JPH0458959B2 - - Google Patents

Info

Publication number
JPH0458959B2
JPH0458959B2 JP62023645A JP2364587A JPH0458959B2 JP H0458959 B2 JPH0458959 B2 JP H0458959B2 JP 62023645 A JP62023645 A JP 62023645A JP 2364587 A JP2364587 A JP 2364587A JP H0458959 B2 JPH0458959 B2 JP H0458959B2
Authority
JP
Japan
Prior art keywords
glucose
starch
glucoamylase
immobilized
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62023645A
Other languages
Japanese (ja)
Other versions
JPS63192397A (en
Inventor
Junji Nashimoto
Chikashi Izumi
Takeshi Makino
Shigechika Narita
Hirotake Fukino
Kazuo Munechika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI SEITO KK
OJI KOONSUTAACHI KK
Original Assignee
MITSUI SEITO KK
OJI KOONSUTAACHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI SEITO KK, OJI KOONSUTAACHI KK filed Critical MITSUI SEITO KK
Priority to JP2364587A priority Critical patent/JPS63192397A/en
Publication of JPS63192397A publication Critical patent/JPS63192397A/en
Publication of JPH0458959B2 publication Critical patent/JPH0458959B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、高濃度、高純度のグルコースを効
率良く、安価に連続的に製造する方法に関する。 (従来の技術) 現在、デンプン糖の製造工程は大略次の工程に
分けることができる。 (1) デンプン乳の製造工程 (2) α−アミラーゼを使用したデンプンの液化工
程 (3) グルコアミラーゼ、β−アミラーゼ、マルト
オリゴ糖生成アミラーゼ、イソアミラーゼ、プ
ルラナーゼ等を使用したデンプン液化液の糖化
工程 (4) 糖液の精製、濃縮工程 (5) グルコースイソメラーゼを使用した糖液の異
性化工程 上記5工程のうち(3)の糖化工程を除いて他の工
程は連続法により生産されており、糖化工程のみ
がバツチ法で行なわれている。しかもこのバツチ
法でグルコースを製造する場合は糖液のDEが93
〜98、グルコースの生成量が91〜96%になるまで
糖化を行なうために巨大なタンク内で48〜72時間
という長時間を必要とする。 一方デンプン糖の製造工程中、糖化工程を連続
法にするため、デンプン液化液を多孔質吸着体に
グルコアミラーゼを固定化した固定層リアクター
に通液して糖化を行なう種々の糖化法が提供され
ている(例えば特開昭53−86086号、特許1162764
号、特開昭55−144890号、特許1120531号、特許
1120532号、特許1117041号、特開昭59−130193
号)。 (発明が解決しようとする問題点) しかし、これ等は処理液の濃度が低い上に、固
定化グルコアミラーゼのライフが短く、また生成
するグルコースの純度が低い等の理由によつて殆
ど実用化に至つていない。 僅かに、骨灰にアスペルギルス・ニガー起源の
グルコアミラーゼをグルタールアルデヒドで架橋
固定した固体化グルコアミラーゼ(テイト アン
ド ライル社開発製品)が市販されているが、こ
れに高濃度デンプン液化液を通液して糖化を行な
つてもグルコースの最高生成量はバツチ糖化法の
グルコース生成量(約91%以上)には達しない。
例えば、上記固定化グルコアミラーゼに、固型分
30w/w%高濃度デンプン液化液(DE11.8)を
空塔速度(SV)0.5hr-1で通液して糖化を行なう
とグルコース生成量は最高87〜88%である。これ
に比較してイソマルトースの生成量は約5%に増
大している。 そこで、本願発明者等はデンプン液化液を固定
化グルコアミラーゼへ通液して糖化を行なつた場
合のグルコースとイソマルトースの生成量の関係
について実験と研究を重ねた結果、デンプン液化
液がグルコアミラーゼに接触し、加水分解されて
生成するグルコースはグルコアミラーゼと接触す
ると、逆合成によりイソマルトースが生成してグ
ルコースの収率を抑制することを見出した。 これと同時に、本願発明者等はイソマルトース
の生成量がグルコースの生成量が多い程、或いは
生成したグルコースとグルコアミラーゼとの接触
時間が長くなる程増大してグルコースの収率を低
下させることも見出している。 これに対してグルコアミラーゼを吸着固定した
酵素固定膜リアクターにデンプン液化液を通液し
てグルコースを製造する方法も特公昭58−8836
号、特公昭57−59758号公報等で開示されている。 ここで使用されている酵素固定膜は膜の片面を
小孔径、他方を大孔径として大孔径側の表面及び
膜内にグルコアミラーゼを固定化したもので、デ
ンプン液化液を通液した場合、デンプン液化液は
グルコアミラーゼと接触して加水分解され、小孔
径を通過可能な低分子物質、例えばグルコース程
度まで加水分解された時、小孔径を通過して透過
液側に排出され、小孔径を通過できない未分解の
オリゴ糖、デキストリン等は供給液側を循環して
グルコアミラーゼと接触させて小孔径を通過でき
る大きさにまで加水分解して透過液側に排出する
ものである。 この方法によればグルコースとグルコアミラー
ゼとの接触時間が非常に短いために、逆反応によ
るイソマルトースの生成もなく、また小孔径が単
糖類のみが透過可能な孔径であれば、透過液中に
はグルコースのみとなり、高純度のグルコースの
生産が可能となる。しかし、現実にはグルコース
と二糖類とを分解するような膜は開発されていな
い。そこで、デンプン液化液を固定膜リアクター
に通液した場合、透過液中にはグルコース以外の
オリゴ糖も多く含まれている。したがつて透過液
中のグルコース収率を高めるには透過液を更に何
回か固定膜をリアクターに通過させなければなら
ない。下記対照例1、2に示す本願発明者等の実
験によればデンプン液化液を酵素固定膜の1パス
目のグルコース(G1)の収率は70%にも満たず、
3パス目でようやく90%を越えた値が得られてい
る。 また、処理液を何回も酵素固定膜を通過させる
と、結局グルコースとグルコアミラーゼとの接触
時間が長くなり、逆反応によるイソマルトースの
生成が増大し、グルコースの生成量が抑制される
結果となる。本願発明者等の行なつた上述の実験
によればイソマルトースの生成は1パス目では
0.05%程度であるが、3パス目では1%程度に、
5パス目では2%程度に上昇し、これに伴ないグ
ルコースの収率も4パス目で最高値91〜92%を示
すが、5パス目では90〜91%に減少している。 また、デンプン液化液を直接酵素固定膜リアク
ターで糖化すると、1パス目、2パス目で非常に
生産性が悪く、上述の本願発明者等の行なつた実
験では1パス目のフラツクスは平均114ml/hr・
0.1m2、2パス目のフラツクスは平均210ml/hr・
0.1m2程度であつた。 そこで、この発明においては例えば93%以上の
グルコースを生成性良く、連続的に製造すること
を目的とするものである。 (問題点を解決するための手段) この発明は上記目的を達成するために鋭意研究
の結果、デンプン液化液を、多孔質吸着体にグル
コアミラーゼを固定化した固定層リアクターに空
塔速度3〜6hr-1で通液してグルコース含有量65
〜85%、イソマルトース含有量1%以下になるよ
うに糖化を行ない、該糖化液をグルコアミラーゼ
を吸着固定化した酵素固定膜リアクターに通液
し、生成したグルコースを反応系外に取り出すグ
ルコースの製造法を提案するものである。 グルコアミラーゼとしては、リゾプス属、アス
ペルギルス属、ムコール属、ピリカラリア属等の
カビ起源のもの、エンドマイセス属、トリコデル
マ属、サツカロミセス属等の酵母起源のもの及び
各種細菌起源のものが知られているが、このうち
この発明の固定層リアクター乃至酵素固定膜リア
クターに使用するものとしては、リゾプス・デレ
マー(Rhizopus delemar)及びアスペルギル
ス・ニガー(Aspergillus niger)起源のグルコ
アミラーゼが好適である。特に、固定化した場合
にリゾプス・デレマー起源のグルコアミラーゼ
(商品名:スミチーム 新日本化学社製)は、作
用最適温度が50℃程度とニガー起源のグルコアミ
ラーゼ(商品名:AMGノボ社製)の58℃より低
いが、逆合成作用が弱く、イソマルトースの蓄積
が1%以上少ないことが明らかとなつた。しか
し、作用温度が低いために、加水分解速度が遅く
なり、したがつて空塔速度を小さくする必要があ
る。 固定層リアクターを構成する多孔質吸着体とし
ては、弱酸性多孔質樹脂、弱酸性カチオン樹脂、
多孔質キトサン、天然キチン、骨炭、カチオン化
デンプン等が使用可能であるが、このうち特に効
果があるのは骨灰、キチン、又は天然高分子キチ
ンを脱アセチル化して製造した多孔質キトサンで
あることが判明した。 なお、骨炭の場合、非常に効率良くグルコアミ
ラーゼ及びマルトオリゴ糖生成アミラーゼを吸着
するが、高濃度基質の通液によつて徐々に脱離す
るために吸着後、グルタールアルデヒドで架橋固
定化する必要がある。また、固定化酵素の活性が
非常に高いため、酵素の寿命は長いが、反面イソ
マルトースの蓄積が多く、更に吸着体が再利用で
きない等の欠点がある。 多孔質キトサンのうち、特開昭61−40337号、
特公昭61−76504号に開示されたもの(商品名:
キトパール 富士紡績社製)がPH安定性、耐薬品
性、耐熱性に優れている。 「キトパール」にはキトサンをジカルボン酸又
はジアルデヒドで架橋した後、スペーサーとして
ジイソシアネート化した脂肪族の官能基を導入し
た多孔質ビーズ(#3000タイプ)と芳香族の官能
基を導入した多孔質ビーズ(#3500タイプ)があ
り、グルコアミラーゼ、マルトオリゴ糖生成アミ
ラーゼは何れのタイプのものにも良く吸着され
る。 また、酵素固定膜リアクターを構成する膜は例
えば分子分画性を持つたスキン層(緻密層)と空
隙部の多いスポンジ層(多孔質層)とが一体とな
つた非対称キヤピラリー膜であつて、膜は例えば
グルタールアルデヒドで活性化した後、上述のよ
うなグルコアミラーゼを含む緩衝液で処理して膜
にグルコアミラーゼを固定化する。 一方、デンプン液化液の原料としてはとうもろ
こしデンプン、馬鈴薯デンプン、甘蔗デンプン、
タピオカデンプンの1種又は2種以上を使用する
ことができる。 これらのデンプンは液化工程で、例えばデンプ
ン濃度30%液化液のDE5〜20程度に液化する。 このデンプン液化液は、上述のように多孔質吸
着体にグルコアミラーゼを固定化した固定層リア
クターに空塔速度3〜6hr-1で通液してグルコー
ス含有量65〜85%、好ましくは70〜80%、イソマ
ルトース含有量1%以下になるように糖化を行な
う。 次に、この糖化液をグルコアミラーゼを吸着固
定化した酵素固定膜リアクターに通液して生成し
たグルコースを反応系外に取り出すようにする。 なお、固定層リアクター乃至酵素固定膜リアク
ターでの温度条件はグルコアミラーゼの最適温度
付近で行なうことが好ましく、アスペルギルス・
ニガー起源のグルコアミラーゼを使用する場合に
は55〜60℃、リゾプス・デレマー起源のグルコア
ミラーゼを使用する場合には40〜50℃程度で行な
う。更に、PH条件はグルコアミラーゼの最適PH付
近で行なうことが好ましく、例えばPH4.0〜7.0程
度で行なう。 (発明の効果) 即ち、この発明によればデンプン液化液を固定
層リアクターでグルコース含有量65〜85%、イソ
マルトース含有量1%以下になるように糖化して
から酵素固定膜リアクターに通液することによつ
て、例えば糖化液が酵素固定膜リアリターを3回
通過する程度でグルコースの収率を93%以上に高
めることがてき、同時にイソマルトースの生成量
を1.5%以下に抑制することができる。 また、固定層リアリターでデンプン液化液を糖
化することによつて酵素固定膜リアクターでの生
産性を飛躍的に向上させることができる。 更に、この発明ではデンプン液化液を空塔速度
(SV)3〜6hr-1で通液し、更に酵素固定膜リア
クターでは3回程度の通過で高濃度のグルコース
が得られる。 したがつて、この発明によれば高濃度のグルコ
ースを生産性良く、連続的に製造することができ
る。 そして、本発明により得られたグルコースは、
フラクトース(果糖)への異性化率42%以上の異
性化液糖を連続的に生産するために必要な最低グ
ルコース濃度93%を満たすもので、その後に異性
化液糖を連続的に製造するのに適用することがで
きる。 (実施例) 以上、この発明の実施例を示す。 <デンプン液化液の調整> (1) コーンスターチの液化液の調整 コーンスターチ11.4Kg(絶乾固型分10.0Kg)を
水20に懸濁し、塩化カルシウム8.0g(0.08%対
コーンスターチ)を添加後、1N−Na0HでPH7.0
に調整し、液化酵素(商品名:ターマミル60L、
バチルス・リケニホルミス起源、ノボ社製)を、
8.0ml(0.08w/w%対コーンスターチ)を加え、
小型連続糊化装置(ジエツトクツカー)で1/
minの流速で105℃に瞬間的に加熱後、105℃に15
分間滞留できる糊化リテンシヨン管を通し、常圧
下に放出する。その後95〜98℃で120分間滞留す
る液化リテンシヨン管を通し、連続的に糊化、液
化を完了する。更に、1N−HC1でPH2.5〜3.0に調
整し、90℃で10分間保持し、α−アミラーゼを失
活させ、1N−Na0HでPH4.5にした後、60℃以上
で濾過し凝集物を除去し、澄明な液化液を得た。
得られた液化液のDEは11.8であつた。以下、本
液化液をCSL−11.8と略記する。 (2) 馬鈴薯デンプンの液化液の調整 馬鈴薯デンプンの酵素液化デキストリンは、商
品名「NSD」(日本資糧工業社製)、商品名「ア
ミコール」(日澱化学社製)が市販されているが、
この実施例ではNSD(DE13.2)を所定の濃度に溶
解して使用した。以下、本デキストリンをNSD
−13.2と略記する。 <キトサンビーズへの酵素の固定化> キトサンビーズ(商品名:キトパール3010 富
士紡績社製)50g(wet70ml)にグルコアミラーゼ
(商品名:AMG(300AGU/ml)アスペルギル
ス・ニガー起源、ノボ社製)50g(酵素蛋白とし
て5.4g含有)を加え、室温で2時間攪拌処理後、
吸引濾過し、100mlの水でビーズを洗浄、洗液に
酵素蛋白の溶出がなくなるまで洗浄、濾過を繰返
して行つた。 得られたキトパール#3010吸着固定化グルコア
ミラーゼは、1.91gの酵素蛋白がキトパールに吸
着された(38.1mg/g−キトパール)。 <酵素固定膜リアクターの調整> 膜モジユールを3.1%グルタールアルデヒド溶
液で活性化し、活性化終了後0.02M−酢酸緩衝液
(PH4.5)に溶解したグルコアミラーゼ溶液(5
mg/ml)(Asp.niger起源、商品名:グルクザイ
ム、天野製薬社製)1で処理して膜モジユール
にグルコアミラーゼを固定した。 実施例 1 CSL−11.8を先に調整したキトサンビーズ固定
化グルコアミラーゼのφ15×300mmのカラムに、
SV4hr-1で通液処理し、供試液CSL−CP−4を
得た。この供試液はG181.09%、IM0.98%、未分
解オリゴ糖13.2%を含むものであつた。 このCSL−CP−4をPH4.6、Bx31に調整し、メ
ンブランスマスターBM−1(商品名:日東電工
株式会社、酵素固定膜反応装置)に温度57.0〜
58.5、循環圧1.45〜1.55mg/cm2、循環流量0.96〜
1.04/minで繰返し通液処理したところの各処
理毎の透過液のフラツクス、グルコース(G1)、
イソマルトース(IM)含有量は次の通りであつ
た。
(Industrial Application Field) The present invention relates to a method for efficiently and inexpensively continuously producing high-concentration, high-purity glucose. (Prior Art) Currently, the process for producing starch sugar can be roughly divided into the following steps. (1) Starch milk production process (2) Starch liquefaction process using α-amylase (3) Starch liquefaction saccharification process using glucoamylase, β-amylase, maltooligosaccharide-forming amylase, isoamylase, pullulanase, etc. (4) Purification and concentration process of sugar solution (5) Isomerization process of sugar solution using glucose isomerase Out of the above five steps, except for the saccharification step (3), the other steps are produced by a continuous method. Only the saccharification process is carried out using the batch method. Moreover, when producing glucose using this batch method, the DE of the sugar solution is 93.
~98, it takes a long time of 48 to 72 hours in a huge tank to carry out saccharification until the amount of glucose produced is 91 to 96%. On the other hand, in order to make the saccharification process a continuous process during the production process of starch sugar, various saccharification methods have been proposed in which saccharification is performed by passing the liquefied starch solution through a fixed bed reactor in which glucoamylase is immobilized on a porous adsorbent. (For example, Japanese Patent Application Laid-Open No. 53-86086, Patent No. 1162764)
No., Japanese Patent Application Publication No. 55-144890, Patent No. 1120531, Patent
No. 1120532, Patent No. 1117041, JP-A-59-130193
issue). (Problems to be solved by the invention) However, these methods are rarely put into practical use due to the low concentration of the treatment solution, the short life of the immobilized glucoamylase, and the low purity of the glucose produced. has not yet been reached. There is a small amount of solidified glucoamylase (developed by Tate & Lyle) on the market, in which glucoamylase originating from Aspergillus niger is cross-linked and immobilized with glutaraldehyde in bone ash, but this is not possible by passing a high-concentration starch liquefaction solution through it. Even if saccharification is performed using this method, the maximum amount of glucose produced does not reach the amount of glucose produced by the batch saccharification method (approximately 91% or more).
For example, the above-mentioned immobilized glucoamylase has a solid content.
When saccharification is carried out by passing a 30 w/w% high concentration starch liquefied liquid (DE11.8) at a superficial velocity (SV) of 0.5 hr -1 , the maximum amount of glucose produced is 87-88%. In comparison, the amount of isomaltose produced increased to about 5%. Therefore, as a result of repeated experiments and research on the relationship between the amount of glucose and isomaltose produced when starch liquefaction is passed through immobilized glucoamylase for saccharification, the inventors of the present invention found that the starch liquefaction It was discovered that when glucose, which is hydrolyzed and produced in contact with amylase, comes into contact with glucoamylase, isomaltose is produced through retrosynthesis, suppressing the yield of glucose. At the same time, the present inventors have discovered that the amount of isomaltose produced increases as the amount of glucose produced increases, or as the contact time between the produced glucose and glucoamylase increases, leading to a decrease in the yield of glucose. I'm finding out. On the other hand, there is also a method of producing glucose by passing a starch liquefaction solution through an enzyme-immobilized membrane reactor in which glucoamylase is adsorbed and immobilized.
No. 57-59758, etc. The enzyme-immobilized membrane used here has small pores on one side and large pores on the other side, and glucoamylase is immobilized on the surface and inside the membrane on the large pore side, and when the starch liquefaction solution is passed through it, the starch The liquefied liquid is hydrolyzed by contact with glucoamylase, and when it is hydrolyzed to a low-molecular substance, such as glucose, that can pass through the small pores, it passes through the small pores and is discharged to the permeate side, passing through the small pores. Undecomposed oligosaccharides, dextrins, etc. that cannot be removed are circulated through the feed liquid side, brought into contact with glucoamylase, hydrolyzed to a size that can pass through the small pores, and discharged to the permeate side. According to this method, the contact time between glucose and glucoamylase is very short, so there is no production of isomaltose due to the reverse reaction. is only glucose, making it possible to produce highly pure glucose. However, in reality, a membrane that decomposes glucose and disaccharides has not been developed. Therefore, when the starch liquefaction liquid is passed through a fixed membrane reactor, the permeate contains many oligosaccharides other than glucose. Therefore, to increase the glucose yield in the permeate, the permeate must be passed through the fixed membrane several more times through the reactor. According to the experiments conducted by the present inventors shown in Control Examples 1 and 2 below, the yield of glucose (G 1 ) in the first pass of the starch liquefied solution through the enzyme-immobilized membrane was less than 70%;
By the third pass, we finally achieved a value exceeding 90%. In addition, if the treated solution is passed through the enzyme-immobilized membrane many times, the contact time between glucose and glucoamylase becomes longer, and the production of isomaltose due to the reverse reaction increases, resulting in the suppression of the amount of glucose produced. Become. According to the above-mentioned experiments conducted by the inventors of the present application, isomaltose is produced in the first pass.
It is about 0.05%, but in the third pass it decreases to about 1%,
It increases to about 2% in the 5th pass, and along with this, the glucose yield also reaches a maximum value of 91-92% in the 4th pass, but decreases to 90-91% in the 5th pass. Furthermore, when starch liquefaction is directly saccharified in an enzyme-immobilized membrane reactor, the productivity is very poor in the first and second passes, and in the experiments conducted by the inventors of the present invention, the average flux in the first pass was 114 ml. /hr・
0.1m 2 , second pass flux averaged 210ml/hr・
It was about 0.1m2 . Therefore, the present invention aims to continuously produce, for example, 93% or more glucose with good production efficiency. (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention was developed as a result of extensive research, and it was discovered that a starch liquefied liquid was transferred to a fixed bed reactor with a superficial velocity of 3 to 3. Glucose content 65 after passing for 6hr -1
85% and the isomaltose content is 1% or less, the saccharified solution is passed through an enzyme-immobilized membrane reactor in which glucoamylase is adsorbed and immobilized, and the produced glucose is taken out of the reaction system. This paper proposes a manufacturing method. Glucoamylase is known to originate from fungi such as Rhizopus, Aspergillus, Mucor, and Piricararia, yeast from Endomyces, Trichoderma, and Satucharomyces, and from various bacteria. Among these, glucoamylases originating from Rhizopus delemar and Aspergillus niger are suitable for use in the fixed bed reactor or enzyme fixed membrane reactor of the present invention. In particular, when immobilized, glucoamylase originating from Rhizopus deremer (product name: Sumiteam, manufactured by Shin Nippon Kagaku Co., Ltd.) has an optimum temperature of approximately 50°C, compared to glucoamylase originating from niger (product name: AMG Novo). Although the temperature was lower than 58°C, it was found that the retrosynthesis effect was weaker and the accumulation of isomaltose was more than 1% lower. However, due to the low operating temperature, the rate of hydrolysis is slow and therefore the superficial velocity needs to be low. Porous adsorbents constituting the fixed bed reactor include weakly acidic porous resins, weakly acidic cationic resins,
Porous chitosan, natural chitin, bone char, cationized starch, etc. can be used, but among these, porous chitosan produced by deacetylating bone ash, chitin, or natural polymer chitin is particularly effective. There was found. In the case of bone char, glucoamylase and maltooligosaccharide-producing amylase are adsorbed very efficiently, but because they are gradually desorbed by passing a high-concentration substrate through, it is necessary to cross-link and immobilize with glutaraldehyde after adsorption. There is. Furthermore, since the activity of the immobilized enzyme is very high, the life of the enzyme is long, but on the other hand, there are drawbacks such as a large accumulation of isomaltose and the inability to reuse the adsorbent. Among porous chitosan, JP-A-61-40337;
Disclosed in Special Publication No. 61-76504 (Product name:
Chitopearl (manufactured by Fujibo) has excellent PH stability, chemical resistance, and heat resistance. "Chito Pearl" consists of porous beads (#3000 type) in which chitosan is cross-linked with dicarboxylic acid or dialdehyde and then diisocyanated aliphatic functional groups are introduced as spacers (#3000 type), and porous beads in which aromatic functional groups are introduced. (#3500 type), and glucoamylase and maltooligosaccharide-producing amylase are well adsorbed to both types. Furthermore, the membrane constituting the enzyme-immobilized membrane reactor is, for example, an asymmetric capillary membrane in which a skin layer (dense layer) with molecular fractionation and a sponge layer (porous layer) with many voids are integrated. After the membrane is activated with, for example, glutaraldehyde, it is treated with a buffer containing glucoamylase as described above to immobilize glucoamylase on the membrane. On the other hand, raw materials for starch liquefied liquid include corn starch, potato starch, cane starch,
One or more tapioca starches can be used. These starches are liquefied in a liquefaction process to, for example, DE5 to 20 of a liquefied liquid with a starch concentration of 30%. This starch liquefied liquid is passed through a fixed bed reactor in which glucoamylase is immobilized on a porous adsorbent as described above at a superficial velocity of 3 to 6 hr -1 to obtain a glucose content of 65 to 85%, preferably 70 to 6 hours. Carry out saccharification to reduce the isomaltose content to 80% and 1% or less. Next, this saccharified solution is passed through an enzyme-immobilized membrane reactor in which glucoamylase is adsorbed and immobilized, so that the produced glucose is taken out of the reaction system. The temperature conditions in the fixed bed reactor or enzyme fixed membrane reactor are preferably around the optimum temperature for glucoamylase.
When glucoamylase originating from Niger is used, the temperature is 55-60°C, and when glucoamylase originating from Rhizopus deremer is used, the temperature is about 40-50°C. Furthermore, the pH condition is preferably around the optimum pH of glucoamylase, for example around pH 4.0 to 7.0. (Effect of the invention) That is, according to the present invention, the starch liquefied liquid is saccharified in a fixed bed reactor to a glucose content of 65 to 85% and an isomaltose content of 1% or less, and then passed through an enzyme fixed membrane reactor. By doing so, for example, the yield of glucose can be increased to 93% or more by passing the saccharified solution through the enzyme-immobilized membrane reactor three times, and at the same time, the amount of isomaltose produced can be suppressed to 1.5% or less. can. Furthermore, by saccharifying the starch liquefaction liquid in the fixed bed reactor, the productivity in the enzyme fixed membrane reactor can be dramatically improved. Further, in the present invention, the starch liquefaction liquid is passed through the starch solution at a superficial velocity (SV) of 3 to 6 hr -1 , and high-concentration glucose can be obtained by passing through the enzyme-immobilized membrane reactor about three times. Therefore, according to the present invention, high-concentration glucose can be produced continuously with good productivity. The glucose obtained according to the present invention is
It satisfies the minimum glucose concentration of 93% required to continuously produce isomerized high-fructose corn syrup with an isomerization rate of 42% or more to fructose. It can be applied to (Example) Examples of the present invention are described above. <Preparation of starch liquefied liquid> (1) Preparation of corn starch liquefied liquid 11.4 kg of corn starch (10.0 kg of absolute dry solid content) was suspended in 20 kg of water, and after adding 8.0 g of calcium chloride (0.08% to corn starch), 1N -PH7.0 with Na0H
and liquefied enzyme (product name: Termamil 60L,
Originated from Bacillus licheniformis, manufactured by Novo),
Add 8.0ml (0.08w/w% to cornstarch),
1/ with a small continuous gelatinization device
After instantaneous heating to 105℃ at a flow rate of min, 15 to 105℃
It is passed through a gelatinization retention tube where it can be retained for minutes and discharged under normal pressure. After that, it passes through a liquefaction retention tube where it stays at 95-98°C for 120 minutes to complete gelatinization and liquefaction. Furthermore, adjust the pH to 2.5 to 3.0 with 1N-HC1, hold at 90℃ for 10 minutes to inactivate α-amylase, adjust the pH to 4.5 with 1N-NaOH, and filter at 60℃ or higher to remove aggregates. was removed to obtain a clear liquefied liquid.
The DE of the obtained liquefied liquid was 11.8. Hereinafter, this liquefied liquid will be abbreviated as CSL-11.8. (2) Preparation of liquefied solution of potato starch Enzyme liquefied dextrin of potato starch is commercially available under the trade name “NSD” (manufactured by Nippon Shiryo Kogyo Co., Ltd.) and “Amicol” (manufactured by Nippon Shihoku Kogyo Co., Ltd.). ,
In this example, NSD (DE13.2) was used after being dissolved at a predetermined concentration. Below, this dextrin is NSD
Abbreviated as −13.2. <Immobilization of enzyme onto chitosan beads> 50 g (wet 70 ml) of chitosan beads (product name: Chito Pearl 3010, manufactured by Fujibo Co., Ltd.) and 50 g of glucoamylase (product name: AMG (300 AGU/ml), originating from Aspergillus niger, manufactured by Novo). (Contains 5.4g of enzyme protein) and stirred at room temperature for 2 hours.
After suction filtration, the beads were washed with 100 ml of water, and washing and filtration were repeated until no enzyme protein was eluted in the washing solution. In the obtained Chitopal #3010 adsorption-immobilized glucoamylase, 1.91 g of enzyme protein was adsorbed to Chitopal (38.1 mg/g-Chitopal). <Preparation of enzyme-immobilized membrane reactor> Activate the membrane module with a 3.1% glutaraldehyde solution, and after activation, add a glucoamylase solution (5%) dissolved in 0.02M acetate buffer (PH4.5).
glucoamylase was immobilized on the membrane module by treatment with 1 mg/ml) (originated from Asp. niger, trade name: Gluczyme, manufactured by Amano Pharmaceutical Co., Ltd.). Example 1 CSL-11.8 was placed on a φ15 x 300 mm column of chitosan bead-immobilized glucoamylase prepared previously.
The sample solution CSL-CP-4 was obtained by passing through the solution using SV4hr -1 . This test solution contained 81.09% G 1 , 0.98% IM, and 13.2% undegraded oligosaccharides. This CSL-CP-4 was adjusted to PH4.6 and Bx31, and placed in Membrane Master BM-1 (product name: Nitto Denko Corporation, enzyme-immobilized membrane reaction device) at a temperature of 57.0~
58.5, circulation pressure 1.45~1.55mg/ cm2 , circulation flow rate 0.96~
Flux of permeate for each treatment after repeated flow treatment at 1.04/min, glucose (G 1 ),
The isomaltose (IM) content was as follows.

【表】 対照例 1 実施例1のCSL−CP−4をCSL−11.8に変え
て、Bx30.8、PH4.6でメンブレンマスターBM−
1で処理した。処理条件は実施例1と同様であ
り、その結果得られた各処理毎の透過液のフラツ
クス、G1、IM含有量は次の通りであつた。
[Table] Control example 1 CSL-CP-4 in Example 1 was replaced with CSL-11.8, and Membrane Master BM- was used at Bx30.8 and PH4.6.
1. The treatment conditions were the same as in Example 1, and the flux, G 1 , and IM content of the permeate obtained in each treatment were as follows.

【表】 実施例 2 NSD−13.2を溶解し、PH4.6、Bx31.0とした後、
実施例1と同様にキサンビーズ固定化グルコアミ
ラーゼカラムに、SV6hr-1で通液し、供試液
NSD−CP−6を得た。この供試液はG170.61%、
IM0.49%、未分解オリゴ糖22.56%であつた。 更に、このNSD−CP−6を実施例1と同様に
処理した結果得られた各処理毎の透過液のフラツ
クス、G1、IM含有量は次の通りであつた。
[Table] Example 2 After dissolving NSD-13.2 and setting it to PH4.6 and Bx31.0,
As in Example 1, SV6hr -1 was passed through the xanbead-immobilized glucoamylase column, and the test solution was
NSD-CP-6 was obtained. This test solution has G 1 70.61%,
IM was 0.49% and undegraded oligosaccharide was 22.56%. Furthermore, this NSD-CP-6 was treated in the same manner as in Example 1, and the flux, G 1 and IM content of the permeate obtained for each treatment were as follows.

【表】 対照例 2 供試液を実施例2のNSD−CP−6をNSD−
13.2を用いた他は、実施例1と同様に行つた。そ
の結果得られた各処理毎の透過液のフラツクス、
G1、IM含有量は次の通りであつた。
[Table] Control example 2 The test solution was NSD-CP-6 of Example 2.
The same procedure as in Example 1 was carried out except that 13.2 was used. The resulting permeate flux for each treatment,
The G 1 and IM contents were as follows.

【表】 対照例 3 CSL−11.8、NSD−13.2をキトサンビーズ固定
化グルコアミラーゼカラムに、Bx30、PH4.5で
SV1hr-1で通液したところ得られたG1とIMの生
成量を次に示す。
[Table] Control example 3 CSL-11.8 and NSD-13.2 were applied to a chitosan bead-immobilized glucoamylase column at Bx30 and PH4.5.
The amounts of G 1 and IM produced when the solution was passed at SV1hr -1 are shown below.

【表】【table】

Claims (1)

【特許請求の範囲】 1 濃度30%以上の高濃度デンプン液化液を、多
孔質吸着体にグルコアミラーゼを固定化した固定
層リアクターに空塔速度3〜6hr-1で通液してグ
ルコース含有量65〜85%、イソマルトース含有量
1%以下になるように糖化を行い、該糖化液をグ
ルコアミラーゼを吸着固定化した酵素固定膜リア
クターに通液し、生成したグルコース純度93%以
上の高純度グルコースを反応系外に取り出すこと
を特徴とするグルコースの連続的製造法。 2 デンプンがとうもろこしデンプン、馬鈴薯デ
ンプン、甘薯デンプン、タピオカデンプンの1種
又は2種以上である特許請求の範囲第1項記載の
連続的製造法。
[Claims] 1. A high-concentration starch liquefied liquid with a concentration of 30% or more is passed through a fixed bed reactor in which glucoamylase is immobilized on a porous adsorbent at a superficial velocity of 3 to 6 hr -1 to determine the glucose content. 65-85%, and the isomaltose content is 1% or less, and the saccharified solution is passed through an enzyme-immobilized membrane reactor in which glucoamylase is adsorbed and immobilized, resulting in high purity glucose with a purity of 93% or more. A method for continuous production of glucose, characterized by taking glucose out of the reaction system. 2. The continuous production method according to claim 1, wherein the starch is one or more of corn starch, potato starch, sweet potato starch, and tapioca starch.
JP2364587A 1987-02-05 1987-02-05 Production of glucose Granted JPS63192397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2364587A JPS63192397A (en) 1987-02-05 1987-02-05 Production of glucose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2364587A JPS63192397A (en) 1987-02-05 1987-02-05 Production of glucose

Publications (2)

Publication Number Publication Date
JPS63192397A JPS63192397A (en) 1988-08-09
JPH0458959B2 true JPH0458959B2 (en) 1992-09-18

Family

ID=12116291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2364587A Granted JPS63192397A (en) 1987-02-05 1987-02-05 Production of glucose

Country Status (1)

Country Link
JP (1) JPS63192397A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA023015B1 (en) * 2009-02-11 2016-04-29 Ксилеко, Инк. Saccharifying biomass
JP6299876B2 (en) * 2014-09-25 2018-03-28 理化工業株式会社 Surface temperature sensor calibration device
KR102012440B1 (en) * 2018-01-02 2019-08-20 인그리디언코리아 유한회사 Method for preparing isomaltooligosaccharide composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043120A (en) * 1983-07-26 1985-03-07 ジヤツク・エドウア−ル・ラミイ Internal combustion engine
JPS6190671A (en) * 1984-10-11 1986-05-08 株式会社クラレ Hollow fiber having multilayered structure having physiologically active substance and treatment of fluids using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043120A (en) * 1983-07-26 1985-03-07 ジヤツク・エドウア−ル・ラミイ Internal combustion engine
JPS6190671A (en) * 1984-10-11 1986-05-08 株式会社クラレ Hollow fiber having multilayered structure having physiologically active substance and treatment of fluids using the same

Also Published As

Publication number Publication date
JPS63192397A (en) 1988-08-09

Similar Documents

Publication Publication Date Title
US3720583A (en) Enzyme hydrolysis
CA2236558C (en) Method for the production of isomalto-oligosaccharide rich syrups
KR100498758B1 (en) How to make syrup rich in maltose
Nishizawa et al. A forced‐flow membrane reactor for transfructosylation using ceramic membrane
Yun et al. Effect of inulin concentration on the production of inulo-oligosaccharides by soluble and immobilized endoinulinase
Gaouar et al. Enzymatic hydrolysis of cassava starch into maltose syrup in a continuous membrane reactor
US3996107A (en) Enzymatic production of a starch conversion product having a high maltose content
FI79557C (en) Process for isomerization of glucose to fructose
RU2630666C2 (en) Method for producing maltitol-containing syrup
JPH0458959B2 (en)
Yun et al. Production of inulo-oligosaccharides from inulin by recombinant E. coli containing endoinulinase activity
US4116771A (en) Immobilized saccharifying enzyme product and process for preparation thereof
US5130243A (en) Process for production of starch sugar
US6274355B1 (en) Immobilized maltogenic α-amylase and its use in the manufacture of a maltose-rich syrup
JPH0528115B2 (en)
GB1571987A (en) Enzyme products
Lee et al. Continuous ethanol production from sago starch using immobilized amyloglucosidase and Zymomonas mobilis
Su et al. A novel method for continuous production of cyclodextrins using an immobilized enzyme system
JPH057999B2 (en)
JPS643480B2 (en)
KR100291308B1 (en) Method for producing chitosan oligosaccharide continuously using two step reaction system
JPS5937959B2 (en) How to improve glucose concentration
Sims Enzymatic hydrolysis of liquefied corn starch in a membrane bioreactor
KR870001932B1 (en) Preparation process for glucose and maltose from thined starch
KR820002085B1 (en) Process for preparing glucoamylase immobilized on cationic colloidal silica