JPH0459282B2 - - Google Patents

Info

Publication number
JPH0459282B2
JPH0459282B2 JP23506885A JP23506885A JPH0459282B2 JP H0459282 B2 JPH0459282 B2 JP H0459282B2 JP 23506885 A JP23506885 A JP 23506885A JP 23506885 A JP23506885 A JP 23506885A JP H0459282 B2 JPH0459282 B2 JP H0459282B2
Authority
JP
Japan
Prior art keywords
acid
salt
group
amine
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23506885A
Other languages
Japanese (ja)
Other versions
JPS6293203A (en
Inventor
Hiroshi Suzuki
Shoji Myazaki
Yasuo Gama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP23506885A priority Critical patent/JPS6293203A/en
Publication of JPS6293203A publication Critical patent/JPS6293203A/en
Publication of JPH0459282B2 publication Critical patent/JPH0459282B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は新規な多塩基酸アミン塩型殺菌剤に関
するものである。 (従来の技術と発明が解決しようとする課題) 従来、殺菌剤としては、塩素化合物、フエノー
ル化合物、アルデヒド、酸、エステル、第四アン
モニウム塩、抗性物質などが多数知られ、多方面
に使用されている。しかし、これらは一般に特定
の種類の微生物に対してのみ有効であつたり、殺
菌力が強力であるほど毒性や刺激性が強かつた
り、特定の溶媒にしか溶けず、使用に不便なもの
も少なくない。 また脂肪酸には短鎖の物から長鎖の物まで、極
めて強力ではないが殺菌防かび作用のある物が多
く、一般に低毒性で食品、医薬品に使用される物
も少なくない。これらは溶解性の上からアルカリ
金属塩として用いられる場合も多いが、殺菌力は
やや低下することが多い。 (課題を解決するための手段) 本発明者らはこのような従来の殺菌剤の欠点を
克服するための鋭意研究を重ねた結果、後記の一
般式()で表わされる多塩基酸のアミン塩が溶
解性の幅が広く、各種細菌などに対して強力な殺
菌作用を示し、しかも低毒性、低刺激性であるこ
とを見い出し、この知見に基づき本発明をなすに
至つた。 すなわち本発明は、一般式 (式中、n及びn′は4〜10の数を示し、Xは水
素原子又は−COOZを示し、Zは水素原子、低級
アルキル基又は炭素数1〜18のアルキル基もしく
は炭素数1〜12のアルキロール基を少なくとも1
個有するアミンからなるアンモニウムイオンを示
し、Zのうち少なくとも1個は前記アンモニウム
イオンである。) で表わされるテトラもしくはペンタカルボン酸の
アミン塩を有効成分とすることを特徴とする殺菌
剤を提供するものである。 本発明の殺菌剤の有効成分である前記一般式
()で表わされるテトラもしくはペンタカルボ
ン酸のアミン塩は、例えば下記一般式()の酸
を常法により所定のアミンを用いて中和して製造
することができる。 (式中、n及びn′は前記と同じ意味をもつ。Y
は水素原子又はCOOHを示す。) 従来、よく知られたポリカルボン酸は、概して
その分子鎖が短いか、あるいは分子鎖の両端、す
なわち、α、ω位の炭素にともにカルボキシル基
が結合した構造を基本とした直鎖ジカルボン酸の
誘導体と考えられるものが多かつた。 しかし、前記の一般式()で表わされるテト
ラもしくはペンタカルボン酸は、その分子鎖の一
端、すなわちα位炭素にカルボキシル基を有し、
その他端はアルキル基で他のカルボキシル基は分
子鎖の中間炭素に結合しているポリカルボン酸で
ある。したがつて、通常の直鎖一塩基酸の誘導体
と考えられる特異なポリカルボン酸である。な
お、これらのポリカルボン酸はシクロヘキセン環
を有する脂肪酸誘導体を原料とし、これを公知の
各種の酸化法により処理して製造することができ
る。 上記の一般式()の酸を中和する際、中和に
用いられたアミンがアンモニウムイオンとなり、
−COOZの少なくとも1個が −COO- NR3H+の形をとるアミン塩 (NR3が前記アルキル基もしくはアルキロー
ル基を少なくとも1個有するアミンを示す)を形
成する。 ここで用いられるアミン(NR3)は、前記の
如くアルキルアミン及びアルカノールアミンより
選ばれ、アルキルアミンはモノ、ジ、もしくはト
リアルキルアミンのいずれでもよく、アルカノー
ルアミンはモノ、ジ、もしくはトリアルカノール
アミンのいずれでもよい。 さらに詳しくいえばアルキルアミンはNR′3
表わされ、ここでR′は水素原子又は直鎖あるい
は分岐鎖の、炭素数1〜18のアルキル基であり、
R′は互いに同じでも異なつていてもよいが少な
くとも1個は前記のアルキル基である。 またアルカノールアミンは一般式NR″3で表わ
され、ここでR″は水素原子、炭素数1〜12のア
ルキロール基又は炭素数1〜18のアルキル基であ
り、R″は互いに同じでも異なつていてもよいが、
少なくとも1つはアルキロール基である。 このようなアルキルアミンの例としてはN−メ
チルアミン、N−オレイルアミン、N−ドデシル
アミン、N−イソオクタデシルアミン、N,N−
ジヘキシルアミン、N−メチルデシルアミン、
N,N,N−トリヘキシルアミンなどが含まれ
る。アルカノールアミンの例としてはモノエタノ
ールアミン、トリエタノールアミン、N,N−ジ
イソプロピルエタノールアミン、デカノールアミ
ンなどが含まれる。 一般式()においてZの低級アルキル基とは
炭素数1〜4のアルキル基をいう。 本発明の殺菌剤は、前記一般式()で表わさ
れるテトラもしくはペンタカルボン酸の塩を例え
ば水溶液とすることにより種々の用途に適用する
ことができ、通常、濃度0.0005〜2.0重量%、好
ましくは0.01〜1.0重量%の水溶液として用いら
れる。 本発明において、前記一般式()の化合物中
のZの1個以上はアミン塩である。Zについて炭
素数が多く水酸基の少ないアミン塩が多いほど、
またアルキル基の数が多くかつ炭素数が多いほ
ど、一般式()の化合物は油溶性となる。また
一般式()の化合物において低炭素数のアルキ
ル基からなるアルキルアミンによる飽和度の高い
塩は抗菌力は小さいが、低毒性の防腐剤として用
いることができる。遊離のカルボキシル基(すな
わちZが水素原子の場合)は多いほど水溶液のPH
は低下する。したがつて目的に応じて化合物自体
のPHを調節することもできる。 (発明の効果) 本発明によるペンタカルボン酸アミン塩及びテ
トラカルボン酸アミン塩は各種溶媒に対応して溶
解させるべく種々の構造の化合物とすることがで
き、各化合物の溶解性の幅が広く、低泡性で使用
に便利である。また、これらは陰イオン性である
がアミン塩であつて各種細菌、酵母などに強力な
抗菌力を示し、しかも低毒性、低刺激性であると
いう優れた効果を奏する。なお、ペンタカルボン
酸アミン塩とテトラカルボン酸アミン塩とを比較
すると作用効果上、差は顕著でなく、同等か、前
者がやや優れる程度である。 (実施例) 次に本発明を実施例に及び参考例に基づき、さ
らに詳細に説明する。 なお、実施例で用いたテトラないしペンタカル
ボン酸のアミン塩の一部は下記の参考例1〜3に
従つて調製された飽和ナトリウム塩より得られた
テトラないしペンタカルボン酸とアミンより合成
(参考例4)して用いたが、他は同酸及び相当ア
ミン(試薬特級品ないし精留品)のそれぞれ5〜
20%エタノール溶液を化学量論的に混合し、場合
に応じてそのまま(1)、ないしアミンの蒸気圧より
十分高い蒸気圧(真空度及び温度調節)下でエタ
ノールを留去後(2)、所定濃度の水溶液として測定
に供した。(1)はかなり低濃度に水で希釈してエタ
ノールの影響の現われない場合、(2)はその逆の場
合である。なおこれらの方法による結果と合成品
を用いた場合の結果が一致することを代表例につ
いて確認した。 また、参考例に用いた原料は次の一般式(A)及び
(B)の構造をもつシクロヘキセン環を有する脂肪酸
誘導体であるが式中のn、n′及びR、R′などは参
考例の記載中にそれぞれ示す。 (R、R′:H又はアルキル基) 殺菌力の試験法は下記説明の通りである。 参考例 1 原料B(n=5、n′=7、R、R′とともにCH3
3.01g、氷酢酸30mlをそれぞれ50mlナシ形三ツ口
フラスコに秤取した。フラスコにはガス吹込管、
冷却器、撹拌器をつけた。反応はフラスコを10〜
14℃の恒温槽につけ、溶液をかきまぜながらオゾ
ン−酸素混合ガス(オゾン濃度約3wt%)を38分
吹込みオゾン化を行つた。オゾン化後、酢酸マン
ガン 〔Mn(CH3CO22・4H2O〕の0.02gを加え、か
きまぜながら温度を80℃に上げ、80℃において
1.5時間、酸素ガス(流速270ml/分)吹込みオゾ
ニドの分解酸化を行つた。反応後、反応液をろ過
しマンガン化合物を除き、次いで酢酸を留去した
後、反応生成物をエーテルで捕集し水洗、エーテ
ルを留去し反応生成物31.8g(収率90.3%)を得
た。この反応生成物は次の分析値を与えた。すな
わち、酸価:244.6(理論値:252.4)、IRスペクト
ル(cm-1):2500〜2700(カルボキシル基)、1710
(カルボニル基)、1H−NMRスペクトル(ppm):
0.9(末端メチル基)、1.2〜1.3(メチレン基)、3.4
(メチルエステル基)、8.5〜8.6(カルボキシル
基)、13C−NMRスペクトル(ppm):14.3(末端メ
チル基)、23.0〜35.5(メチレン基)、40(メチルエ
ステル基)、174.2〜181.1(カルボキシル基)。こ
れらの分析結果から反応生成物は次の構造をもつ
テトラカルボン酸ジメチルエステルであることが
確認された。 参考例 2 原料A(n=5、n′=7、R、R′ともにCH3
の10.03g、氷酢酸80mlをそれぞれ100mlのナシ形
三ツ口フラスコに秤取した。フラスコにはガス吹
込管、冷却器、撹拌器をつけた。反応はフラスコ
を10〜13℃の恒温槽につけ、溶液をかきまぜなが
らオゾン−酸素混合ガス(オゾン濃度約3.5wt%)
を流速210ml/分で80分吹込みオゾン化を行つた。
オゾン化後、酢酸マンガン〔Mn(CH3CO22
4H2O〕の0.07gを加え、かきまぜながら反応溶
液の温度を80℃に上げ、80℃において3時間酸素
ガス(流速210ml/分)を吹込みオゾニドの酸化
分解を行つた。反応後、反応液をろ過しマンガン
化合物を除き、ついで酢酸を留去、反応生成物を
エーテルで抽出し水洗して、反応生成物10.33g
を得た。この反応生成物について各種の分析を行
い次のような結果を得た。 中和値:218.8-1(理論値223.3)、IRスペクトル
(cm):2500〜2700(カルボキシル基)、1710(カル
ボニル基)、1H−NMRスペクトル(ppm):0.88
(末端メチル基)、1.3(メチレン基)、3.65(メチル
エステル基)、3.08(カルボキシル基)、13C−NMR
スペクトル(ppm): 14.0(末端メチル基)、22.4〜34.1(メチレン基)、
51.5〜52.0(メチルエステル基)、171.8〜178.4(カ
ルボニル基)これらの分析結果から反応生成物は
次の構造のペンタカルボン酸トリメチルエステル
であることを確認した。 参考例 3 参考例2で得られたペンタカルボン酸トリメチ
ルエステル3.67gをエタノール50mlに溶解し、こ
れに水酸化ナトリウムの2%水溶液70mlを加え、
80〜85℃で2時間反応させた。反応後、反応液を
蒸発濃縮し、これに5〜10mlの水を加え、メタノ
ールで全容を約200mlとし、析出した無機塩をろ
別した。次にろ液にエーテル約50mlを加え析出す
るセツケンをろ別した。得られたセツケンを水/
メタノール/エーテル(1:20:5)混合溶液で
数回再沈殿を行つて精製し、白色結晶3.8gを得
た。この生成物のスペクトルデータを次に示す。 IRスペクトル(cm-1): 1570(カルボキシラートイオン)1 H−NMRスペクトル(δ): 1.32(末端メチル) 1.70(メチレン)13 C−NMRスペクトル(ppm): 14.5(末端メチル) 22.6〜38.5(メチレン) 51.7(メチン) 167.7〜1847(カルボニル) これらの分析結果から反応生成物は1,9,
10,11,12−オクタデカンペンタカルボン酸五ナ
トリウム()であることが確認された。 参考例 4 参考例3で得られた五塩基酸五ナトリウム塩を
塩酸で加水分解し、エチルエーテルで分配して得
た1,9,10,11,12−オクタデカンペンタカル
ボン酸0.300gを6.0gのエタノールに溶解し、こ
れにモノエタノールアミン(bp1270.5〜71.5℃)
0.239g(飽和塩として理論量の1.2倍)を加えて
かきまぜると発熱して反応する。約45℃で1時間
かきまぜた後、やや淡黄色となつた溶液に活性炭
0.1gを加え、さらに2時間かきまぜ、吸引ろ過
し、ろ液を約50℃/50mmHg下で乾燥し、かすか
に淡黄色固体を得た。これをベンゼン約20mlで十
分に洗浄し、約50℃/30mmHg下で真空乾燥して
かすかに淡黄色の固体の1,9,10,11,12−オ
クタデカンペンタカルボン酸五モノエタノールア
ミン〔C17C5(MEA)5〕を得た。元素分析値は炭
素50.46%、水素9.01%、窒素8.90%(理論量、
C:50.18%、H:9.34%、N:9.14%) 次に実施例2以下で採用した抗菌力の試験法を
述べる。 (1) フタ付試験管(12×65mm)に各種濃度の試料
水溶液3g及び寒天培地(極東標準培地;酵母
エキス−ペプトン、ブドウ糖、寒天)80mgを入
れ約80℃で加熱溶解後、傾斜させて冷却し、固
化後約1時間戸外で放置し、かるくふたをして
38℃に5日間放置し、空中落下菌の発育状態を
観察した。 (注)−:全く集落が発生しない :同上、最小阻止濃度 ⊥:わずかに発生 +:中程度に発生 :かなり発生 :全面に発生 (2) 任意濃度に試料を添加した平板培地に接種用
菌液を塗抹培養後、発育が阻止される最低濃度
をもつて最小発育阻止濃度とした。かびの場合
は培地としてポテトデキストロース寒天培地を
用い25℃で7日間培養し、酵母ではYM寒天培
地を用い25℃で2日間培養した。本試験は
(財)日本食品分析センターに依頼して行つた。 実施例 1 中和度の異なる1,9,10,11,12−オクタデ
カンペンタカルボン酸(以後ペンタカルボン酸と
略記)のモノエタノールアミン(MEA)塩の空
中落下菌に対する最小発育阻止濃度(MIC)と、
一部についてM.flavasに対する結果を第1図に
示す。第1図において横軸はペンタカルボン酸中
の遊離カルボキシル基の個数又はMEA数を示す。 飽和塩(一般式()中、Zが全てアミン塩と
なつたもの)及び遊離酸は抗菌力は弱いが、不飽
和塩ではMICは低下し、1mol塩で極大が示され、
低毒性物質としては200ppmとかなり強い。同塩
のM.flavasに対するMICは400ppmであつた。 実施例 2 ペンタカルボン酸の一及び四アルキルアミン塩
について空中落下菌に対するMICのアルキル鎖
長に関する傾向を第2図に示す。同図において横
軸がアルキルアミンの鎖長を示し、実線のグラフ
がアミンが1個導入された場合、破線がアミンが
3個導入された場合を示す。 この図から明らかなように、アミンが1モルの
場合も3モルの場合も炭素数が12個付近にMIC
の極大が見られた。 実施例 3 ペンタカルボン酸のドデシルアミン及びセチル
アミン塩について空中落下菌に対するMICの中
和モル数(x)に関する傾向を第3図に示す。 この図から明らかなように中和モル数は2ない
し3が最も強力な傾向を示す。 実施例 4 ペンタカルボン酸のドデシルアミン塩について
未中和のカルボキシルのMEA中和モル数(y)に関
する傾向を第4図に示す。 この図から明らかなようにドデシルアミンが増
すほどMEAの少ない側に極大値がある。 実施例 5 ペンタカルボン酸のモノエタノールアミン塩、
オレイルアミン塩、ドデシルアミン塩について
の、空中落下菌及び各種細菌に対するMICを第
1表に示す。 モノエタノールアミンでは中和度の低い方が勝
り、さらに置換アミンが長鎖ほどすぐれ、ドデシ
ルアミンの2モル塩ではM.flavas、B.subtilisな
どに効果が極めて強かつた。
(Industrial Application Field) The present invention relates to a novel polybasic acid amine salt type disinfectant. (Prior art and problems to be solved by the invention) Many disinfectants have been known in the past, such as chlorine compounds, phenol compounds, aldehydes, acids, esters, quaternary ammonium salts, and antistatic substances, and are used in a wide variety of fields. has been done. However, these are generally only effective against specific types of microorganisms, the stronger their bactericidal power, the more toxic or irritating they are, or they only dissolve in specific solvents, making them inconvenient to use. do not have. In addition, there are many fatty acids, ranging from short-chain to long-chain, that have bactericidal and antifungal effects, although they are not extremely strong, and many of them are generally of low toxicity and are used in foods and medicines. These are often used as alkali metal salts due to their solubility, but their bactericidal activity is often slightly reduced. (Means for Solving the Problem) As a result of intensive research to overcome the drawbacks of such conventional disinfectants, the present inventors have developed an amine salt of a polybasic acid represented by the general formula () below. The inventors have discovered that the compound has a wide range of solubility, exhibits strong bactericidal activity against various bacteria, and has low toxicity and low irritation, and based on this knowledge, the present invention was developed. That is, the present invention provides the general formula (In the formula, n and n' represent numbers from 4 to 10, X represents a hydrogen atom or -COOZ, and Z represents a hydrogen atom, a lower alkyl group, an alkyl group having 1 to 18 carbon atoms, or a carbon number 1 to 12 at least one alkylol group of
At least one of Z is the ammonium ion. ) The present invention provides a disinfectant characterized by containing an amine salt of tetra or pentacarboxylic acid represented by the following as an active ingredient. The amine salt of the tetra or pentacarboxylic acid represented by the general formula (), which is the active ingredient of the disinfectant of the present invention, can be obtained by neutralizing the acid of the following general formula () with a predetermined amine in a conventional manner. can be manufactured. (In the formula, n and n' have the same meanings as above. Y
represents a hydrogen atom or COOH. ) Conventionally, well-known polycarboxylic acids generally have short molecular chains, or are linear dicarboxylic acids based on a structure in which carboxyl groups are bonded to both ends of the molecular chain, that is, carbons at the α and ω positions. Many of them were considered to be derivatives of. However, the tetra or pentacarboxylic acid represented by the above general formula () has a carboxyl group at one end of its molecular chain, that is, at the α-position carbon,
The other end is an alkyl group and the other carboxyl group is a polycarboxylic acid bonded to the middle carbon of the molecular chain. Therefore, it is a unique polycarboxylic acid that is considered to be a derivative of a normal linear monobasic acid. These polycarboxylic acids can be produced by using a fatty acid derivative having a cyclohexene ring as a raw material and treating it with various known oxidation methods. When neutralizing the acid of general formula () above, the amine used for neutralization becomes ammonium ion,
At least one of -COOZ forms an amine salt in the form of -COO - NR 3 H + (NR 3 represents an amine having at least one of the alkyl group or alkylol group). The amine (NR 3 ) used here is selected from alkylamine and alkanolamine as described above, the alkylamine may be mono-, di-, or trialkylamine, and the alkanolamine is mono-, di-, or trialkylamine. Either is fine. More specifically, an alkylamine is represented by NR′ 3 , where R′ is a hydrogen atom or a straight-chain or branched alkyl group having 1 to 18 carbon atoms;
R's may be the same or different, but at least one is the alkyl group described above. Alkanolamines are represented by the general formula NR''3 , where R'' is a hydrogen atom, an alkylol group having 1 to 12 carbon atoms, or an alkyl group having 1 to 18 carbon atoms, and R'' may be the same or different. It may be on, but
At least one is an alkylol group. Examples of such alkylamines are N-methylamine, N-oleylamine, N-dodecylamine, N-isooctadecylamine, N,N-
dihexylamine, N-methyldecylamine,
Includes N,N,N-trihexylamine and the like. Examples of alkanolamines include monoethanolamine, triethanolamine, N,N-diisopropylethanolamine, decanolamine, and the like. In the general formula (), the lower alkyl group of Z refers to an alkyl group having 1 to 4 carbon atoms. The disinfectant of the present invention can be applied to various uses by preparing a salt of a tetra or pentacarboxylic acid represented by the general formula (), for example, in an aqueous solution, and usually has a concentration of 0.0005 to 2.0% by weight, preferably It is used as an aqueous solution of 0.01-1.0% by weight. In the present invention, one or more Z in the compound of the general formula () is an amine salt. The more amine salts with many carbon atoms and fewer hydroxyl groups in Z, the more
Furthermore, the greater the number of alkyl groups and the greater the number of carbon atoms, the more oil-soluble the compound of general formula () becomes. Further, in the compound of the general formula (), highly saturated salts with alkyl amines consisting of alkyl groups having a low number of carbon atoms have low antibacterial activity, but can be used as preservatives with low toxicity. The more free carboxyl groups (i.e., when Z is a hydrogen atom), the higher the pH of the aqueous solution.
decreases. Therefore, the pH of the compound itself can be adjusted depending on the purpose. (Effects of the Invention) The pentacarboxylic acid amine salt and tetracarboxylic acid amine salt according to the present invention can be made into compounds with various structures to be dissolved in various solvents, and each compound has a wide range of solubility. Low foaming and convenient to use. Furthermore, although they are anionic, they are amine salts and exhibit strong antibacterial activity against various bacteria, yeast, etc., and have the excellent effects of being low toxicity and low irritation. Note that when comparing the pentacarboxylic acid amine salt and the tetracarboxylic acid amine salt, there is no significant difference in terms of action and effect, and the former is either equivalent or slightly superior. (Examples) Next, the present invention will be described in more detail based on Examples and Reference Examples. Note that some of the amine salts of tetra- or pentacarboxylic acids used in the examples were synthesized from amines and tetra- or pentacarboxylic acids obtained from saturated sodium salts prepared according to Reference Examples 1 to 3 below. The same acid and the corresponding amine (special grade reagent or rectified product) were used in Example 4).
A 20% ethanol solution is mixed stoichiometrically, depending on the case, either as is (1) or after distilling off the ethanol under a vapor pressure (vacuum degree and temperature control) that is sufficiently higher than the vapor pressure of the amine (2). It was used for measurement as an aqueous solution with a predetermined concentration. (1) is the case when diluted with water to a fairly low concentration and no effect of ethanol appears, and (2) is the opposite case. In addition, it was confirmed for representative examples that the results obtained by these methods and the results obtained using the synthetic product were in agreement. In addition, the raw materials used in the reference example are the following general formula (A) and
It is a fatty acid derivative having a cyclohexene ring having the structure (B), and n, n', R, R', etc. in the formula are shown respectively in the description of reference examples. (R, R': H or alkyl group) The bactericidal activity test method is as explained below. Reference example 1 Raw material B (n=5, n'=7, CH 3 together with R and R')
3.01 g of glacial acetic acid and 30 ml of glacial acetic acid were each weighed into 50 ml pear-shaped three-necked flasks. The flask has a gas blowing tube,
A cooler and a stirrer were installed. The reaction takes place in a flask of 10~
The solution was placed in a constant temperature bath at 14°C, and ozone-oxygen mixed gas (ozone concentration approximately 3 wt%) was blown into the solution for 38 minutes while stirring to effect ozonation. After ozonation, add 0.02g of manganese acetate [Mn(CH 3 CO 2 ) 2.4H 2 O], raise the temperature to 80℃ while stirring, and at 80℃
Ozonide was decomposed and oxidized by blowing oxygen gas (flow rate 270 ml/min) for 1.5 hours. After the reaction, the reaction solution was filtered to remove the manganese compound, the acetic acid was then distilled off, the reaction product was collected with ether and washed with water, and the ether was distilled off to obtain 31.8 g of the reaction product (yield 90.3%). Ta. This reaction product gave the following analytical values. That is, acid value: 244.6 (theoretical value: 252.4), IR spectrum (cm -1 ): 2500-2700 (carboxyl group), 1710
(carbonyl group), 1 H-NMR spectrum (ppm):
0.9 (terminal methyl group), 1.2-1.3 (methylene group), 3.4
(methyl ester group), 8.5-8.6 (carboxyl group), 13 C-NMR spectrum (ppm): 14.3 (terminal methyl group), 23.0-35.5 (methylene group), 40 (methyl ester group), 174.2-181.1 (carboxyl basis). From these analysis results, it was confirmed that the reaction product was tetracarboxylic acid dimethyl ester having the following structure. Reference example 2 Raw material A (n=5, n'=7, R and R' both CH 3 )
10.03 g of glacial acetic acid and 80 ml of glacial acetic acid were each weighed into 100 ml pear-shaped three-necked flasks. The flask was equipped with a gas blowing tube, a condenser, and a stirrer. For the reaction, place the flask in a constant temperature bath at 10 to 13℃ and stir the solution while adding ozone-oxygen mixed gas (ozone concentration approximately 3.5wt%).
was blown at a flow rate of 210 ml/min for 80 minutes to effect ozonation.
After ozonation, manganese acetate [Mn(CH 3 CO 2 ) 2 .
4H 2 O] was added, the temperature of the reaction solution was raised to 80°C while stirring, and oxygen gas (flow rate 210ml/min) was blown at 80°C for 3 hours to perform oxidative decomposition of ozonide. After the reaction, the reaction solution was filtered to remove manganese compounds, then acetic acid was distilled off, and the reaction product was extracted with ether and washed with water to obtain 10.33g of reaction product.
I got it. Various analyzes were conducted on this reaction product and the following results were obtained. Neutralization value: 218.8 -1 (theoretical value 223.3), IR spectrum (cm): 2500-2700 (carboxyl group), 1710 (carbonyl group), 1 H-NMR spectrum (ppm): 0.88
(terminal methyl group), 1.3 (methylene group), 3.65 (methyl ester group), 3.08 (carboxyl group), 13 C-NMR
Spectrum (ppm): 14.0 (terminal methyl group), 22.4-34.1 (methylene group),
51.5-52.0 (methyl ester group), 171.8-178.4 (carbonyl group) From these analysis results, it was confirmed that the reaction product was pentacarboxylic acid trimethyl ester having the following structure. Reference Example 3 3.67 g of pentacarboxylic acid trimethyl ester obtained in Reference Example 2 was dissolved in 50 ml of ethanol, and 70 ml of a 2% aqueous solution of sodium hydroxide was added thereto.
The reaction was carried out at 80-85°C for 2 hours. After the reaction, the reaction solution was evaporated and concentrated, 5 to 10 ml of water was added thereto, the total volume was made up to about 200 ml with methanol, and the precipitated inorganic salt was filtered off. Next, about 50 ml of ether was added to the filtrate, and the precipitated liquid was filtered off. Water/
The product was purified by reprecipitation several times with a mixed solution of methanol/ether (1:20:5) to obtain 3.8 g of white crystals. The spectral data of this product is shown below. IR spectrum (cm -1 ): 1570 (carboxylate ion) 1 H-NMR spectrum (δ): 1.32 (terminal methyl) 1.70 (methylene) 13 C-NMR spectrum (ppm): 14.5 (terminal methyl) 22.6-38.5 ( methylene) 51.7 (methine) 167.7-1847 (carbonyl) From these analysis results, the reaction products are 1,9,
It was confirmed to be pentasodium 10,11,12-octadecanepentacarboxylate (). Reference Example 4 6.0 g of 0.300 g of 1,9,10,11,12-octadecanepentacarboxylic acid obtained by hydrolyzing the pentabasic acid pentasodium salt obtained in Reference Example 3 with hydrochloric acid and partitioning with ethyl ether. Monoethanolamine (bp 12 70.5-71.5°C) dissolved in ethanol
When 0.239g (1.2 times the theoretical amount as saturated salt) is added and stirred, it generates heat and reacts. After stirring at about 45℃ for 1 hour, activated charcoal was added to the slightly pale yellow solution.
0.1 g was added, stirred for an additional 2 hours, filtered under suction, and the filtrate was dried at about 50° C./50 mmHg to obtain a slightly pale yellow solid. This was thoroughly washed with about 20 ml of benzene and dried under vacuum at about 50°C/30 mmHg to produce a slightly pale yellow solid of 1,9,10,11,12-octadecanepentacarboxylic acid pentamonoethanolamine [C 17 C 5 (MEA) 5 ] was obtained. Elemental analysis values are 50.46% carbon, 9.01% hydrogen, 8.90% nitrogen (theoretical amount,
(C: 50.18%, H: 9.34%, N: 9.14%) Next, the antibacterial activity test method adopted in Example 2 and below will be described. (1) Put 3 g of sample aqueous solutions of various concentrations and 80 mg of agar medium (Far East standard medium; yeast extract - peptone, glucose, agar) into a test tube with a lid (12 x 65 mm), heat to dissolve at about 80℃, and then tilt. Cool and leave it outside for about 1 hour after solidifying, then cover it loosely.
It was left at 38°C for 5 days, and the growth state of airborne bacteria was observed. (Note) -: No colonies occur at all: Same as above, minimum inhibitory concentration ⊥: Slight occurrence +: Moderate occurrence: Significant occurrence: Occurrence all over the surface (2) Bacteria for inoculation on a plate medium to which the sample has been added at an arbitrary concentration After the solution was smeared and cultured, the lowest concentration at which growth was inhibited was defined as the minimum inhibitory concentration. In the case of mold, potato dextrose agar medium was used as a medium and cultured at 25°C for 7 days, and for yeast, YM agar medium was used and cultured at 25°C for 2 days. This test was conducted at the request of the Japan Food Research Institute. Example 1 Minimum inhibitory concentration (MIC) of monoethanolamine (MEA) salts of 1,9,10,11,12-octadecanepentacarboxylic acid (hereinafter abbreviated as pentacarboxylic acid) with different degrees of neutralization against airborne bacteria and,
Some results for M.flavas are shown in Figure 1. In FIG. 1, the horizontal axis indicates the number of free carboxyl groups in pentacarboxylic acid or the number of MEA. Saturated salts (in the general formula (), all Z's are amine salts) and free acids have weak antibacterial activity, but unsaturated salts decrease the MIC, and a maximum is shown at 1 mol salt.
It is quite strong at 200ppm for a low toxicity substance. The MIC of the same salt against M.flavas was 400 ppm. Example 2 FIG. 2 shows the tendency of the alkyl chain length of MIC against airborne bacteria for mono- and tetraalkylamine salts of pentacarboxylic acid. In the figure, the horizontal axis shows the chain length of the alkylamine, the solid line shows the case where one amine is introduced, and the broken line shows the case where three amines are introduced. As is clear from this figure, the number of carbon atoms is around 12 in both cases of 1 mole and 3 moles of amine.
The maximum of was observed. Example 3 FIG. 3 shows trends regarding the neutralization mole number (x) of MIC against airborne bacteria for dodecylamine and cetylamine salts of pentacarboxylic acid. As is clear from this figure, a neutralization mole number of 2 to 3 shows the strongest tendency. Example 4 FIG. 4 shows trends regarding the MEA neutralization mole number (y) of unneutralized carboxyl for the dodecylamine salt of pentacarboxylic acid. As is clear from this figure, as the amount of dodecylamine increases, the maximum value occurs on the side with less MEA. Example 5 Monoethanolamine salt of pentacarboxylic acid,
Table 1 shows the MICs of oleylamine salt and dodecylamine salt against airborne bacteria and various bacteria. For monoethanolamine, a lower degree of neutralization was better, and the longer the substituted amine chain was, the better it was, and the 2-mole salt of dodecylamine was extremely effective against M.flavas, B.subtilis, etc.

【表】【table】

【表】 実施例 6 参考例1で得られたテトラカルボン酸ジメチル
エステル3gをエチルアルコール40mlに溶解し、
水酸化ナトリウムの2%水溶液55gを加え、80℃
で2時間中和及びケン化反応を行つた。次いで5
%塩酸水溶液25gで加水分解後、エチルエーテル
で分配した後乾燥して灰白色固体の1,9,10,
11,12−オクタデカンテトラカルボン酸2.5gを
得た。 これを実施例1及び2と同様の方法で長鎖第1
アミンで中和し、空中落下菌に対するMICを測
定した。結果を第2表に示す。 モノオクチルアミン塩(C17C4H4(8N))は
100ppm、ドデシルアミン塩 (C17C4H2(12N)2)は20ppmとペンタカルボ
ン酸塩の場合とほぼ同様の結果が得られた。
[Table] Example 6 3 g of tetracarboxylic acid dimethyl ester obtained in Reference Example 1 was dissolved in 40 ml of ethyl alcohol,
Add 55g of 2% aqueous solution of sodium hydroxide and
Neutralization and saponification reactions were carried out for 2 hours. then 5
After hydrolyzing with 25g of % hydrochloric acid aqueous solution, partitioning with ethyl ether and drying, 1,9,10,
2.5 g of 11,12-octadecanetetracarboxylic acid was obtained. This was prepared using the same method as in Examples 1 and 2.
It was neutralized with amine and the MIC against airborne bacteria was measured. The results are shown in Table 2. Monooctylamine salt (C 17 C 4 H 4 (8N)) is
100 ppm, and 20 ppm for dodecylamine salt (C 17 C 4 H 2 (12N) 2 ), which is almost the same result as in the case of pentacarboxylate.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1のペンタカルボン酸モノエタ
ノールアミン塩の中和モル数と抗菌力の関係を示
す。第2図は実施例2のペンタカルボン酸アルカ
ノールアミン塩のアミンのアルキル鎖長と抗菌力
の関係を示す。第3図は実施例3のペンタカルボ
ン酸長鎖アミン塩の中和モル数と抗菌力の関係を
示す。第4図は実施例4のペンタカルボン酸ドデ
シルアミン塩のMEA中和モル数と抗菌力の関係
を示す。
FIG. 1 shows the relationship between the number of neutralized moles of the pentacarboxylic acid monoethanolamine salt of Example 1 and the antibacterial activity. FIG. 2 shows the relationship between the alkyl chain length of the amine and the antibacterial activity of the pentacarboxylic acid alkanolamine salt of Example 2. FIG. 3 shows the relationship between the number of neutralized moles of the pentacarboxylic acid long-chain amine salt of Example 3 and the antibacterial activity. FIG. 4 shows the relationship between the MEA neutralization mole number and the antibacterial activity of the pentacarboxylic acid dodecylamine salt of Example 4.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、n及びn′は4〜10の数を示し、Xは水
素原子又は−COOZを示し、Zは水素原子、低級
アルキル基又は炭素数1〜18のアルキル基もしく
は炭素数1〜12のアルキロール基を少なくとも1
個有するアミンからなるアンモニウムイオンを示
し、Zのうち少なくとも1個は前記アンモニウム
イオンである。) で表わされるテトラもしくはペンタカルボン酸の
アミン塩を有効成分とすることを特徴とする殺菌
剤。
[Claims] 1. General formula (In the formula, n and n' represent numbers from 4 to 10, X represents a hydrogen atom or -COOZ, and Z represents a hydrogen atom, a lower alkyl group, an alkyl group having 1 to 18 carbon atoms, or a carbon number 1 to 12 at least one alkylol group of
At least one of Z is the ammonium ion. ) A disinfectant characterized by containing an amine salt of tetra or pentacarboxylic acid as an active ingredient.
JP23506885A 1985-10-21 1985-10-21 Polybasic acid amine salt disinfectant Granted JPS6293203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23506885A JPS6293203A (en) 1985-10-21 1985-10-21 Polybasic acid amine salt disinfectant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23506885A JPS6293203A (en) 1985-10-21 1985-10-21 Polybasic acid amine salt disinfectant

Publications (2)

Publication Number Publication Date
JPS6293203A JPS6293203A (en) 1987-04-28
JPH0459282B2 true JPH0459282B2 (en) 1992-09-21

Family

ID=16980593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23506885A Granted JPS6293203A (en) 1985-10-21 1985-10-21 Polybasic acid amine salt disinfectant

Country Status (1)

Country Link
JP (1) JPS6293203A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043047A2 (en) * 1999-01-19 2000-07-27 Stericon, L.L.C. Hypertonic aqueous solutions of polybasic acid salts
US8783310B2 (en) 2007-09-05 2014-07-22 Bridgestone Corporation Non-pneumatic tire
US20230371507A1 (en) * 2020-08-24 2023-11-23 Adama Makhteshim Ltd. Pesticidal compounds and compositions, methods of use and processes of preparation thereof

Also Published As

Publication number Publication date
JPS6293203A (en) 1987-04-28

Similar Documents

Publication Publication Date Title
JPH1095773A (en) Bisquaternary ammonium salt compound having antimicrobial activity and its production
US3471537A (en) Diphenolic acetic acid compounds and their production
JPS59227842A (en) Novel quaternary ammonium compound, manufacture and use of same as antiseptic drug
JPH0459282B2 (en)
CN115974706B (en) Long-chain alkyl diisopropanolamine gemini quaternary ammonium salt derivative and preparation method and application thereof
DE69811917T2 (en) QUATERNARY AMMONIUM PHOSPHATE COMPOUNDS AND METHOD FOR THE PRODUCTION THEREOF
DE60102679T2 (en) A NEW METHOD FOR THE PRODUCTION OF ALPHA (2-4-DISULFOPHENYL) -N-TERT-BUTYL NITRON AND ITS PHARMACEUTICALLY ACCEPTABLE SALTS
EP0149174A1 (en) Amphoteric compounds, mixtures containing these compounds for desinfectant cleaning and processes for the preparation of these compounds and mixtures
EP1892236B9 (en) Iodide salts of dimethylaminoethanol fatty acid esters with bacteriostatic, mycostatic, yeaststatic and/or microbicide activity for use in cleansing or purifying formulations
JP2011157354A (en) New dicarboxylic acid type compound
US3180887A (en) N-sec lower alkyl 2-(3, 5-diacetoxyphenyl) ethanolamine
US7351862B2 (en) Alpha, omega-difunctional aldaramides
JP2004345953A (en) New quaternary ammonium salt compound having anti-bacterial activity and method for producing the same
RU2169729C1 (en) Method of n,n'-tetramethylmethylenediamine salts preparing
CN111491914A (en) Novel cationic quaternary ammonium compounds and compositions containing the same and methods of making the same
US4255450A (en) Use of aminohydroxy acid amides as antimicrobial substances
CN114230481B (en) Low-toxicity sterilizing glycosylamide ionic liquid and preparation method and application thereof
US3637828A (en) 2-hydroxy - 3 5 6 - trichloromandelic acid and a process for the making thereof
CN117567359A (en) Pyridine-olefine acid type ionic liquid and preparation method and application thereof
JPH09143186A (en) Quaternary ammonium group-containing disiloxane compound and antimicrobial algaecide
DE69600051T2 (en) Process for the preparation of 2-amino-1,3,4-triol alkanes
WO1984000159A1 (en) Ethylenglycol-(3-iodo-2-propynyl) ether, preparation and utilization thereof
JPH0256430B2 (en)
JPS6045175B2 (en) Novel hydroxybenzoic acid ester and antiseptic agent for industrial products containing it as an active ingredient
CA1121355A (en) Pyrrolidine derivatives and process for the preparation of such compounds

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term