮機の仕事トルクTCとなり、それ程大きくな
く、かつ、軸系の振動に関しても軸受が多く十分
安全であつた。しかし、最近、第4図に示すよう
に負荷14を軸流圧縮機11側から取り出す、負
荷14−軸流圧縮機11−タービン12の順の配
置も必要になつてきた。また軸流圧縮機、タービ
ン軸系の軽量化のために中間軸受を除き、軸流圧
縮機側軸受17及びタービン側軸受19のみによ
り支持する必要も生じてきた。これらの構造で
は、軸流圧縮機ロータに加わるトルクは、前段側
で負荷トルクTO、後段側でタービン出力トルク
TT(=TO+TC)と大きなトルクが加わるように
なり、前述のスタツキングロータでは各デイスク
間に相対すべり発生の危険が増大し、また、軸系
スパンが長くなり軸系振動に対し充分な曲げ剛性
を有していない等の欠点が生じてきた。
A stacked rotor of a conventional axial flow compressor will be explained with reference to FIG. The figure is a cross-sectional view of the rotor, where the left side is the front stage side, the right side is the rear stage side, 1 is the disk,
2 is a moving blade, 3 is a stacking bolt, and a rotor is constructed by tightening a large number of disks 1 with the stacking bolt 3 and nuts 4 and 5. Further, the radial restraint between these disks 1 is performed by a bolt 7. The fit between the stacking bolts 3 and the bolt holes of the disk 1 is made by inserting holes in every other row as shown in Figure 2, so that machining errors such as the bolt hole pitch of each disk 1 can be tolerated. A gap 8 was provided between the disk 1 and the stacking bolt 3, and the other stages were reamed holes with almost no gaps. Therefore,
The resistance of the relative displacement between adjacent disks to the torque applied to the rotor relied solely on the friction of the contact surfaces 6 between adjacent disks. Here, the arrangement of a conventional general gas turbine system is shown in FIG. As shown in this figure, an axial compressor 11, a turbine 1
2. The load 14 is the axial compressor 11-turbine 12
- The load (generator) 14 is arranged in this order, and the axial compressor and the turbine are supported by an axial compressor side bearing 17, an intermediate bearing 18, and a turbine side bearing 19. Therefore, the torque applied to the axial compressor rotor is 0 on the front stage side 15 and the work torque T C of the axial compressor on the rear stage side 16, which is not so large, and the bearings have a large amount of vibration in the shaft system. It was safe enough. However, recently, as shown in FIG. 4, it has become necessary to take out the load 14 from the axial compressor 11 side, arranging the load 14, the axial compressor 11, and the turbine 12 in this order. Furthermore, in order to reduce the weight of the axial compressor and turbine shaft systems, it has become necessary to remove the intermediate bearing and support them only by the axial compressor side bearing 17 and the turbine side bearing 19. In these structures, the torque applied to the axial compressor rotor is the load torque T O on the front stage side and the turbine output torque on the rear stage side.
A large torque of T T (=T O + T C ) is now applied, and in the stacking rotor mentioned above, there is an increased risk of relative slippage between the disks, and the shaft system span becomes longer, causing shaft system vibration. However, there have been drawbacks such as not having sufficient bending rigidity.

なお、特公昭33−8234号公報には、前段側デイ
スクと後段側デイスクをそれぞれ別々のスタツキ
ングボルトで締め付けて、各デイスク間の相対す
べり発生を回避するようにしたロータが提案され
ているが、前段側デイスクの相対すべり防止の点
では不充分であつた。
Note that Japanese Patent Publication No. 33-8234 proposes a rotor in which the front-stage disc and the rear-stage disc are each tightened with separate stacking bolts to avoid relative slippage between the discs. However, this was insufficient in terms of preventing relative slippage of the front disk.

また、デイスクの外周リム部にデイスク相互間
の接触部を形成し、デイスクの相対すべりを防止
するようにしたロータが提案されているが、この
場合、後段側デイスクにも上記接触部をしてしま
うと、各デイスク間に全く隙間が存在しないこと
になり、デイスクが熱により変形したときにその
変形を吸収することができず、ロータ全体が変形
してしまう恐れがある。
In addition, a rotor has been proposed in which a contact portion between the disks is formed on the outer rim of the disk to prevent relative sliding of the disks, but in this case, the contact portion is also formed on the rear disk. If this happens, there will be no gap at all between the disks, and when the disks deform due to heat, the deformation cannot be absorbed, and there is a risk that the entire rotor will deform.

本発明の目的は、前段側デイスクにおいてデイ
スク相互の相対すべりに対する抵抗(トルク伝達
能力)を高め、かつ、ロータの曲げ剛性を高める
とともに、後段側でのロータの熱変形を防止する
ことである。
An object of the present invention is to increase the resistance (torque transmission ability) against relative slip between the disks in the front stage disk, increase the bending rigidity of the rotor, and prevent thermal deformation of the rotor in the rear stage side.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、前段側
デイスクと後段側デイスクがそれぞれ別々のスタ
ツキングボルトによつて締め付けられ、かつ前段
側デイスクのスタツキングボルト配置ピツチ径が
後段側デイスクのスタツキングボルト配置ピツチ
径より小さく構成されたターボ機械のスタツクド
ロータにおいて、前記後段側デイスクの外周リム
部にはデイスク相互間の接触部を形成せず、前記
前段側デイスクの外周リム部にのみデイスク相互
間の接触部を形成するとともに、前記前段側デイ
スクのスタツキングボルトと該スタツキングボル
トが挿通されるボルト孔とのはめ合い隙間を極力
小さくしたことを特徴としている。
In order to achieve the above object, the present invention provides that the front side disk and the rear side disk are each tightened by separate stacking bolts, and the stacking bolt arrangement pitch diameter of the front side disk is different from that of the rear side disk. In a stacked rotor for a turbomachine configured to be smaller than the stacking bolt arrangement pitch diameter, no contact portion between the disks is formed on the outer rim of the rear disk, and the disk is formed only on the outer rim of the front disk. It is characterized in that a mutual contact portion is formed, and a fitting gap between the stacking bolt of the front disk and the bolt hole through which the stacking bolt is inserted is made as small as possible.

〔作用〕[Effect]

上記構成によれば、前段側デイスクでは、外周
リム部の接触部が相互に接触しその接触部の摩擦
抵抗が大きくなるとともに、スタツキングボルト
外面とそのスタツキングボルトが挿通されるボル
ト孔内面とが密着した状態となつて、ボルトのせ
ん断力によつて各デイスクが互いに強固に固定さ
れるため、デイスク間の相対すべりの発生を抑え
ることができる。その結果、トルク伝達能力とロ
ータの曲げ剛性とを向上させることが可能とな
る。また、後段側デイスクの外周リム部には接触
部が形成されておらず隙間が存在するため、デイ
スクが熱変形した場合にはその変形は上記隙間で
吸収され、後段側でロータが変形することを防止
することができる。
According to the above structure, in the front disk, the contact parts of the outer rim parts contact each other, and the frictional resistance of the contact parts increases, and the outer surface of the stacking bolt and the bolt hole through which the stacking bolt is inserted. Since the inner surfaces are in close contact with each other and the respective disks are firmly fixed to each other by the shear force of the bolts, relative slippage between the disks can be suppressed. As a result, it becomes possible to improve the torque transmission ability and the bending rigidity of the rotor. In addition, since no contact part is formed on the outer rim of the rear-stage disk and there is a gap, if the disk is thermally deformed, the deformation will be absorbed by the gap and the rotor will not be deformed on the rear-stage side. can be prevented.

〔実施例〕〔Example〕

以下に、本発明のスタツクドロータの一実施例
を第5図および第6図を用いて説明する。第5図
および第6図に示すロータは、スタツキングボル
トのピツチ径を前段側と後段側とで変化させた構
造のものである。すなわち、デイスク外径の小さ
い前3段分の前段側のみはボルトピツチ径の小さ
いスタツキングボルト3′でまず締め付け、外径
の大きい3段以降の後段側は充分大きいボルトピ
ツチ径のスタツキングボルト3″で締め付けたも
のであり、トルク負荷の大きい後段側で大きなト
ルク伝達能力を有するようになつている。
An embodiment of the stacked rotor of the present invention will be described below with reference to FIGS. 5 and 6. The rotor shown in FIGS. 5 and 6 has a structure in which the pitch diameter of the stacking bolt is changed between the front stage side and the rear stage side. In other words, first tighten the stacking bolts 3' with small bolt pitch diameters only on the front stage side of the first three stages where the outer diameter of the disc is smaller, and then tighten the stacking bolts with sufficiently large bolt pitch diameters on the rear stages after the third stage with large outer diameters. It is tightened to 3" and has a large torque transmission capacity on the rear stage side where the torque load is large.

このようなロータにおいては、前段側でのボル
トピツチ径が過度に小さくなり、トルク伝達能力
が不足する場合があるので、第6図に詳細に示す
ように、前段側のデイスク1の外周リム部に接触
部6を形成し、この接触部6で隣接デイスクを相
互に接触させる構成とする。このようにすれば、
接触部に生じる摩擦抵抗により、デイスク相互間
でトルク伝達が行われ、しかも接触部がデイスク
外周リム部にあるため、大きなトルクを伝達する
ことが可能となり、トルク伝達能力が向上すると
ともにロータ軸径の剛性も高くなる。
In such a rotor, the bolt pitch diameter on the front stage side becomes excessively small, and the torque transmission capacity may be insufficient. A contact portion 6 is formed, and adjacent disks are brought into contact with each other through this contact portion 6. If you do this,
Torque is transmitted between the disks due to the frictional resistance generated at the contact area, and since the contact area is located on the outer rim of the disk, it is possible to transmit large torque, improving torque transmission ability and reducing the rotor shaft diameter. The rigidity also increases.

また、後段側デイスクには、外周リム部の接触
部は形成せず、デイスク相互間に隙間が存在して
いる。このようにすると、デイスクが熱変形した
場合、その熱変形が隙間によつて吸収され、ロー
タ全体としては変形は生じないことになる。
Further, the rear-stage disk does not have a contact portion of the outer rim portion, and a gap exists between the disks. In this way, when the disk is thermally deformed, the thermal deformation is absorbed by the gap, and the rotor as a whole does not deform.

さらに、前段側のみについてボルト孔を全てリ
ーマ孔として、ボルト外径とボルト孔内径との隙
間を極力小さくし、ボルト外面とボルト孔内面が
略密着する構造にすると、ロータのトルク伝達を
ボルトのせん断によつても負担できるようにな
り、より一層充分なトルク伝達能力が得られる。
前段側の小数段のみならば、はめ合い隙間の小さ
い全リーマ孔としても特に組立上問題にならな
い。
Furthermore, if all the bolt holes on the front stage side are reamed holes, the gap between the bolt outer diameter and the bolt hole inner diameter is made as small as possible, and the bolt outer surface and the bolt hole inner surface are in close contact with each other, the rotor torque transmission can be reduced. It can also bear the burden of shearing, and even more sufficient torque transmission ability can be obtained.
If there are only a few decimal stages on the front stage side, there is no particular problem in assembling even if all the reamed holes have small fitting gaps.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、デイス
ク前段側においては、外周リム部に形成された接
触部の摩擦抵抗とスタツキングボルトのせん断に
よつてトルク伝達を行うことができるので、トル
ク伝達能力を向上させることができるとともに、
ロータの曲げ剛性も高めることが可能となる。
As explained above, according to the present invention, torque can be transmitted on the front stage side of the disk by the frictional resistance of the contact part formed on the outer rim part and the shearing of the stacking bolt. In addition to being able to improve communication ability,
It is also possible to increase the bending rigidity of the rotor.

また、後段側デイスクにはデイスク相互間に隙
間が形成されるため、デイスクが熱変形した場合
にもその熱変形が隙間によつて吸収され、後段側
でのロータの熱変形を防止することができる。
In addition, since gaps are formed between the disks on the rear stage side, even if the disks are thermally deformed, the thermal deformation is absorbed by the gap, preventing thermal deformation of the rotor on the rear stage side. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の軸流圧縮機ロータの断面図、第
2図は第1図のボルト孔部の詳細を示す拡大図、
第3図および第4図はそれぞれ従来及びコンバイ
ンドサイクル用ガスタービンシステムの配置図、
第5図は本発明のターボ機械のスタツクドロータ
の一実施例の断面図、第6図は本発明の要部を示
す断面図である。 1……デイスク、2……動翼、3′,3″……ス
タツキングボルト、6……接触部。
Figure 1 is a sectional view of a conventional axial compressor rotor, Figure 2 is an enlarged view showing details of the bolt holes in Figure 1,
Figures 3 and 4 are layout diagrams of conventional and combined cycle gas turbine systems, respectively;
FIG. 5 is a cross-sectional view of one embodiment of a stacked rotor for a turbomachine according to the present invention, and FIG. 6 is a cross-sectional view showing essential parts of the present invention. 1... Disk, 2... Moving blade, 3', 3''... Stacking bolt, 6... Contact portion.

Claims (1)

【特許請求の範囲】 1 前段側デイスクと後段側デイスクがそれぞれ
別々のスタツキングボルトによつて締め付けら
れ、かつ前段側デイスクのスタツキングボルト配
置ピツチ径が後段側デイスクのスタツキングボル
ト配置ピツチ径より小さく構成されたターボ機械
のスタツクドロータにおいて、 前記後段側デイスクの外周リム部にはデイスク
相互間の接触部を形成せず、前記前段側デイスク
の外周リム部にのみデイスク相互間の接触部を形
成するとともに、前記前段側デイスクのスタツキ
ングボルトと該スタツキングボルトが挿通される
ボルト孔とのはめ合い隙間を極力小さくしたこと
を特徴とするターボ機械のスタツクドロータ。 2 前記前段側デイスクのスタツキングボルトが
挿通されるボルト孔をリーマ孔としたことを特徴
とする特許請求の範囲第1項記載のターボ機械の
スタツクドロータ。
[Claims] 1. The front side disk and the rear side disk are each tightened by separate stacking bolts, and the stacking bolt arrangement pitch diameter of the front side disk is the same as the stacking bolt arrangement pitch of the rear side disk. In a stacked rotor for a turbomachine configured to be smaller than a pitch diameter, a contact portion between the disks is not formed on the outer rim portion of the rear-stage disk, and a contact portion between the disks is formed only on the outer rim portion of the front-stage disk. A stacked rotor for a turbomachine, characterized in that the stacking bolt of the front-stage disk and the bolt hole through which the stacking bolt is inserted have a fitting clearance as small as possible. 2. The stacked rotor for a turbomachine according to claim 1, wherein the bolt hole through which the stacking bolt of the front disk is inserted is a reamed hole.
JP2271782A 1982-02-17 1982-02-17 Stacked rotor of turbo machine Granted JPS58140406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2271782A JPS58140406A (en) 1982-02-17 1982-02-17 Stacked rotor of turbo machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2271782A JPS58140406A (en) 1982-02-17 1982-02-17 Stacked rotor of turbo machine

Publications (2)

Publication Number Publication Date
JPS58140406A JPS58140406A (en) 1983-08-20
JPH0459442B2 true JPH0459442B2 (en) 1992-09-22

Family

ID=12090552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271782A Granted JPS58140406A (en) 1982-02-17 1982-02-17 Stacked rotor of turbo machine

Country Status (1)

Country Link
JP (1) JPS58140406A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650041B2 (en) * 1986-03-20 1994-06-29 株式会社日立製作所 Gas turbine
ITMI20032607A1 (en) 2003-12-29 2005-06-30 Nuovo Pignone Spa DISK OF A DISC ROTOR FOR A GAS TURBINE
CN110821883A (en) * 2019-12-04 2020-02-21 哈尔滨电气股份有限公司 Modularized compressor rotor applied to heavy gas turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471215A (en) * 1977-10-17 1979-06-07 Gen Electric Rotor disc coupling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471215A (en) * 1977-10-17 1979-06-07 Gen Electric Rotor disc coupling device

Also Published As

Publication number Publication date
JPS58140406A (en) 1983-08-20

Similar Documents

Publication Publication Date Title
US11499624B2 (en) Ring gear mounting arrangement with oil scavenge scheme
US6406263B1 (en) Gas turbine shaft pilot system with separate pilot rings
US4884903A (en) Inter-shaft bearing for multiple body turbo-engines
US6464401B1 (en) High load capacity bi-directional tapered roller bearing
US6446765B1 (en) Device for fixing a ventilated brake disk axially on the hub of a motor vehicle wheel
JP3153764B2 (en) Rotor
US7824157B2 (en) System for retaining blades in a rotor
US7059831B2 (en) Turbine engine disk spacers
EP1579120B1 (en) Compliant support for increased load capacity axial thrust bearing
US4784572A (en) Circumferentially bonded rotor
JP6126342B2 (en) Shaft assembly for gas turbine engines
EP3170971B1 (en) Coupling system comprising self locking joint
JP3149774B2 (en) Gas turbine rotor
US3070348A (en) Composite rotor
JPH0459442B2 (en)
US4363527A (en) Split race bearing
US6572337B1 (en) Turbine rotor torque transmission
JPH08247251A (en) Assembly of one way clutch and bearing
US5944429A (en) Bearing assembly and split bearing race for use in the same
JP4778892B2 (en) Self-locking nut and stack wheel assembly for rotor shaft stud shaft
WO2001006149A1 (en) Assembly of one-way clutch and bearing
JPH0520606B2 (en)
JP2003148526A (en) Wheel support bearing unit for automobile
JPS61252802A (en) Ladder type locking device
EP4296527A1 (en) Housing for bearing