JPH0458816B2 - - Google Patents

Info

Publication number
JPH0458816B2
JPH0458816B2 JP62001812A JP181287A JPH0458816B2 JP H0458816 B2 JPH0458816 B2 JP H0458816B2 JP 62001812 A JP62001812 A JP 62001812A JP 181287 A JP181287 A JP 181287A JP H0458816 B2 JPH0458816 B2 JP H0458816B2
Authority
JP
Japan
Prior art keywords
polyester
sheet
polyolefin resin
pet
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62001812A
Other languages
Japanese (ja)
Other versions
JPS63172740A (en
Inventor
Tooru Matsubayashi
Koichi Sakai
Hiroshi Toyao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP181287A priority Critical patent/JPS63172740A/en
Publication of JPS63172740A publication Critical patent/JPS63172740A/en
Publication of JPH0458816B2 publication Critical patent/JPH0458816B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cookers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はポリエステルシート及びその製造法に
関し、更に詳しくは、例えばオーブン調理可能
(オーブナブル)な耐熱変形及び耐衝撃性の優れ
た容器等を有利に成形し得るポリエステルシート
及びその製造法に関する。 [従来技術] ポリエステル、特にポリエチレンテレフタレー
ト(以下PETと略す)よりなるシートは熱成形
によりトレイ状或いはカツプ状に成形可能であ
り、各種容器用の原材料として広く使用されてい
る。特にポリオレフイン樹脂により変形された
PETシートよりPETが結晶化しうる条件で熱成
形せしめた成形品は特開昭59−62660号に記載の
如く、耐熱性が優れており、オーブナブルトレイ
の如き耐熱容器として使用し得る。しかしなが
ら、かかる技術により得られるPET製容器は、
苛酷な調理条件で使用した際に、容器の耐衝撃製
が極端に低下する欠点を有しており、その改善が
望まれていた。 [発明の目的] 本発明は以上の事情を背景としてなされたもの
であり、その目的とするところは、優れた耐熱性
を有し、かつ苛酷な温度条件で使用された後の耐
衝撃性が優れた状態を維持できる熱誠形容器を整
形し得るポリエステルシート及びその製造法を提
供することにある。 [発明の目的] 本発明者は、前記の如き欠点のないポリエステ
ルシートに関し鋭意研究の結果、特定のポリオレ
フイン樹脂を、所定の割合で特定のPETと特定
の条件で溶融混合せしめね得られるシートであれ
ば前述の欠点を改善し得ることを見出し本発明に
到達した。 即ち本発明は、 (1) 固有粘度が0.08以上のポリエチレンテレフタ
レートを主成分とするポリエステル約99〜90重
量%と、ポリオレフイン樹脂約1〜10重量%と
が均一に分散されてなるシートであつて、該ポ
リオレフイン樹脂の分散径が平均3μm以下で
あることを特徴とするポリエステルシート、及
び、 (2) 300℃における溶融粘度が6000poise以上であ
るポリエチレンテレフタレートを主成分とする
ポリエステル約99〜90重量%と、300℃におけ
る溶融粘度が6000poise以上のポリオレフイン
樹脂約1〜10重量%とを、該ポリエステル樹脂
の融点以上の温度で溶融混合せしめた後、シー
ト状に押し出し、該ポリエステルのガラス転移
温度以下の温度に急冷することを含むポリエス
テルシートの製造法である。 本発明においてポリエチレンテレフタレート
は、そのホモポリマーは勿論のこと、テレフタル
酸成分の一部を例えばイソフタル酸、ナフタリン
ジカルボン酸、ジフエニルジカルボン酸、ジフエ
ノキシエタンジカルボン酸、ジフエニルエーテル
ジカルボン酸、ジフエニスルホンジカルボン酸等
の如き芳香族ジカルボン酸;ヘキサヒドロテレフ
タル酸、ヘキサヒドロイソフタル酸等の如き脂環
族ジカルボン酸;アジピン酸、セバチン酸、アゼ
ライン酸等の如き脂肪族ジカルボン酸;Ρ−β−
ヒドロキシエトキシ安息香酸、p−オキシ安息香
酸、ε−オキシカプロン酸等の如きオキシ酸等の
他の二官能性カルボン酸の1種以上の成分で、及
び/又はエチレングルコール成分の一部を例えば
トリメチレングリコール、テトラメチレングリコ
ール、ヘキサメチレングルコール、デカメチレン
グリコール、ネオペンチレングリコール、ジエチ
レングリコール、1,1−シクロヘキサンジメチ
ロール、1,4−シクロヘキサンジメチロール、
2,2−ビス(4−β−ヒドロキシエトキシフエ
ニル)プロパン、ビス(4−β−ヒドロキシエト
キシフエニル)スルフホン等の他のグリコールの
1種以上の成分で置換したコポリエステルを包含
する。該コポリエステル中の共重合成分の総割合
は全酸成分に対し3モル%以下であることが好ま
しい。これらのうちポリエチレンテレフタレート
のホモポリマーが好ましい。 本発明に用いるポリエステルシートとは、ポリ
エチレンテレフタレートを主たる構成成分とする
実質的に非晶質のシートであり、シートを構成す
るPETの固有粘度は0.8以上であり、シートの成
形に用いるポリエユテルの溶融粘度が300℃にお
いて、6000poise以下であることが要件となる。
ポリエステルシートには、ポリオレフイン樹脂が
平均粒径3μm以下の状態で微分散されたもので
あつて、該オレフイン樹脂は特に300℃における
溶融粘度ηaが6000poise以上のポリエチレン樹脂
である。 ポリオレフイン樹脂のηaが6000poiseよりも低
い樹脂、例えば、汎用の低密度ポリエチレン
(LDPE)、線状低密度ポリエチレン(LLDPE)、
高密度ポリエチレン(HDPE)、ポリプロピレン
(PP)等では、PET中に分散される粒子計が大
きくなり、PETが結晶化した状態での衝撃度が
低い。また、本発明でポリオレフイン樹脂の混合
割合は、約1〜10wt%であり、特に2〜5wt%が
好ましい。ポリオレフイン樹脂の割合が1%より
も少いと耐衝撃生の改良効果が乏しい。また
10wt%よりも多いと耐熱性が低下する。 ポリオレフインで変性したポリエステルシート
の耐衝撃強度は、PETが実質的に非晶の状態で
はPETの固有粘度IVが高い程高い衝撃値を示し、
例えばポリオレフインを3%程度添加した場合に
は、ポリオレフインの種類にかかわらず、IV0.65
で約50Kg・cm/cm、IV0.8で90Kg・cm/cm、
IV0.95で130Kg・cm/cm程度の衝撃値となる。一
方、PETがある程度結晶化した(例えば20〜30
%の結晶化度)状態ではPETのIVと結晶化度と
の両方が耐衝撃性に関与する。この程度の結晶化
度は一般にPET製オーブナブルトレイお高温の
金型を用いて熱成形した場合に得られる。ところ
が、更に成形品の耐熱性を高めるため熱成形の過
程でPETの結晶化度を更に高くした場合、或い
はオーブン中で調理する条件の如き高温度で熱履
歴を受けた場合は、成形体中のPETの結晶化度
は40〜50%程度となるが、かかるPETの結晶化
状態では、耐衝撃値はPETのIVによらず一般に
10〜20Kg・cm/cm程度迄低下する。 本発明はかかる状態でも耐衝撃性の良好な成形
体を成形し得るポリエステルシートを見出したも
のでありポレオレフイン樹脂は溶融粘度ηaが
6000poise以上のものであつて、特にηaが
8000poise以上の低密度ポリエチレンが好ましい。 本発明のポリエステルシートを特定の条件で熱
成形して、トレイ、カツプ等の形状の耐熱性及び
耐衝撃性の優れた成形体を得るが、本発明でいう
熱成形体とは、シートを加熱軟化せしめて所望の
型に押し当て、型と材料の間隙にある空気を排除
し、大気圧により型に密着せしめ成形する真空成
形、或いは大気圧以上の圧縮空気によりシートを
型に密着せしめる圧空成形及び真空、圧空を併用
する成形等を総称する。 耐熱性の優れた成形体を成形する方法として
は、例えばポリエステルシートの昇温時結晶化ピ
ーク温度TCI以上、降温時結晶化ピーク温度TCD
以下の範囲に保つた金型(A)でシート熱成形し、次
いで1g以下に保つた金型(B)で該成形体を更に熱
成形して冷却賦形する。金型(A)金型(B)とは実質的
に同一形状の成形品を得るための彫込形状のもの
がであるが、金型(A)が凸型、金型(B)が成形体の肉
厚を考慮した若干寸法の異る凸型であることが好
ましく、或いはその逆であつてもよい。 なお、本発明のポリエステルシートには、成形
性を改良するための、結晶化核剤、また耐熱溶融
安定性を改良するための安定剤を更に添加されて
もよい。 [発明の効果] 本発明のポリエステルシートより、耐熱・耐衝
撃性の優れた成形体が得られ、例えばオーブナブ
ルトレイの如き容器の成形材料として有利に使用
できる。 [実施例] 以下実施例により本発明を詳述する。なお主な
物性値の測定条件及び定義は次の通りである。 (1) 固有粘度[IV];O−クロロフエノール又は
フエノール/テトラクロルエタン混合溶媒中で
ポリオレフイン樹脂を別した溶液にて35℃に
て測定。 (2) [ρ];四塩化炭素とn−ヘプタンにより作
成した密度勾配管により25℃にて測定。 (3) ガラス移転温度[Tg];示差熱量計(セイコ
ー電子工業株式会社製DSC−20型)により20
℃/minの昇温速度で測定。 (4) 昇温時結晶化ピーク温度[TCI];Tgと同様
の条件で測定。 (5) 融点(ポリエステル)[TnE];Tgと同様の
条件で測定。 (6) 降温時結晶化ピーク温度[TCD];示差熱量
計にて290℃で3分間保持したサンプル20℃/
minの降温速度で測定。 (7) 融点(ポリオレフイン)[Tnp];TCDと同様
の条件で測定。 (8) 熱収縮率[SH];内容積VOのトレイを230℃
のオーブン中で10分間熱処理した後、室温冷却
した際のトレイ容積VHより次式で算出 SH=VO−VH/VO×100[%] (9) 弾性率[Y];シートより打抜いた引張試験
片を試験法D683に準じて測定。 (10) 引張衝撃強度[Ti];テスター産業(株)製
引張衝撃試験機によりサンプルより打抜いたダ
ンベルの強度を20℃にて測定。 (11) ポリオレフイン樹脂の分散径[D];引張
衝撃強度測定サンプルの破断面を走査型電子顕
微鏡(JEOL−TECHNICS Co./日本電子
(株)社製JSM20型)による倍率1000〜10000
倍写真撮影結果より判定。 実施例1〜4および比較例1〜5 IV1.12,ηa12000poiseのPETを160℃で5時間
除湿熱風で乾燥し得られた乾燥チツプと表−1に
示すポリオレフイン樹脂及び表−1に示す添加剤
とを表−1に示す割合でブレンドした後、先端に
シート押出し用ダイスを装着してある30mm径スク
リユーの押出機に供給した。押出機のシリンダー
設定温度240〜280℃の条件にて溶融混練し、押出
シートを冷却ロールにて冷却して肉厚約0.5mmの
ポリエステルシートを得た。シート中のPETの
IVは0.94〜0.95であつた。 該シートを浅野研究所製FC−1APA−W型圧
空・真空成形機により金型(A)として彫込形状、た
て135mm、横58mm、深さ18mmの凹型トレイ型を、
金型(B)としてたて133mm、横56mm、深さ18mmの凸
型トレイ型を用い、加熱シート表面温度160〜180
℃、金型(A)の温度160℃、金型(A)との接触時間5
秒、金型(B)の温度20〜50℃、金型(B)との接触時間
5秒の条件で真空成形を行つた。かくして得られ
たトレイを更に230℃のオーブン内で10分間熱処
理した。かかるトレイの評価結果を表1に示す。
[Industrial Application Field] The present invention relates to a polyester sheet and a method for producing the same, and more particularly, the present invention relates to a polyester sheet and a method for manufacturing the same, which can be advantageously molded into, for example, ovenable containers with excellent heat deformation resistance and impact resistance. Regarding its manufacturing method. [Prior Art] A sheet made of polyester, particularly polyethylene terephthalate (hereinafter abbreviated as PET), can be molded into a tray or cup shape by thermoforming, and is widely used as a raw material for various containers. Especially modified by polyolefin resin
As described in JP-A No. 59-62660, molded products thermoformed from PET sheets under conditions that allow PET to crystallize have excellent heat resistance and can be used as heat-resistant containers such as ovenable trays. However, the PET containers obtained by this technology are
When used under severe cooking conditions, the impact resistance of the container is extremely reduced, and an improvement has been desired. [Object of the Invention] The present invention has been made against the background of the above circumstances, and its object is to provide a material that has excellent heat resistance and has good impact resistance after being used under severe temperature conditions. An object of the present invention is to provide a polyester sheet that can be shaped into a heated container that maintains an excellent condition, and a method for producing the same. [Object of the Invention] As a result of intensive research into polyester sheets free from the above-mentioned defects, the present inventor has developed a sheet obtained by melt-mixing a specific polyolefin resin with a specific PET in a predetermined ratio under specific conditions. The present invention has been achieved by discovering that the above-mentioned drawbacks can be improved if there is a method. That is, the present invention provides a sheet comprising: (1) about 99 to 90% by weight of polyester mainly composed of polyethylene terephthalate having an intrinsic viscosity of 0.08 or more and about 1 to 10% by weight of polyolefin resin, which are uniformly dispersed; , a polyester sheet characterized in that the average dispersed diameter of the polyolefin resin is 3 μm or less, and (2) about 99 to 90% by weight of a polyester whose main component is polyethylene terephthalate and whose melt viscosity at 300°C is 6000 poise or more. and about 1 to 10% by weight of a polyolefin resin having a melt viscosity of 6000 poise or higher at 300°C are melt-mixed at a temperature higher than the melting point of the polyester resin, extruded into a sheet, and then A method of manufacturing polyester sheets comprising quenching to temperature. In the present invention, polyethylene terephthalate is not only a homopolymer, but also a part of the terephthalic acid component, such as isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenoxyethane dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl dicarboxylic acid, etc. Aromatic dicarboxylic acids such as sulfonic acid; alicyclic dicarboxylic acids such as hexahydroterephthalic acid, hexahydroisophthalic acid, etc.; aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, etc.; Ρ-β-
With one or more components of other bifunctional carboxylic acids such as oxyacids such as hydroxyethoxybenzoic acid, p-oxybenzoic acid, ε-oxycaproic acid, etc., and/or a portion of the ethylene glycol component, e.g. trimethylene glycol, tetramethylene glycol, hexamethylene glycol, decamethylene glycol, neopentylene glycol, diethylene glycol, 1,1-cyclohexane dimethylol, 1,4-cyclohexane dimethylol,
Includes copolyesters substituted with one or more components of other glycols such as 2,2-bis(4-β-hydroxyethoxyphenyl)propane, bis(4-β-hydroxyethoxyphenyl)sulfone. The total proportion of copolymerized components in the copolyester is preferably 3 mol % or less based on the total acid components. Among these, a homopolymer of polyethylene terephthalate is preferred. The polyester sheet used in the present invention is a substantially amorphous sheet containing polyethylene terephthalate as its main component, and the intrinsic viscosity of PET constituting the sheet is 0.8 or more. The requirement is that the viscosity is 6000 poise or less at 300°C.
In the polyester sheet, a polyolefin resin is finely dispersed with an average particle size of 3 μm or less, and the olefin resin is particularly a polyethylene resin having a melt viscosity ηa of 6000 poise or more at 300°C. Polyolefin resins with ηa lower than 6000poise, such as general-purpose low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE),
With high-density polyethylene (HDPE), polypropylene (PP), etc., the particles dispersed in PET are large, and the impact strength of PET in the crystallized state is low. Further, in the present invention, the mixing ratio of the polyolefin resin is approximately 1 to 10 wt%, particularly preferably 2 to 5 wt%. If the proportion of polyolefin resin is less than 1%, the effect of improving impact resistance will be poor. Also
When the amount is more than 10wt%, heat resistance decreases. The impact strength of a polyester sheet modified with polyolefin shows a higher impact value as the intrinsic viscosity IV of PET increases when PET is substantially amorphous.
For example, if about 3% of polyolefin is added, IV0.65 regardless of the type of polyolefin.
Approximately 50Kg・cm/cm at IV0.8, 90Kg・cm/cm at IV0.8,
At IV0.95, the impact value is about 130Kg・cm/cm. On the other hand, PET crystallized to some extent (e.g. 20-30
% crystallinity) both the IV and crystallinity of PET are involved in impact resistance. This degree of crystallinity is generally obtained when thermoforming is performed using a PET ovenable tray or a high-temperature mold. However, if the degree of crystallinity of PET is further increased during the thermoforming process in order to further increase the heat resistance of the molded product, or if it is subjected to heat history at high temperatures such as cooking in an oven, The crystallinity of PET is about 40 to 50%, but in such a crystallized state, the impact resistance value is generally low regardless of the IV of PET.
The weight decreases to around 10-20Kg/cm. The present invention has discovered a polyester sheet that can be molded into a molded article with good impact resistance even under such conditions, and the polyolefin resin has a melt viscosity ηa.
6000poise or more, especially ηa
Low density polyethylene of 8000 poise or more is preferred. The polyester sheet of the present invention is thermoformed under specific conditions to obtain molded products in the shape of trays, cups, etc. with excellent heat resistance and impact resistance. Vacuum forming, in which the sheet is softened and pressed against the desired mold, the air in the gap between the mold and the material is eliminated, and the sheet is brought into close contact with the mold using atmospheric pressure, or pressure forming, in which the sheet is brought into close contact with the mold using compressed air at atmospheric pressure or higher. A general term for molding that uses both vacuum and compressed air. As a method for molding a molded product with excellent heat resistance, for example, the crystallization peak temperature of a polyester sheet when heated is T CI or higher, and the crystallization peak temperature when cooled is T CD
A sheet is thermoformed in a mold (A) whose weight is maintained within the following range, and then the molded product is further thermoformed using a mold (B) whose weight is maintained at 1 g or less, and then cooled and shaped. Mold (A) and Mold (B) are engraved shapes to obtain molded products with substantially the same shape, but Mold (A) is convex and Mold (B) is molded. It is preferable to have a convex shape with slightly different dimensions taking into account the thickness of the body, or vice versa. Note that the polyester sheet of the present invention may further contain a crystallization nucleating agent for improving moldability and a stabilizer for improving heat-resistant melt stability. [Effects of the Invention] A molded article having excellent heat resistance and impact resistance can be obtained from the polyester sheet of the present invention, and can be advantageously used, for example, as a molding material for containers such as ovenable trays. [Examples] The present invention will be explained in detail below using Examples. The measurement conditions and definitions of the main physical property values are as follows. (1) Intrinsic viscosity [IV]: Measured at 35°C in a solution containing a polyolefin resin in O-chlorophenol or a phenol/tetrachloroethane mixed solvent. (2) [ρ]; Measured at 25°C using a density gradient tube made of carbon tetrachloride and n-heptane. (3) Glass transition temperature [Tg]: 20 by differential calorimeter (DSC-20 model manufactured by Seiko Electronics Co., Ltd.)
Measured at a heating rate of °C/min. (4) Crystallization peak temperature at elevated temperature [ TCI ]: Measured under the same conditions as Tg. (5) Melting point (polyester) [T nE ]; Measured under the same conditions as Tg. (6) Crystallization peak temperature during cooling [T CD ]; Sample held at 290°C for 3 minutes using a differential calorimeter at 20°C/
Measured at a cooling rate of min. (7) Melting point (polyolefin) [T np ]; Measured under the same conditions as T CD . (8) Heat shrinkage rate [S H ]; tray with internal volume V O at 230℃
Calculated using the following formula from the tray volume V H when cooled to room temperature after heat treatment in an oven for 10 minutes S H = V O − V H /V O ×100 [%] (9) Elastic modulus [Y]; Sheet Tensile test specimens punched out from each other were measured according to test method D683. (10) Tensile impact strength [Ti]: The strength of a dumbbell punched from a sample was measured at 20°C using a tensile impact tester manufactured by Tester Sangyo Co., Ltd. (11) Dispersion diameter [D] of polyolefin resin: The fracture surface of the tensile impact strength measurement sample was measured using a scanning electron microscope (JSM20 model manufactured by JEOL-TECHNICS Co.) at a magnification of 1000 to 10000.
Judging from the results of double photography. Examples 1 to 4 and Comparative Examples 1 to 5 Dry chips obtained by drying PET with IV1.12 and ηa12000poise at 160°C for 5 hours with dehumidified hot air, the polyolefin resin shown in Table 1, and the additives shown in Table 1. The mixture was blended in the ratio shown in Table 1, and then fed to a 30 mm diameter screw extruder equipped with a sheet extrusion die at the tip. The mixture was melt-kneaded at an extruder cylinder temperature setting of 240 to 280°C, and the extruded sheet was cooled with a cooling roll to obtain a polyester sheet with a wall thickness of approximately 0.5 mm. of PET in the sheet
IV was 0.94-0.95. The sheet was engraved into a mold (A) using an FC-1APA-W type pressure/vacuum forming machine manufactured by Asano Laboratory to form a concave tray shape with a height of 135 mm, a width of 58 mm, and a depth of 18 mm.
A convex tray mold with a height of 133 mm, a width of 56 mm, and a depth of 18 mm was used as the mold (B), and the heating sheet surface temperature was 160 to 180.
℃, temperature of mold (A) 160℃, contact time with mold (A) 5
Vacuum forming was carried out under the following conditions: the temperature of the mold (B) was 20 to 50° C., and the contact time with the mold (B) was 5 seconds. The tray thus obtained was further heat treated in an oven at 230°C for 10 minutes. Table 1 shows the evaluation results for this tray.

【表】 実施例5〜8及び比較例6〜7 ポリオレフイン樹脂にメルトインデツクス1.3
のLLDEPを使用し、添加割合を表−2に示す通
りとした他は、実施例1と同様にトレイを熱成形
し評価した。結果を表−2に示す。本発明の範囲
のシートより得られたトレイは耐熱収縮性・耐衝
撃性のいずれも良好であつた。
[Table] Examples 5 to 8 and Comparative Examples 6 to 7 Melt index 1.3 for polyolefin resin
A tray was thermoformed and evaluated in the same manner as in Example 1, except that LLDEP was used and the addition ratio was as shown in Table 2. The results are shown in Table-2. The tray obtained from the sheet within the scope of the present invention had good heat shrinkage resistance and impact resistance.

【表】 実施例9〜10及び比較例8〜9 原料PETチツプのIVを代えた他は実施例1と
同様にシート及びトレイを形成した。得られた熱
成形トレイの衝撃強度を表−3に示す。
[Table] Examples 9-10 and Comparative Examples 8-9 Sheets and trays were formed in the same manner as in Example 1, except that the IV of the raw material PET chips was changed. The impact strength of the obtained thermoformed tray is shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 固有粘度が0.80以上のポリエチレンテレフタ
レートを主成分とするポリエステル約99〜90重量
%と、ポリオレフイン樹脂約1〜10重量%とが均
一に分散されてなるシートであつて、該ポリオレ
フイン樹脂の分散径が平均3μm以下であること
を特徴とするポリエステルシート。 2 300℃における溶融粘度が6000poise以上であ
るポリエチレンテレフタレートを主成分とするポ
リエステル約99〜90重量%と、300℃における溶
融粘度が6000poise以上のポリオレフイン樹脂約
1〜10重量%とを、該ポリエステル樹脂の融点以
上の温度で溶融混合せしめた後、シート状に押し
出し、該ポリエステルのガラス転移温度以下の温
度に急冷することからなるポリエステルシートの
製造法。
[Scope of Claims] 1. A sheet comprising approximately 99 to 90% by weight of a polyester mainly composed of polyethylene terephthalate having an intrinsic viscosity of 0.80 or more and approximately 1 to 10% by weight of a polyolefin resin, comprising: A polyester sheet characterized in that the polyolefin resin has a dispersed diameter of 3 μm or less on average. 2 About 99 to 90% by weight of a polyester mainly composed of polyethylene terephthalate having a melt viscosity of 6000 poise or more at 300°C and about 1 to 10% by weight of a polyolefin resin having a melt viscosity of 6000 poise or more at 300°C, the polyester resin A method for producing a polyester sheet, which comprises melting and mixing at a temperature above the melting point of the polyester, extruding it into a sheet, and rapidly cooling it to a temperature below the glass transition temperature of the polyester.
JP181287A 1987-01-09 1987-01-09 Polyester sheet and its production Granted JPS63172740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP181287A JPS63172740A (en) 1987-01-09 1987-01-09 Polyester sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP181287A JPS63172740A (en) 1987-01-09 1987-01-09 Polyester sheet and its production

Publications (2)

Publication Number Publication Date
JPS63172740A JPS63172740A (en) 1988-07-16
JPH0458816B2 true JPH0458816B2 (en) 1992-09-18

Family

ID=11511983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP181287A Granted JPS63172740A (en) 1987-01-09 1987-01-09 Polyester sheet and its production

Country Status (1)

Country Link
JP (1) JPS63172740A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614200B2 (en) * 1989-03-29 1997-05-28 鐘紡株式会社 Thermoformed polyester container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144452A (en) * 1975-05-23 1976-12-11 Du Pont Reinforced multiiphase thermooplastic compound
JPH0458816A (en) * 1990-06-27 1992-02-25 Kubota Corp Walking-type working machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144452A (en) * 1975-05-23 1976-12-11 Du Pont Reinforced multiiphase thermooplastic compound
JPH0458816A (en) * 1990-06-27 1992-02-25 Kubota Corp Walking-type working machine

Also Published As

Publication number Publication date
JPS63172740A (en) 1988-07-16

Similar Documents

Publication Publication Date Title
US3956229A (en) Films and sheets of polyester-polycarbonate blends
JP3229321B2 (en) Polyester / polyamide blends with improved flavor retention and clarity
US5747127A (en) Polyester composition for use in thermoforming dual-ovenable trays
GB2076832A (en) Blends of polyethylene terephtalate based polyesters and styrene- maleic anhydride copolymers
JPH0458816B2 (en)
US5843545A (en) Polyester composition for use in thermoforming dual-ovenable trays
JPS62227947A (en) Polyester sheet
JP2004217288A (en) Container made of biodegradable resin having heat resistance
JPS62134242A (en) Method for thermoforming of polyester sheet
JP3197908B2 (en) Transparent polyester container
JPH0584209B2 (en)
JPH02127437A (en) Sheet comprising polyester resin composition and hot-molded material thereof
JPH0615622B2 (en) Polyester sheet and thermoformed body thereof
JPH01121335A (en) Polyester sheet and thermoforms therefrom
JPH0436534B2 (en)
JP2003119355A (en) Polyester-based resin composition, polyester-based resin sheet and polyester-based resin molded product
JP4189717B2 (en) Polyester resin composition and molded article comprising the same
JPH01121334A (en) Polyester sheet and thermoforms therefrom
JPH0618904B2 (en) Polyester sheet
JP3012307B2 (en) Heat-resistant container
JP2003119358A (en) Polyester-based resin composition, polyester-based resin sheet and polyester-based resin molded product
JP3144809B2 (en) Transparent polyester container
JPS6258973B2 (en)
JPH10147698A (en) Container made of polyester/polycarbonate resin composition and its production
JP2000355091A (en) Container moldable improved polyester sheet and heat- resistant polyester molded article using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees