JPH0459036A - Circulative fluidized-bed reactor - Google Patents

Circulative fluidized-bed reactor

Info

Publication number
JPH0459036A
JPH0459036A JP2164157A JP16415790A JPH0459036A JP H0459036 A JPH0459036 A JP H0459036A JP 2164157 A JP2164157 A JP 2164157A JP 16415790 A JP16415790 A JP 16415790A JP H0459036 A JPH0459036 A JP H0459036A
Authority
JP
Japan
Prior art keywords
fluidized bed
forming section
gas
speed
bed forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2164157A
Other languages
Japanese (ja)
Inventor
Shigeru Kobayashi
茂 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2164157A priority Critical patent/JPH0459036A/en
Publication of JPH0459036A publication Critical patent/JPH0459036A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To miniaturize the reactor and to reduce the wear of a bubble-fluidized bed forming part by solid grains by connecting the bubble-fluidized bed forming part forming a bubble-fluidized bed with the solid grains from a high-speed fluidized bed forming part to the upper end of the high-speed fluidized bed forming part. CONSTITUTION:Inlets 6 and 10 for the solid grain and a fluidizing gas are provided at the lower part of a slender cylindrical high-speed fluidized bed forming part 3, the grains are fluidized by the fluidizing gas and sent upward, and the high-speed fluidized bed 2 for the catalytic reaction of the grain with the fluidizing gas is formed. The diameter of a bubble-fluidized bed forming part 5 connected to the upper end of the high-speed fluidized bed forming part 3 is made larger than that of the high-speed fluidized bed forming part 3 to fluidize the grains from the high-speed fluidized bed forming part 3 and to form a bubble-fluidized bed 4. The grain in the high-speed fluidized bed forming part 5 is returned to the inlet 6 through a return line 16. Consequently, the reactor is miniaturized, and the wear of the forming part 5 by the grains is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体粒子を流動ガスによって流動化させなが
ら上昇させて、固体粒子と流動ガスとを接触反応させる
循環流動層反応器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a circulating fluidized bed reactor in which solid particles are raised while being fluidized by a fluidized gas, and the solid particles and the fluidized gas undergo a contact reaction. be.

[従来の技術] 近時、固体粒子とガスとの反応器として、固体粒子を流
動ガスで流動化させながら上昇させる循環流動層反応器
か開発されつつある。
[Prior Art] Recently, a circulating fluidized bed reactor is being developed as a reactor for solid particles and gas, in which the solid particles are raised while being fluidized by a fluidizing gas.

この循環流動層反応器は、細長の筒体状の高速流動層形
成部の下部に供給された固体粒子を流動ガスによって流
動化さぜながら−に昇さぜると共に、固体粒子とガスと
を接触させて反応させるものであり、高速流動層形成部
の上部に設けたサイクロンによって固体粒子とガスとを
分離し、その固体粒子を高速流動層形成部の下部に戻し
ている。
This circulating fluidized bed reactor uses a fluidized gas to fluidize the solid particles supplied to the lower part of the elongated cylindrical high-speed fluidized bed forming part and raise them to -, and also to separate the solid particles and the gas. The solid particles are separated from the gas by a cyclone installed at the top of the high-speed fluidized bed forming section, and the solid particles are returned to the bottom of the high-speed fluidized bed forming section.

U発明が解決しようとする課題」 ところで、上述の循環流動層反応器にあっては、固体粒
子が流動ガスによって激しく流動化されるなめに、固体
粒子とガスとの接触度合いが高くなり、その接触効率が
向上するという利点がある。
By the way, in the above-mentioned circulating fluidized bed reactor, since the solid particles are violently fluidized by the fluidizing gas, the degree of contact between the solid particles and the gas increases, and the This has the advantage of improving contact efficiency.

しかし、高速流動層形成部内を上昇した全ての固体位子
をサイクロンで捕捉するなめに、サイクロンが大型にな
り、反応器全体としても大型になる。
However, in order to capture all the solid ions that have risen in the high-speed fluidized bed formation section in the cyclone, the cyclone becomes large and the reactor as a whole also becomes large.

また、固体粒子によりサイクロン内壁等が摩耗し、その
摩耗により1−ラブルが起こることかある。
In addition, the solid particles may abrade the inner wall of the cyclone, and this abrasion may cause 1-rub.

そこで、本発明は、」−記課題を解決すべくなされなも
のて、反応器の小型化を図れると共に、固体粒子による
摩耗を軽減することを可能にした循環流動層反応器を提
供することを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention has been made to solve the above problems, and an object of the present invention is to provide a circulating fluidized bed reactor that can reduce the size of the reactor and reduce wear caused by solid particles. purpose.

[課題を解決するための手段] 本発明は、上記目的を達成するために、下部に固体粒子
と流動ガスとを導入する導入口を有し、その固体粒子を
流動ガスによって流動化させながら上昇させると共に、
固体粒子と流動ガスとを接触反応させる高速流動層を形
成する細長の筒体状の高速流動層形成部と、その高速流
動層形成部の」一端に連結され、高速流動層形成部から
の固体粒子をガスによって流動化させて気泡流動層を形
成するように高速流動層形成部より拡径された気泡流動
層形成部と、その気泡流動層形成部の固体粒子を上記高
速流動層形成部の導入口に戻す戻しラインとを備えたも
のである。
[Means for Solving the Problems] In order to achieve the above object, the present invention has an inlet at the bottom for introducing solid particles and a fluidizing gas, and the solid particles are raised while being fluidized by the fluidizing gas. Along with letting
An elongated cylindrical high-speed fluidized bed forming part that forms a high-speed fluidized bed in which solid particles and fluidized gas are brought into a contact reaction, and a high-speed fluidized bed forming part connected to one end of the high-speed fluidized bed forming part to form a high-speed fluidized bed forming a high-speed fluidized bed in which solid particles and fluidized gas are catalytically reacted. A bubble fluidized bed forming section whose diameter is expanded from the high speed fluidized bed forming section so as to fluidize the particles with gas to form a bubble fluidized bed, and the solid particles in the bubble fluidized bed forming section are transferred to the high speed fluidized bed forming section. It is equipped with a return line that returns to the inlet.

[作用] 上記構成によれば、高速流動層を形成した周体粒子がガ
スと共に高速流動層形成部から気泡流動層形成部に流入
すると、気泡流動層形成部が高速流動層形成部より拡径
されているなめに、ガスの空塔ガス速度が低下する。こ
れにより、因1ホ粒子は気泡流動層形成部内て流動化さ
れて気泡流動層が形成されることになり、その固体粒子
が戻しラインを介して高速流動層形成部に戻される。
[Function] According to the above configuration, when the surrounding particles forming the high-speed fluidized bed flow together with gas from the high-speed fluidized bed forming section to the bubble fluidized bed forming section, the bubble fluidized bed forming section expands in diameter from the high speed fluidized bed forming section. As a result, the superficial gas velocity of the gas decreases. As a result, the particles are fluidized in the bubble fluidized bed forming section to form a bubble fluidized bed, and the solid particles are returned to the high speed fluidized bed forming section via the return line.

このように、高速流動層を形成した固体粒子が気泡流動
層形成部内で流動化されて気泡流動層を形成することに
より、気泡流動層形成部かサイクロンとして作用するた
めに、従来のような大型のサイクロンが不要になり、反
応器の小型化が図れることになる。また、気泡流動層形
成部内で気泡流動層が形成されるために、そこでの固体
粒子の流速が軽減されるので、固体粒子による気泡流動
層形成部の内壁等の摩耗が軽減されることになる2[実
施例] 以下、本発明の一実施例を添付図面に基づいて説明する
In this way, the solid particles that have formed the high-speed fluidized bed are fluidized in the bubble fluidized bed forming section to form a bubble fluidized bed, and the bubble fluidized bed forming section acts as a cyclone. This eliminates the need for a cyclone, making it possible to downsize the reactor. In addition, since a bubbly fluidized bed is formed within the bubbly fluidized bed formation section, the flow velocity of solid particles there is reduced, so that wear of the inner walls of the bubbly fluidized bed formation section due to solid particles is reduced. 2 [Example] Hereinafter, an example of the present invention will be described based on the accompanying drawings.

本実施例では本発明に係る循環流動層反応器を亜硫酸ガ
スの還元に用いた場合について説明する。
In this example, a case will be described in which a circulating fluidized bed reactor according to the present invention is used for reducing sulfur dioxide gas.

第1図において、■は、固体粒子の高速流動層2を形成
する高速流動層形成部3と、その高速流動層形成部3の
上端に連結され、気泡流動層4を形成する気泡流動層形
成部5とを備えた循環流動層反応器を示している。
In FIG. 1, ■ indicates a high-speed fluidized bed forming section 3 that forms a high-speed fluidized bed 2 of solid particles, and a bubbly fluidized bed forming section that is connected to the upper end of the high-speed fluidized bed forming section 3 and forms a bubbly fluidized bed 4. 5 shows a circulating fluidized bed reactor with section 5.

高速流動層形成部2の下部には、固体粒子の導入口6か
設けられ、この導入口6には、コークスプリース・無煙
炭等の炭素系の固体粒子(微粉炭)の導入管7が接続さ
れており、固体粒子が高速流動層形成部3内の分散板8
上に導入されるようになっている。まな、高速流動層形
成部3の下部には、微粉炭を補充するための粒子補充供
給管9が接続されている。さらに、高速流動層形成部3
の下端には、ガス導入口10が設けられ、このガス導入
口10には亜硫酸ガスを含むガス(流動ガス)のガス導
入管11か接続されている。
An inlet 6 for introducing solid particles is provided at the lower part of the high-speed fluidized bed forming section 2, and an inlet pipe 7 for introducing carbon-based solid particles (pulverized coal) such as coke splice and anthracite is connected to this inlet 6. The solid particles are distributed on the dispersion plate 8 in the high-speed fluidized bed forming section 3.
It is designed to be introduced above. Furthermore, a particle replenishment supply pipe 9 for replenishing pulverized coal is connected to the lower part of the high-speed fluidized bed forming section 3. Furthermore, the high-speed fluidized bed forming section 3
A gas inlet 10 is provided at the lower end of the gas inlet 10, and a gas inlet pipe 11 for a gas (fluidizing gas) containing sulfur dioxide gas is connected to this gas inlet 10.

その高速流動層形成部3は、ガス導入口10からのガス
の上昇速度が約3〜10m/Secに維持されるように
細長の円筒体状にライザーとして構成されており、その
ガスによって分散板8上の微粉炭が流動化されながら上
昇し、微粉炭とガスとが接触して反応する高速流動層2
が形成されるようになっている。
The high-speed fluidized bed forming section 3 is configured as a riser in the shape of an elongated cylinder so that the rising speed of the gas from the gas inlet 10 is maintained at about 3 to 10 m/Sec, and the gas flows through the dispersion plate. High-speed fluidized bed 2 where the pulverized coal above 8 rises while being fluidized, and the pulverized coal and gas come into contact and react.
is starting to form.

また、高速流動層形成部3の上端には、オリフィス板1
2を介して気泡流動層形成部5が連結されている。この
気泡流動層形成部5は、高速流動層形成部3より拡径さ
れており、オリフィス板12を介した固体粒子とガスと
が流入し、そのガスによって固体粒子が流動化されて気
泡流動層4が形成されるようになっている。その気泡流
動層4は、ガスによって固体粒子か流動化されながら上
昇するものではなく、下から吹上ける(上昇する)ガス
中に固体粒子が浮遊懸濁する状態のものである。
In addition, an orifice plate 1 is provided at the upper end of the high-speed fluidized bed forming section 3.
A bubble fluidized bed forming section 5 is connected via 2. The bubble fluidized bed forming section 5 has a larger diameter than the high-speed fluidized bed forming section 3, into which solid particles and gas flow through the orifice plate 12, and the solid particles are fluidized by the gas to form a bubble fluidized bed. 4 is formed. In the bubble fluidized bed 4, the solid particles are not fluidized by the gas and rise, but the solid particles are suspended in the gas blowing up (rising) from below.

気泡流動層形成部5の上端には、ガス排管13が接続さ
れ、このガス排管13にはサイクロン14が介設されて
いる。まな、気泡流動層形成部5には、流動層4内の熱
の一部を回収する伝熱管15が設けられている。
A gas exhaust pipe 13 is connected to the upper end of the bubble fluidized bed forming section 5, and a cyclone 14 is interposed in the gas exhaust pipe 13. Furthermore, the bubble fluidized bed forming section 5 is provided with a heat transfer tube 15 that recovers a part of the heat within the fluidized bed 4.

さらに、気泡流動層形成部5には、戻しライン16を構
成する粒子管17か接続され、この粒子管17により気
泡流動層形成部5からガスと接触反応後の固体粒子が抜
き出されるようになっている。その粒子管17は3方弁
18に接続され、この3方弁には上記導入管7が接続さ
れており、気泡流動層形成部5内の固体粒子が粒子管]
7及び導入管7を介して高速流動層形成部3の下部に戻
される。
Further, a particle pipe 17 constituting a return line 16 is connected to the bubble fluidized bed forming section 5 so that the solid particles after contact reaction with the gas are extracted from the bubble fluidized bed forming section 5 through the particle pipe 17. It has become. The particle pipe 17 is connected to a three-way valve 18, and the introduction pipe 7 is connected to this three-way valve, so that the solid particles in the bubble fluidized bed forming section 5 are transferred to the particle pipe]
7 and the introduction pipe 7 to return to the lower part of the high-speed fluidized bed forming section 3.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

ガス導入管11からの亜硫酸ガスを含むガス(流動ガス
)は、ガス導入口10を介して高速流動層形成部3に入
り、分散板8を介して高速流動層形成部3内を流速が約
3〜10m/Secに維持されながら上昇する。これに
より、分散板8上の微粉炭がガスによって流動化されな
がら上昇して微粉炭の高速流動層2が形成されると共に
、微粉炭とガス中の亜硫酸ガスが高温下で接触して反応
(燃焼)する。高速流動形成部3を上昇したガスと微粉
炭は、オリフィス板12を介して気泡流動層形成部5に
流入する。
The gas (fluidized gas) containing sulfur dioxide gas from the gas inlet pipe 11 enters the high-speed fluidized bed forming section 3 through the gas inlet 10 and flows through the high-speed fluidized bed forming section 3 through the dispersion plate 8 at a flow rate of approximately It rises while maintaining a speed of 3 to 10 m/Sec. As a result, the pulverized coal on the dispersion plate 8 rises while being fluidized by the gas, forming a high-speed fluidized bed 2 of pulverized coal, and the pulverized coal and sulfur dioxide gas in the gas come into contact with each other at high temperatures and react ( combustion). The gas and pulverized coal that have ascended through the high-speed fluidization forming section 3 flow into the bubble fluidized bed forming section 5 via the orifice plate 12 .

すると、気泡流動層形成部5が高速流動形成部3より拡
径されているなめに、気泡流動層形成部5に流入したガ
スの空塔ガス流速が低下する。これにより、流入した微
粉炭は、気泡流動層形成部5内では、単に流動化される
だけでその上昇がほとんどなくなり、気泡流動層形成部
5内に微粉炭の気泡流動層4が形成されることになる。
Then, since the diameter of the bubble fluidized bed forming section 5 is larger than that of the high-speed fluidization forming section 3, the superficial gas flow velocity of the gas flowing into the bubble fluidized bed forming section 5 decreases. As a result, the pulverized coal that has flowed into the bubbly fluidized bed forming section 5 is simply fluidized and its rise is almost eliminated, and a bubbly fluidized bed 4 of pulverized coal is formed within the bubbly fluidized bed forming section 5. It turns out.

このように、微粉炭とガスとが高速流動層2スは気泡流
動層4で接触することにより、微粉炭とガス中の亜硫酸
ガスとが反応し、亜硫酸ガスが硫黄ガスに還元される。
In this way, when the pulverized coal and the gas come into contact with each other in the high-speed fluidized bed 2 and the bubble fluidized bed 4, the pulverized coal and the sulfur dioxide gas in the gas react, and the sulfur dioxide gas is reduced to sulfur gas.

この硫黄ガスを含む排ガスは、ガス排管13に流入して
サイクロン14に入る。そこでガスと共に飛散した比較
的粒径が小さい粒子が捕捉され、その後、他の処理系(
例えば硫黄ガスを凝縮回収する系)に導かれる。
This exhaust gas containing sulfur gas flows into the gas exhaust pipe 13 and enters the cyclone 14. There, the relatively small particles that were scattered with the gas are captured, and then sent to other processing systems (
For example, it is introduced into a system that condenses and recovers sulfur gas.

気泡流動層形成部5の反応後の微粉炭(固体粒子)は、
粒子管17に抜き出され、3方弁18により導入管7を
介して高速流動層形成部3の下部に戻され、亜硫酸ガス
の還元に再度寄与される。
The pulverized coal (solid particles) after the reaction in the bubble fluidized bed forming section 5 is
The particles are extracted into the particle pipe 17 and returned to the lower part of the high-speed fluidized bed forming section 3 via the introduction pipe 7 by the three-way valve 18, where they once again contribute to the reduction of sulfur dioxide gas.

しながって、気泡流動層形成部5が従来のサイクロンと
して作用するなめに、ガス1.II−管13に流入する
ガスには比較的粒径の小さな粒子のみが同伴することに
なる。このため、ガス排管13のザイク17ン14の負
荷が極端に軽減されるのて、従来のような大型のサイク
ロンが不要になり、サイクロン14が小型になる。その
結果、反応器1全体の小型化が図れることになる。
Therefore, in order for the bubble fluidized bed forming section 5 to act as a conventional cyclone, the gas 1. The gas flowing into the II-pipe 13 is accompanied by only relatively small particles. As a result, the load on the cyclone 14 of the gas exhaust pipe 13 is extremely reduced, making a conventional large cyclone unnecessary and making the cyclone 14 smaller. As a result, the entire reactor 1 can be made smaller.

また、高速流動層形成部3を激しく流動化しなから上昇
しな固体粒子は、気泡流動層形成部5内に流入すると、
浮遊するような流動状態になるなめに、固体粒子による
気泡流動層形成部5の内壁笠の摩耗が軽減されるので、
その摩耗による1〜ラブルも軽微となる。
In addition, when solid particles that do not rise without violently fluidizing the high-speed fluidized bed forming section 3 flow into the bubble fluidized bed forming section 5,
Since the solid particles become in a floating fluid state, wear of the inner wall cap of the bubble fluidized bed forming section 5 due to solid particles is reduced.
1~Rubble caused by the wear becomes slight.

さらに、気泡流動層形成部5には、気泡流動層4内の熱
の一部を回収する伝熱管15か設けられているなめに、
サイクロン14へ流入するガスが冷却されるので、サイ
クロン14の内壁に内張すする耐火材を薄くすることが
でき、小型て安価なサイクロン14を用いることができ
る。
Furthermore, the bubble fluidized bed forming section 5 is provided with a heat transfer tube 15 for recovering a part of the heat in the bubble fluidized bed 4.
Since the gas flowing into the cyclone 14 is cooled, the refractory material lined on the inner wall of the cyclone 14 can be made thinner, and a smaller and cheaper cyclone 14 can be used.

なお、本実施例ては本発明に係る循環流動層反応器を亜
硫酸ガスの還元に用いた揚台について説明したが、これ
に限定されるものてはなく、高速流動層形成部又は気泡
流動層形成部内て固体粒子と流動ガスとの反応を十分に
行えるものに、本発明に係る1FJ環流動層反応器を適
用てきることはいうまでもない。例えば、微粉炭の燃焼
ボイラや硫化水素等の硫黄分を吸収した酸化鉄系の脱硫
剤の再生を行う反応器として用いることができる。
Although this example describes a platform in which the circulating fluidized bed reactor according to the present invention is used for reducing sulfur dioxide gas, the present invention is not limited to this, and it may be used in a high-speed fluidized bed forming section or a bubble fluidized bed. It goes without saying that the 1FJ reflux fluidized bed reactor according to the present invention can be applied to anything that can sufficiently react the solid particles with the fluidized gas in the forming section. For example, it can be used as a pulverized coal combustion boiler or a reactor for regenerating an iron oxide desulfurization agent that has absorbed sulfur content such as hydrogen sulfide.

[発明の効果] 以上型するに本発明によれば、高速流動y蕾形成部の上
端に、その高速流動層形成部からの固体粒子により気泡
流動層を形成する気泡流動J−形成部を連結したのて、
反応器の小型化を図れると共に、固体粒子による摩耗を
軽減てきるという優れた効果を発揮する。
[Effects of the Invention] To summarize, according to the present invention, a bubbly fluid J-forming section that forms a bubbly fluidized bed with solid particles from the high-speed fluidized bed forming section is connected to the upper end of the high-speed fluid y-bud forming section. After that,
This has the excellent effect of reducing the size of the reactor and reducing wear caused by solid particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図である。 図中、2は高速流動層、3は高速流動層形成部、4は気
泡流動層、5は気泡流動層形成部、6.10は導入口、
16は戻しラインを示す。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 2 is a high-speed fluidized bed, 3 is a high-speed fluidized bed forming section, 4 is a bubble fluidized bed, 5 is a bubble fluidized bed forming section, 6.10 is an inlet,
16 indicates a return line.

Claims (1)

【特許請求の範囲】[Claims] 1、下部に固体粒子と流動ガスとを導入する導入口を有
し、その固体粒子を流動ガスによって流動化させながら
上昇させると共に、固体粒子と流動ガスとを接触反応さ
せる高速流動層を形成する細長の筒体状の高速流動層形
成部と、該高速流動層形成部の上端に連結され、高速流
動層形成部からの固体粒子をガスによって流動化させて
気泡流動層を形成するように高速流動層形成部より拡径
された気泡流動層形成部と、該気泡流動層形成部の固体
粒子を上記高速流動層形成部の導入口に戻す戻しライン
とを備えたことを特徴とする循環流動層反応器。
1. It has an inlet at the bottom for introducing solid particles and fluidized gas, and the solid particles are fluidized by the fluidized gas and raised, and a high-speed fluidized bed is formed in which the solid particles and the fluidized gas undergo a contact reaction. An elongated cylindrical high-speed fluidized bed forming section is connected to the upper end of the high-speed fluidized bed forming section, and the solid particles from the high-speed fluidized bed forming section are fluidized by gas to form a bubbly fluidized bed. A circulating flow characterized by comprising: a bubble fluidized bed forming section whose diameter is expanded from the fluidized bed forming section; and a return line that returns solid particles from the bubble fluidized bed forming section to the inlet of the high speed fluidized bed forming section. Layer reactor.
JP2164157A 1990-06-25 1990-06-25 Circulative fluidized-bed reactor Pending JPH0459036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164157A JPH0459036A (en) 1990-06-25 1990-06-25 Circulative fluidized-bed reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164157A JPH0459036A (en) 1990-06-25 1990-06-25 Circulative fluidized-bed reactor

Publications (1)

Publication Number Publication Date
JPH0459036A true JPH0459036A (en) 1992-02-25

Family

ID=15787824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164157A Pending JPH0459036A (en) 1990-06-25 1990-06-25 Circulative fluidized-bed reactor

Country Status (1)

Country Link
JP (1) JPH0459036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288622B1 (en) 1997-11-07 2001-09-11 Nec Corporation Electro-magnetic relay and cover used for the same
CN102728181A (en) * 2012-07-23 2012-10-17 东南大学 Fluidized bed jetting adsorbent smoke demercuration device and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288622B1 (en) 1997-11-07 2001-09-11 Nec Corporation Electro-magnetic relay and cover used for the same
CN102728181A (en) * 2012-07-23 2012-10-17 东南大学 Fluidized bed jetting adsorbent smoke demercuration device and method thereof
CN102728181B (en) * 2012-07-23 2014-05-07 东南大学 Fluidized bed jetting adsorbent smoke demercuration device and method thereof

Similar Documents

Publication Publication Date Title
KR100306026B1 (en) Method and apparatus for driving a circulating fluidized bed system
JPH0631293Y2 (en) Fluidized bed reactor
US8771549B2 (en) Chemical looping combustion method and plant with independent solid circulation control
JP2564163B2 (en) Fluidized bed equipment
US2463623A (en) Apparatus for the conversion of fluid reactants
US6015539A (en) Fluidized bed process for producing alumina from aluminum hydroxide
US5476639A (en) Fluidized bed reactor system and a method of manufacturing the same
ZA200505912B (en) Method and plant for removing gaseous pollutants from exhaust gases
JPS61234950A (en) Method and apparatus for regenerating catalyst after use
US4881592A (en) Heat exchanger with backmix and flow through particle cooling
KR100338695B1 (en) How to Drive a Circulating Fluidized Bed Reactor System and a Circulating Fluidized Bed Reactor System
Bai et al. Saturation carrying capacity of gas and flow regimes in CFB
FI104053B (en) Apparatus for carrying out reaction between gas and particle-like material in closed space
Grace et al. Circulating fluidized beds
EP0771402A1 (en) A fluid-bed heat exchanger, fluid-bed combustion reactor systems and methods for the operation of a fluid-bed heat exchanger and a fluid-bed combustion reactor system
AU2003296631B2 (en) Method and plant for the heat treatment of sulfidic ores using annular fluidized bed
CA2256893C (en) Method of and apparatus for decreasing attack of detrimental components of solid particle suspensions on heat transfer surfaces
JPH0459036A (en) Circulative fluidized-bed reactor
Grace et al. Fluidized beds
US4539939A (en) Fluidized bed combustion apparatus and method
Dry et al. Gas—solid contact in a circulating fluidized bed: The effect of particle size
EP0147445B1 (en) High-velocity multisolid fluidized bed process
JPS6229886A (en) Fluidized-bed reaction furnace and operating method thereof
US2576504A (en) Horizontal transport of solids
CN1024394C (en) Solids recycle seal system for fluidized bed reactor