JPH0459078B2 - - Google Patents

Info

Publication number
JPH0459078B2
JPH0459078B2 JP60085266A JP8526685A JPH0459078B2 JP H0459078 B2 JPH0459078 B2 JP H0459078B2 JP 60085266 A JP60085266 A JP 60085266A JP 8526685 A JP8526685 A JP 8526685A JP H0459078 B2 JPH0459078 B2 JP H0459078B2
Authority
JP
Japan
Prior art keywords
flux
soldering
phosphoric acid
dibutyl
activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60085266A
Other languages
Japanese (ja)
Other versions
JPS61242790A (en
Inventor
Sandai Iwasa
Yoichi Ooba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Laboratory Co Ltd
Original Assignee
Asahi Chemical Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Laboratory Co Ltd filed Critical Asahi Chemical Laboratory Co Ltd
Priority to JP60085266A priority Critical patent/JPS61242790A/en
Priority to US06/838,825 priority patent/US4684054A/en
Priority to FR8604245A priority patent/FR2579857A1/en
Priority to GB8607657A priority patent/GB2174326B/en
Priority to DE3645211A priority patent/DE3645211C2/en
Priority to DE19863610747 priority patent/DE3610747A1/en
Priority to NL8600826A priority patent/NL8600826A/en
Priority to KR1019860002903A priority patent/KR900007263B1/en
Publication of JPS61242790A publication Critical patent/JPS61242790A/en
Priority to NL9201027A priority patent/NL9201027A/en
Publication of JPH0459078B2 publication Critical patent/JPH0459078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、半田付け用フラツクスに係り、特に
フラツクスを加熱して被半田付け基板の被半田付
け面に接触させることによりフラツクスの塗布と
被半田付け基板の予備加熱とを同時に行うことが
できるように、高温に加熱し得、しかも半田付け
性の良好な半田付け用フラツクスに関する。 従来技術 従来、主としてプリント配線基板(プリント基
板)の半田付けプロセスは、フラツクス塗布、予
備加熱、半田付け、冷却の順に行つていた。ここ
にフラツクスとしては、主に松やに系の樹脂にエ
チルアミンのような低級アミンの塩酸塩のような
活性剤を加え、イソプロピルアルコール(IPA)
のような溶剤に溶解した液状のものが用いられて
いた。 フラツクスの作用は、主として活性剤によるプ
リント基板の金属回路表面及び半田付けされるべ
き電子部品の金属表面の酸化物の除去効果と、主
として松やに等の樹脂成分による半田の表面張力
低下効果と金属の酸化防止効果とからなることが
知られている。また液状フラツクスに用いられる
イソプロピルアルコールは、上記活性剤や樹脂成
分の溶解剤であるばかりではなく、プリント基板
への均一なぬれ性の付与と、フラツクスの付着量
をコントロールするための希釈剤としての作用を
持つている。そしてこのフラツクスは、通常発泡
状態でプリント基板に接触させて塗布されていた
が、常に常温でしか用いられていなかつた。 次に予備加熱は、上記液状フラツクス中の溶剤
の除去と活性剤の活性化、更にプリント基板の予
熱とを目的として行われる。即ち、予備加熱によ
つて液体フラツクス中の溶剤を十分に揮発させる
ことにより次工程の半田付け時に高温の半田と接
触して溶剤が爆発的に揮発し、半田の均一なぬれ
性を妨げることを防ぐこと、活性剤の活性化をそ
の加熱により進行させること、更にプリント基板
それ自体の温度を上昇させ、半田温度との温度差
を少なくすることにより熱シヨツクを緩和するこ
とができるので、予備加熱条件は、一般にプリン
ト基板が40〜120度Cとなるように設定される。 しかし、このようにフラツクス塗布装置におい
て常温のフラツクスを被半田付け基板に塗布し
て、別途予備加熱装置により被半田付け基板を加
熱するようにした従来の自動半田付け方法におい
ては、以下のような欠点があつた。 (1) 引火性の高い有機溶剤を含むフラツクスを泡
立てて塗布する工程と、その溶剤を加熱して除
去する工程とが連続して行われることから、引
火物と高温部との接近は避けられず、火災等の
危険が高かつた。 (2) 有機溶剤の蒸発に多くの熱量を必要とするば
かりでなく、被半田付け基板を加熱するにも多
大なエネルギを必要とするが、ヒータにより途
中の空気層を介して加熱する方法では、空気は
熱伝導率が小さく、密度が非常に小さいため熱
容量が小さいので、熱効率が低く、従つてヒー
タの出力を上げたり、ヒータの数を増やした
り、またヒータによる加熱時間を長くしたりす
る必要があり、この予備加熱のために大電力を
必要とし、予備加熱装置は、設備としてもかな
り大規模なものとなり、自動半田付け装置全体
の長さの約20%を占めていた。 (3) 被半田付け基板で、特に熱容量の大きいも
の、例えば多層の大型プリト基板等や、熱伝導
性の悪いもの、例えばセラミツクス基板等にお
いては、短時間で被半田付け基板を均一に加熱
することが極めて困難又は不可能であり、半田
付け不良の生じるおそれが非常に大きい。 そしてこれらの欠点は、従来の半田付け用フラ
ツクスは有機溶剤を含むために長時間高温に加熱
できないことに起因するものである。 また特開昭51−10159には、0.5〜2Nのリン酸
水溶液を用いる、サーミスタの電極とリード端子
との半田付けに用いる半田付け用フラツクスが開
示されているが、該従来例は、希釈剤として水溶
液を用いているため、半田付け用フラツクスを
100度C以上には加熱することができず、従つて
半田付け用フラツクス自体を加熱して予備加熱を
該フラツクスで行わせることはできないという欠
点があつた。 目 的 本発明は、上記した従来技術の欠点を除くため
になされたものであつて、その目的とするところ
は、フラツクス自体を高温、例えば100〜150度C
に加熱し、これを基板に接触させて該基板を予備
加熱できるようにするため、活性剤としては150
度C付近までの温度で長期間加熱しても、分解し
たり変質したりせず、活性が低下しないで半田付
け温度において活性を有し、半田付け性の良好な
ものを用い、また該活性剤の希釈剤としては、活
性剤を溶解し、150度C付近までの温度において
長時間加熱しても、分解したり変質したりせず、
毒性がなく洗浄性がよく、かつ半田付け性がよい
ものを用いることによつて、長時間高温に加熱し
ておいて基板に塗布することでフラツクスの塗布
と該基板の予備加熱が同時に完了し、かつ半田付
け性が良好な半田付け用フラツクスを提供するこ
とである。また他の目的は、フラツクスを従来の
有機溶剤を用いたものに代えて、不燃性又は低引
火性で低蒸発性の希釈溶剤(希釈剤)に活性化温
度が該フラツクスの加熱温度よりも高く、該フラ
ツクスの加熱温度では安定な活性剤と、希釈剤や
活性剤との相溶性のよい添加成分とを溶解又は混
合したものを用い、フラツクス塗布装置にフラツ
クス加熱用のヒータを設け、該ヒータによりフラ
ツクスを加熱し、該加熱されたフラツクスを被半
田付け基板の被半田付け面に接触させ、フラツク
スの塗布と被半田付け基板の予備加熱とを同時に
行つて半田付けすることによつて、従来大電力を
必要としていた予備加熱装置を不要化又は小規模
化することを可能とし、電力消費の大幅な低減と
自動半田付け装置の長さの短縮化を図ることであ
る。また他の目的は、加熱媒体として空気を用い
ず、空気よりははるかに密度及び熱容量の大きい
液体フラツクスを加熱媒体として用いることによ
つて、被半田付け基板を加熱する際に熱効率を大
幅に向上させ、少ないエネルギで短時間にかつ均
一に被半田付け基板を所望の温度に加熱できるよ
うにすることである。更に他の目的は、フラツク
スに揮発性の高い有機溶剤を用いないことによつ
て、該有機溶剤を蒸発させる必要性をなくし、気
化熱によるエネルギ損失をなくすと共に、公害の
発生を防止し、また火災発生の危険性をなくすこ
とである。 また他の目的は、加熱されたフラツクスによつ
て効率よく被半田付け基板が加熱されるようにす
ることにより、熱容量の大きい多層の大型プリン
ト基板や、熱伝導性の悪いセラミツクス基板等も
その板厚全体にわたつて短時間にかつ均一に加熱
できるようにすることであり、またこれによつて
半田付け工程における半田のぬれ性を向上させ、
これらの大型基板等の半田付け性能を飛躍的に向
上させることである。 構 成 要するに本発明(第1発明)は、リン酸を活性
剤として含み、該リン酸と相溶性を有し該リン酸
の半田付け効果を低下させない水以外の不燃性の
液体で該リン酸を希釈した半田付け用フラツクス
であつて、該不燃性の液体は、トリクレジルフオ
スフエート、クレジルジフエニルフオスフエー
ト、トリブトキシエチルフオスフエート、ジブチ
ルアジペート、ジブチルジグリコールアジペート
及びジブチルマレエートから選ばれた1種又は2
種以上の混合物であることを特徴とするものであ
る。 また本発明(第2発明)は、リン酸を活性剤と
して含み、該リン酸と相溶性を有し該リン酸の半
田付け効果を低下させないトリクレジルフオスフ
エート、クレジルジフエニルフオスフエート、ト
リブトキシエチルフオスフエート、ジブチルアジ
ペート、ジブチルジグリコールアジペート及びジ
ブチルマレエートから選ばれた1種又は2種以上
の混合物で前記リン酸を希釈し、かつこれらに相
溶して半田付け性を向上させるためのロジン、フ
エノール樹脂変成ロジン及び半田のぬれ拡がり速
度を向上させるための2,3ジブロムプロパノー
ルから選ばれた少なくとも1種のものを添加した
ことを特徴とするものである。 以下本発明を実施例に基いて説明する。本発明
に係る半田付け用フラツクスは、フラツクス自体
を高温、例えば100〜150度Cに加熱し、これを基
板に接触させることから、次のような特性を具備
することが要求される。 (1) 活性剤としては、150度C付近までの温度で
長時間加熱しても分解したり、変質したりせ
ず、活性が低下しないで半田付け温度において
活性を有し、半田付け性が良好であること。 (2) 活性剤の希釈剤としては、活性剤を溶解し、
150度C付近までの温度において長時間加熱し
ても分解したり変質したりせず、半田付け性が
良好で、毒性がなく、洗浄性がよいこと。 本発明半田付け用フラツクスにおいて、活性剤
としては上記(1)の条件を満足するものとしてリン
酸を選定した。リン酸には、オルトリン酸
(H3PO4)、ピロリン酸(H4P2O7)、メタリン酸
((HPO3)n)があるが、希釈剤への溶解性から
オルトリン酸、ピロリン酸が好ましく、半田付け
性では、オルトリン酸の方がピロリン酸よりやや
良好である。以下本発明で一般にリン酸と言う場
合は、オルトリン酸を指すものとする。 一方、希釈剤としては、まず第1に、活性剤を
溶解し、半田付け性の良好なリン酸混合液を作る
耐熱性媒体であることが要求される。本発明で検
討した希釈剤は、フタル酸エステル系、脂肪酸エ
ステル系、マレイン酸及びフマル酸エステル系、
正リン酸エステル系の耐熱性(難燃性)可塑剤で
ある。 そしてこれらのリン酸溶解性(希釈剤100重量
部にリン酸4重量部を添加し、120度Cにて1時
間加熱後の相溶性)及びこの混合物の数滴を30×
30mmの銅板上で250mgの半田塊と共に置き、250度
Cの半田浴上で30秒間加熱したときの半田のぬれ
拡がり面積から半田のぬれ性を評価した。この結
果を第1表に示す。なお第1表において、オルト
リン酸との相溶性及び半田ぬれ性の評価欄に、
◎、○、△、×とあるのは、夫々最良、良、中位、
不良を示す。 この結果から正リン酸エステル系のものからは
トリブトキシエチルフオスフエート(TBXP)、
トリクレジルフオスフエート(TCP)、クレジル
ジフエニルフオスフエート(CDP)が、マレイ
ン酸エステル系のものからはジブチルマレエート
(DBM)が、脂肪酸エステル系のものからはジ
ブチルアジペート(DBA)、ジブチルジグリコー
ルアジペート(BXA)等
TECHNICAL FIELD The present invention relates to a soldering flux, and in particular, it is possible to apply the flux and pre-heat the soldering board at the same time by heating the flux and bringing it into contact with the soldering surface of the soldering board. The present invention relates to a soldering flux that can be heated to high temperatures and has good solderability. Prior Art Conventionally, the soldering process for printed wiring boards (printed circuit boards) has been performed in the order of flux application, preheating, soldering, and cooling. The flux used here is mainly pine tar-based resin with an activator such as hydrochloride of a lower amine such as ethylamine, and isopropyl alcohol (IPA).
A liquid solution dissolved in a solvent such as The action of flux is mainly the effect of removing oxides on the metal circuit surface of printed circuit boards and the metal surface of electronic components to be soldered by the activator, the effect of lowering the surface tension of the solder mainly by the resin component such as pine resin, and the effect of reducing the surface tension of the solder by the resin component such as pine resin. It is known to have an antioxidant effect. In addition, isopropyl alcohol used in liquid flux is not only a dissolving agent for the above-mentioned activator and resin components, but also a diluent for imparting uniform wettability to printed circuit boards and controlling the amount of flux attached. It has an effect. This flux was usually applied in a foamed state in contact with a printed circuit board, but it was always used only at room temperature. Next, preheating is performed for the purposes of removing the solvent in the liquid flux, activating the activator, and preheating the printed circuit board. That is, by sufficiently volatilizing the solvent in the liquid flux through preheating, it is possible to prevent the solvent from explosively volatilizing when it comes into contact with high-temperature solder during the next soldering process, which will impede the uniform wettability of the solder. The thermal shock can be alleviated by preventing the activation of the activator, advancing the activation of the activator by heating it, and further raising the temperature of the printed circuit board itself and reducing the temperature difference from the soldering temperature. Conditions are generally set so that the temperature of the printed circuit board is 40 to 120 degrees Celsius. However, in the conventional automatic soldering method in which room-temperature flux is applied to the soldering board using a flux applicator and the soldering board is heated using a separate preheating device, the following problems occur. There were flaws. (1) Since the process of foaming and applying flux containing a highly flammable organic solvent and the process of heating and removing the solvent are carried out in succession, it is possible to avoid the proximity of flammable materials to high-temperature parts. However, there was a high risk of fire, etc. (2) Not only does it require a large amount of heat to evaporate the organic solvent, but also a large amount of energy is required to heat the board to be soldered. , Air has a low thermal conductivity and a very low density, so it has a small heat capacity, so the thermal efficiency is low, so it is necessary to increase the output of the heater, increase the number of heaters, and increase the heating time by the heater. This preheating requires a large amount of electric power, and the preheating device is a fairly large piece of equipment, occupying about 20% of the entire length of the automatic soldering device. (3) For soldering boards that have a particularly large heat capacity, such as large multi-layer printed circuit boards, or those that have poor thermal conductivity, such as ceramic boards, it is necessary to uniformly heat the soldered board in a short time. It is extremely difficult or impossible to do so, and there is a great possibility that soldering defects will occur. These drawbacks are due to the fact that conventional soldering fluxes cannot be heated to high temperatures for long periods of time because they contain organic solvents. Furthermore, JP-A-51-10159 discloses a soldering flux used for soldering the thermistor electrodes and lead terminals using a 0.5-2N phosphoric acid aqueous solution; Since an aqueous solution is used as the soldering flux,
It has the disadvantage that it cannot be heated above 100 degrees Celsius, and therefore it is not possible to preheat the soldering flux itself by heating it. Purpose The present invention was made in order to eliminate the drawbacks of the prior art described above, and its purpose is to heat the flux itself to a high temperature, for example, 100 to 150 degrees Celsius.
150 ml as an activator in order to make it possible to preheat the substrate by contacting it with the substrate.
Use a material that does not decompose or change in quality even when heated for a long period of time at temperatures up to about 30°F, has activity at the soldering temperature without decreasing its activity, and has good solderability. As a diluent for the active agent, it does not decompose or change in quality even if it dissolves the active agent and is heated for a long time at temperatures up to around 150 degrees C.
By using a material that is non-toxic, easy to clean, and has good solderability, the flux application and preheating of the board can be completed at the same time by heating it to a high temperature for a long time and then applying it to the board. It is an object of the present invention to provide a soldering flux which also has good solderability. Another purpose is to replace the flux with a conventional organic solvent by using a nonflammable or low flammability diluent (diluent) with a low evaporation temperature and an activation temperature higher than the heating temperature of the flux. , using a solution or mixture of an activator that is stable at the heating temperature of the flux and an additive component that has good compatibility with the diluent and activator, a flux coating device equipped with a heater for heating the flux, and a heater for heating the flux used. In the conventional method, the heated flux is brought into contact with the surface to be soldered of the board to be soldered, and soldering is performed by simultaneously applying the flux and preheating the board to be soldered. The purpose of this invention is to make it possible to eliminate the need for or reduce the size of a preheating device that requires a large amount of power, and to significantly reduce power consumption and shorten the length of an automatic soldering device. Another purpose is to significantly improve the thermal efficiency when heating the soldering substrate by not using air as the heating medium but instead using liquid flux, which has a much higher density and heat capacity than air. The purpose of the present invention is to uniformly heat a board to be soldered to a desired temperature in a short time with little energy. Another purpose is to eliminate the need to evaporate the organic solvent by not using a highly volatile organic solvent in the flux, eliminate energy loss due to heat of vaporization, and prevent the occurrence of pollution. The goal is to eliminate the risk of fire outbreak. Another purpose is to efficiently heat the board to be soldered using the heated flux, so that it can be used to heat large multilayer printed circuit boards with large heat capacity, ceramic boards with poor thermal conductivity, etc. It is possible to heat the entire thickness uniformly in a short time, and this also improves the wettability of the solder in the soldering process.
The aim is to dramatically improve the soldering performance of these large boards. Composition In short, the present invention (first invention) contains phosphoric acid as an activator, and uses a nonflammable liquid other than water that is compatible with the phosphoric acid and does not reduce the soldering effect of the phosphoric acid. The nonflammable liquid is a soldering flux diluted with tricresyl phosphate, cresyl diphenyl phosphate, tributoxyethyl phosphate, dibutyl adipate, dibutyl diglycol adipate, and dibutyl male. 1 or 2 selected from eight
It is characterized by being a mixture of more than one species. The present invention (second invention) also provides tricresyl phosphate and cresyl diphenyl phosphate that contain phosphoric acid as an activator, are compatible with the phosphoric acid, and do not reduce the soldering effect of the phosphoric acid. The phosphoric acid is diluted with one or a mixture of two or more selected from ester, tributoxyethyl phosphate, dibutyl adipate, dibutyl diglycol adipate, and dibutyl maleate, and is compatible with these to achieve solderability. The present invention is characterized by the addition of at least one selected from rosin for improving the solder properties, phenol resin modified rosin, and 2,3 dibromopropanol for improving the solder wetting and spreading speed. The present invention will be explained below based on examples. The soldering flux according to the present invention is required to have the following characteristics because the flux itself is heated to a high temperature, for example, 100 to 150 degrees Celsius, and is brought into contact with a substrate. (1) As an activator, it does not decompose or change in quality even when heated for a long time at temperatures up to around 150 degrees Celsius, remains active at the soldering temperature without decreasing its activity, and has good solderability. Be in good condition. (2) As a diluent for the activator, it dissolves the activator and
It does not decompose or change in quality even when heated for a long time at temperatures up to around 150 degrees Celsius, has good solderability, is non-toxic, and has good cleaning properties. In the soldering flux of the present invention, phosphoric acid was selected as the activator as it satisfies the condition (1) above. Phosphoric acid includes orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7 ), and metaphosphoric acid ((HPO 3 )n), but orthophosphoric acid and pyrophosphoric acid is preferable, and in terms of solderability, orthophosphoric acid is slightly better than pyrophosphoric acid. Hereinafter, when referring to phosphoric acid in the present invention, it refers to orthophosphoric acid. On the other hand, the diluent is first required to be a heat-resistant medium that dissolves the activator and creates a phosphoric acid mixture with good solderability. The diluents considered in the present invention include phthalate esters, fatty acid esters, maleic and fumarate esters,
It is a heat-resistant (flame-retardant) plasticizer based on orthophosphoric acid ester. Then, these phosphoric acid solubility (compatibility after adding 4 parts by weight of phosphoric acid to 100 parts by weight of diluent and heating at 120 degrees C for 1 hour) and a few drops of this mixture were added to 30×
The wettability of the solder was evaluated from the wetted and spread area of the solder when it was placed on a 30 mm copper plate with a 250 mg solder lump and heated for 30 seconds on a solder bath at 250 degrees Celsius. The results are shown in Table 1. In Table 1, in the evaluation column of compatibility with orthophosphoric acid and solder wettability,
◎, ○, △, and × indicate best, good, medium, and
Indicates a defect. From this result, tributoxyethyl phosphate (TBXP),
Tricresyl phosphate (TCP), cresyl diphenyl phosphate (CDP), dibutyl maleate (DBM) from maleic esters, and dibutyl adipate (DBA) from fatty acid esters. , dibutyl diglycol adipate (BXA), etc.

【表】 が夫々選定された。 正リン酸エステル系の可塑剤は、リン酸との相
溶性もよく、リン酸の活性作用を妨害しにくいこ
とがわかつたので、前述したトリブトキシエチル
フオスフエート、トリクレジルフオスフエート、
クレジルジフエニルフオスフエート以外に、トリ
スジクロロプロピルフオスフエート(CRP)と
含ハロゲン縮合リン酸エステルについて、180度
Cにて1時間(120度C64時間の加熱に相当する)
の熱処理を行い、色調と粘度変化を調べた。この
結果、トリブトキシエチルフオスフエート、トリ
クレジルフオスフエート及びクレジルジフエニル
フオスフエートはわずかに黄色に変化した以外は
粘度変化もなかつたのに対し、ハロゲンを含む正
リン酸エステルは液が褐色化し、著しい粘度上昇
が認められた。 従つて、希釈剤としては、トリブトキシエチル
フオスフエート、トリクレジルフオスフエート、
クレジルジフエニルフオスフエート、ジブチルマ
レエート、ジブチルアジペート及びジブチルジグ
リコールアジペートを単独もしくは混合して用い
ることにした。 リン酸と希釈剤の比は、リン酸/トリクレジル
フオスフエートの系で、5/100〜0.5/100の範
囲で検討した結果、第2表に示すように、希釈剤
100重量部に対し、リン酸は少なくとも1重量部
以上、好ましくは3重量部以上必要であることが
わかつた。
[Table] were selected respectively. It was found that orthophosphate ester plasticizers have good compatibility with phosphoric acid and do not easily interfere with the active action of phosphoric acid.
In addition to cresyl diphenyl phosphate, trisdichloropropyl phosphate (CRP) and halogen-containing condensed phosphate esters were heated at 180 degrees C for 1 hour (equivalent to heating at 120 degrees C for 64 hours).
Heat treatment was performed and changes in color tone and viscosity were investigated. As a result, tributoxyethyl phosphate, tricresyl phosphate, and cresyl diphenyl phosphate had no change in viscosity other than a slight yellowing, whereas the halogen-containing orthophosphate ester showed no change in viscosity. The liquid turned brown and a significant increase in viscosity was observed. Therefore, as diluents, tributoxyethyl phosphate, tricresyl phosphate,
Cresyl diphenyl phosphate, dibutyl maleate, dibutyl adipate, and dibutyl diglycol adipate were used alone or in combination. The ratio of phosphoric acid to diluent was investigated in the range of 5/100 to 0.5/100 in the phosphoric acid/tricresyl phosphate system, and as shown in Table 2, the ratio of diluent to
It has been found that phosphoric acid is required in an amount of at least 1 part by weight, preferably 3 parts by weight or more, per 100 parts by weight.

【表】 またリン酸と上記希釈剤以外に、各種の添加物
について検討したが、2,3ジブロムプロパノー
ルは半田付け温度付近で分解し、ガスを発生する
ことにより、半田付けフラツクスに撹拌効果を付
与し、結果として半田のぬれ性及びぬれ速度を高
める働きをすることが判明した。また従来のフラ
ツクスに用いられているロジン及びフエノール樹
脂変成ロジンも添加することができることがわか
つた。 作 用 本発明は、上記のように構成されており、以下
その作用について説明する。本発明に係る上記の
半田付け用フラツクスは、イソプロピルアールコ
ール等の可燃性で揮発性の有機溶剤を含まず、ま
た耐熱性の大きいリン酸及び同様な希釈剤からな
るため、自動半田付け装置のフラクサタンクの底
部にヒータを設けてフラツクスを高温、例えば
100〜150度Cに加熱しておいて、基板に該フラツ
クスを塗布すると同時にこれを所望の温度に速か
に、例えば従来のプレヒータによる予熱に比べて
1/4〜1/6の時間で加熱することができ、しかも基
板が相当板厚の大きい場合であつても各部が均一
に加熱される。この場合において、フラツクスは
変色、分解、変質したりせず、悪臭や有毒蒸気を
発生することもなく、また発火による火災発生の
危険性もない。また半田付けにおいては、基板の
各部が十分にかつ均一に加熱されているので、半
田付け性が良好で、特に半田のぬれ性が優れてい
る。 効 果 本発明は、上記のように構成され、作用するも
のであるから、フラツクス自体を高温、例えば
100〜150度Cに加熱し、これを基板に接触させて
該基板を予備加熱できるようにするため、活性剤
としては、150度C付近までの温度で長時間加熱
しても、分解したり変質したりせず、活性が低下
しないで半田付け温度において活性を有し、半田
付け性が良好なものを用い、また該活性剤の希釈
剤としては、活性剤を溶解し、150度C付近まで
の温度において長時間加熱しても、分解したり変
質したりせず、毒性がなく洗浄性がよく、かつ半
田付け性がよいものを用いたので、長時間高温に
加熱しておいて基板に塗布することでフラツクス
の塗布と該基板の予備加熱が同時に完了し、かつ
半田付け性が良好な半田付け用フラツクスを提供
し得る効果がある。またフラツクスを従来の有機
溶剤を用いたものに代えて、不燃性又は低引火性
で低蒸発性の溶剤に活性化温度が該フラツクスの
加熱温度よりも高い、該フラツクスの加熱温度で
は安定な活性剤と溶剤や活性剤との相溶性のよい
添加成分とを溶解又は混合したものを用い、フラ
ツクス塗布装置にフラツクス加熱用のヒータを設
け、該ヒータによりフラツクスを加熱し、該加熱
されたフラツクスを被半田付け基板の被半田付け
面に接触させ、フラツクスの塗布と被半田付け基
板の予備加熱とを同時に行つて半田付けすること
ができるようになるため、従来大電力を必要とし
ていた予備加熱装置を不要化又は小規模化するこ
とを可能とし、電力消費の大幅な低減と自動半田
付け装置の長さの短縮化を図ることができる効果
があ。また加熱媒体として空気を用いず、空気よ
りはるかに密度及び熱容量の大きい液体フラツク
スを加熱媒体として用いることができるので、被
半田付け基板を加熱する際の熱効率を大幅に向上
させ、少ないエネルギで短時間にかつ均一に被半
田付け基板を所望の温度に加熱できるという効果
が得られる。更には、フラツクスに可燃性で揮発
性の有機溶剤を用いないので済むので、該有機溶
剤を蒸発させる必要性がなくなり、気化熱による
エネルギ損失をなくすと共に、公害の発生を防止
し、また火災発生の危険性をなくすことができる
効果がある。 また加熱されたフラツクスによつて効率よく被
半田付け基板が加熱されるようになるので、熱容
量の大きい多層の大型プリント基板や、熱伝導性
の悪いセラミツクス基板等もその板厚全体にわた
つて短時間にかつ均一に加熱できるようになり、
またこの結果半田付け工程における半田のぬれ性
を向上させ、これらの大型基板等の半田付け性能
を飛躍的に向上させることができる効果がある。 実施例 1 第3表に示す組性の半田付け用フラツクスを作
成し、メニスコグラフによりフラツクス特性を評
価した。この結果、市販フラツクス(従来品)に
比べて特に黄銅、ニツケルに対し優れた半田付け
性を持つフラツクスが得られることが判明した。
[Table] In addition to phosphoric acid and the diluent mentioned above, various additives were investigated. 2,3-dibromopropanol decomposes near the soldering temperature and generates gas, which has a stirring effect on the soldering flux. It has been found that it acts to increase the wettability and wetting speed of solder. It has also been found that rosin used in conventional fluxes and phenol resin modified rosin can also be added. Effects The present invention is configured as described above, and its effects will be explained below. The above soldering flux according to the present invention does not contain flammable and volatile organic solvents such as isopropyl alcohol, and is made of highly heat-resistant phosphoric acid and similar diluents, so it can be easily used in automatic soldering equipment. A heater is installed at the bottom of the fluxer tank to heat the flux to a high temperature, e.g.
The flux is heated to 100 to 150 degrees Celsius, and at the same time as the flux is applied to the substrate, it is quickly heated to the desired temperature, for example, in 1/4 to 1/6 the time compared to preheating with a conventional preheater. Moreover, even if the substrate is relatively thick, each part can be heated uniformly. In this case, the flux does not change color, decompose, or change in quality, does not emit bad odor or toxic vapor, and does not pose the risk of fire due to ignition. Furthermore, during soldering, each part of the board is heated sufficiently and uniformly, so that the solderability is good, especially the solder wettability. Effects Since the present invention is configured and operates as described above, the flux itself is heated to a high temperature, e.g.
In order to make it possible to preheat the substrate by heating it to 100 to 150 degrees C and bringing it into contact with the substrate, the activator does not decompose even if heated for a long time at a temperature around 150 degrees C. Use a substance that does not change in quality or decrease in activity, has activity at the soldering temperature, and has good solderability, and as a diluent for the activator, dissolve the activator and use a diluent at around 150 degrees C. We used a non-toxic material that does not decompose or change in quality even when heated for long periods of time at temperatures up to By applying the flux to the substrate, the application of the flux and the preheating of the substrate can be completed at the same time, and it is possible to provide a soldering flux with good solderability. In addition, instead of using a conventional organic solvent for the flux, we use a nonflammable or low flammable and low evaporative solvent that has an activation temperature higher than the heating temperature of the flux, and has stable activity at the heating temperature of the flux. A flux coating device is equipped with a heater for heating the flux, the flux is heated by the heater, and the heated flux is This preheating device, which conventionally required a large amount of power, can be applied to the soldering surface of the board to be soldered, applying flux and preheating the board to be soldered at the same time. This makes it possible to eliminate the need for or reduce the size of the soldering device, thereby significantly reducing power consumption and shortening the length of the automatic soldering device. In addition, instead of using air as a heating medium, liquid flux, which has a much higher density and heat capacity than air, can be used as a heating medium, greatly improving thermal efficiency when heating the soldering target board, and using less energy and faster. The effect is that the substrate to be soldered can be heated to a desired temperature in a timely and uniform manner. Furthermore, since flammable and volatile organic solvents are not used in the flux, there is no need to evaporate the organic solvents, eliminating energy loss due to heat of vaporization, preventing pollution, and reducing the risk of fires. It has the effect of eliminating the danger of In addition, the heated flux efficiently heats the board to be soldered, so even large multi-layer printed circuit boards with large heat capacity, ceramic boards with poor thermal conductivity, etc. can be short-circuited over the entire board thickness. It allows for timely and even heating,
Moreover, as a result, the solder wettability in the soldering process is improved, and the soldering performance of these large substrates can be dramatically improved. Example 1 Soldering fluxes having the assembly properties shown in Table 3 were prepared, and the flux characteristics were evaluated using a meniscograph. As a result, it was found that a flux with particularly excellent solderability to brass and nickel can be obtained compared to commercially available fluxes (conventional products).

【表】 *相対付着力は、ぬれ付着力の相対値で、この
値が大きいほどぬれ付着力が大きいこ
とを示す。全くぬれない場合には、この値は−(
マイナス)になる。
[Table] *Relative adhesion is a relative value of wetting adhesion, and the larger this value, the greater the wetting adhesion.
and If there is no wetting at all, this value is −(
becomes negative).

Claims (1)

【特許請求の範囲】 1 リン酸を活性剤として含み、該リン酸と相溶
性を有し該リン酸の半田付け効果を低下させない
水以外の不燃性の液体で該リン酸を希釈した半田
付け用フラツクスであつて、該不燃性の液体は、
トリクレジルフオスフエート、クレジルジフエニ
ルフオスフエート、トリブトキシエチルフオスフ
エート、ジブチルアジペート、ジブチルジグリコ
ールアジペート及びジブチルマレエートから選ば
れた1種又は2種以上の混合物であることを特徴
とする半田付け用フラツクス。 2 リン酸を活性剤として含み、該リン酸と相溶
性を有し該リン酸の半田付け効果を低下させない
トリクレジルフオスフエート、クレジルジフエニ
ルフオスフエート、トリブトキシエチルフオスフ
エート、ジブチルアジペート、ジブチルジグリコ
ールアジペート及びジブチルマレエートから選ば
れた1種又は2種以上の混合物で前記リン酸を希
釈し、かつこれらに相溶して半田付け性を向上さ
せるためのロジン、フエノール樹脂変成ロジン及
び半田のぬれ拡がり速度を向上させるための2,
3ジブロムプロパノールから選ばれた少なくとも
1種のものを添加したことを特徴とする半田付け
用フラツクス。
[Scope of Claims] 1. Soldering that contains phosphoric acid as an activator and dilutes the phosphoric acid with a nonflammable liquid other than water that is compatible with the phosphoric acid and does not reduce the soldering effect of the phosphoric acid. The non-flammable liquid is a flux for
It is characterized by being one or a mixture of two or more selected from tricresyl phosphate, cresyl diphenyl phosphate, tributoxyethyl phosphate, dibutyl adipate, dibutyl diglycol adipate, and dibutyl maleate. Flux for soldering. 2 Tricresyl phosphate, cresyl diphenyl phosphate, tributoxyethyl phosphate, which contains phosphoric acid as an activator, is compatible with the phosphoric acid, and does not reduce the soldering effect of the phosphoric acid; Rosin or phenolic resin for diluting the phosphoric acid with one or a mixture of two or more selected from dibutyl adipate, dibutyl diglycol adipate, and dibutyl maleate and being compatible with these to improve solderability. 2. To improve the wetting and spreading speed of metamorphosed rosin and solder.
A flux for soldering, characterized in that it contains at least one substance selected from 3-dibromopropanol.
JP60085266A 1985-03-30 1985-04-19 Flux for soldering Granted JPS61242790A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP60085266A JPS61242790A (en) 1985-04-19 1985-04-19 Flux for soldering
US06/838,825 US4684054A (en) 1985-03-30 1986-03-12 Automatic soldering apparatus and method of using the flux to heat the circuit board
FR8604245A FR2579857A1 (en) 1985-03-30 1986-03-25 APPARATUS AND METHOD FOR AUTOMATIC WELDING
GB8607657A GB2174326B (en) 1985-03-30 1986-03-27 Method for automatic soldering.
DE19863610747 DE3610747A1 (en) 1985-03-30 1986-03-29 METHOD AND DEVICE FOR AUTOMATIC SOLDERING
DE3645211A DE3645211C2 (en) 1985-03-30 1986-03-29 Flux for soldering circuit boards
NL8600826A NL8600826A (en) 1985-03-30 1986-04-01 METHOD AND APPARATUS FOR SOLDERING A PRINTED WIRING PLATE
KR1019860002903A KR900007263B1 (en) 1985-04-19 1986-04-16 Automatic soldering apparatus and method of using the fluxtoheat the circuit board
NL9201027A NL9201027A (en) 1985-03-30 1992-06-10 METHOD AND APPARATUS FOR SOLDERING A PRINTED WIRING PLATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60085266A JPS61242790A (en) 1985-04-19 1985-04-19 Flux for soldering

Publications (2)

Publication Number Publication Date
JPS61242790A JPS61242790A (en) 1986-10-29
JPH0459078B2 true JPH0459078B2 (en) 1992-09-21

Family

ID=13853771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60085266A Granted JPS61242790A (en) 1985-03-30 1985-04-19 Flux for soldering

Country Status (2)

Country Link
JP (1) JPS61242790A (en)
KR (1) KR900007263B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009724A (en) * 1990-07-02 1991-04-23 At&T Bell Laboratories Soldering flux and method of its use in fabricating and assembling circuit boards
JPH07121468B2 (en) * 1990-10-03 1995-12-25 メック株式会社 Flux for soldering
US5069730A (en) * 1991-01-28 1991-12-03 At&T Bell Laboratories Water-soluble soldering paste
JPH05212584A (en) * 1992-01-31 1993-08-24 Senju Metal Ind Co Ltd Solder paste
CN101557903B (en) * 2006-12-12 2013-06-19 千住金属工业株式会社 Flux for lead-free solder and method of soldering
CN105728982B (en) * 2015-11-05 2017-11-24 广东轻工职业技术学院 A kind of efficient scaling powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110159A (en) * 1974-07-16 1976-01-27 Matsushita Electric Ind Co Ltd HANDAZUKE HOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110159A (en) * 1974-07-16 1976-01-27 Matsushita Electric Ind Co Ltd HANDAZUKE HOHO

Also Published As

Publication number Publication date
JPS61242790A (en) 1986-10-29
KR860008701A (en) 1986-11-17
KR900007263B1 (en) 1990-10-06

Similar Documents

Publication Publication Date Title
US5297721A (en) No-clean soldering flux and method using the same
JP3797763B2 (en) Flux composition
JP5148999B2 (en) Water-dispersed flux composition, electronic circuit board with electronic components, and methods for producing them
JP5071952B2 (en) Soldering flux
JP2516286B2 (en) Water-soluble soldering flux, method of applying flux to the surface of parts, and method of joining two parts
EP0155139A1 (en) Soldering flux
EP1149661A2 (en) Soldering flux for circuit board and circuit board
JPH08243787A (en) Flux for soldering circuit board and circuit board
KR960004341B1 (en) Solder pastes having an drganic acids in low residue
JPH0459078B2 (en)
JP5691598B2 (en) Flux and method for forming electrical connection structure
US3963529A (en) Soldering flux
US5131962A (en) Low-residual type soldering flux
JP3368502B2 (en) Soldering flux solution free of volatile organic compounds and requiring no cleaning and low residual, and method of use
JPS6390390A (en) Flux for soldering
JPH0779069A (en) Method of soldering and solder flux
JPS58179562A (en) Soldering method and composition of flux for soldering
US4180419A (en) Solder flux
KR100328256B1 (en) A solvent system for soldering flux, a composition contaning the solvent system and a process manufacturing the composition
KR20160017809A (en) soldering flux
JPH09192883A (en) Flux composition
JP2640676B2 (en) Printed wiring board and method for manufacturing printed wiring board
JPH0857685A (en) Flux for soldering
JPS6326296A (en) Fire retardant flux
JPS61165273A (en) Sticking method for powder flux