JPH0458682A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH0458682A
JPH0458682A JP2168324A JP16832490A JPH0458682A JP H0458682 A JPH0458682 A JP H0458682A JP 2168324 A JP2168324 A JP 2168324A JP 16832490 A JP16832490 A JP 16832490A JP H0458682 A JPH0458682 A JP H0458682A
Authority
JP
Japan
Prior art keywords
interpolation
output
correlation matrix
vertical
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2168324A
Other languages
Japanese (ja)
Inventor
Ken Osozawa
遅澤 憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2168324A priority Critical patent/JPH0458682A/en
Publication of JPH0458682A publication Critical patent/JPH0458682A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the deterioration in the resolution in an image pickup element whose adjacent picture elements in the vertical direction are deviated in the horizontal direction with deviation in 1/2 picture element with each other and to attain natural interpolation of contour by providing an interpolation means, a selection means and a contour detection means. CONSTITUTION:A video image formed on an image pickup element 2 through a lens 1 is stored in a frame memory 4 via an A/D converter 3. A data D corresponding to each point represented in a coordinate is read from the frame memory 4 and calculated respectively by a vertical correlation matrix 6, a horizontal correlation matrix 7 and a vertical horizontal correlation matrix 8. A contour detection circuit 5 applies a prescribed calculation and when the result is 0 or over, a selector switch 9 selects an output of the vertical correlation matrix 6, and when the output is 0 or below, it is discriminated that the contour in the vertical direction is strong and the output of the horizontal correlation matrix 7 is selected. When the output is 0, an output of the vertical horizontal correlation matrix 8 is selected by the selector switch 9. The output of the selector switch 9 is written again in the frame memory 4. The data is unchanged since the data passes through an interpolation matrix at a point indicated by a picture element 12 actually in existence.

Description

【発明の詳細な説明】 ・(産業上の利用分野) 本発明は、垂直方向に隣接する画素が水平方向に互いに
1/2画素ずれて配置された撮像素子を有する撮像装置
に関し、特にその画素間補間に関するものである。
Detailed Description of the Invention - (Industrial Application Field) The present invention relates to an imaging device having an imaging device in which vertically adjacent pixels are arranged horizontally shifted by 1/2 pixel from each other. It concerns interpolation.

〔従来の技術〕[Conventional technology]

従来、第3図(a)に示さハるような、垂直方向に隣接
する画素12が水平方向に互いに1/2画素ずれて配置
された撮像素子を用いた撮像装置において、これら画素
12にかこまれた位置に仮想される画素(以下仮想画素
という)13を周囲の有効画素12によフて補間を行う
際、その補間方式は第3図(b)、(e)、(d)に示
されるような方式のうち、1つの方式に固定される構成
すなわち学−マトリクスによる補間となっている。
Conventionally, in an imaging device using an imaging device in which vertically adjacent pixels 12 are arranged horizontally shifted by 1/2 pixel from each other, as shown in FIG. When interpolating a virtual pixel (hereinafter referred to as a virtual pixel) 13 at a virtual position using surrounding effective pixels 12, the interpolation method is shown in FIGS. 3(b), (e), and (d). Among the available methods, the structure is fixed to one method, that is, interpolation using a matrix.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の従来の構成では、単一マ]・リクスによる補間を
行うため、以−1に示すような問題があった。
In the conventional configuration described above, since interpolation is performed using a single matrix, there is a problem as shown in -1 below.

a、垂直(水平)相関マトリクスを用いた補間な行う場
合、垂直(水平)方向の解像度が劣化する。
a. When performing interpolation using a vertical (horizontal) correlation matrix, the resolution in the vertical (horizontal) direction deteriorates.

b、垂直相開7トリクスを用いた補間方式の場合、水平
方向の輪郭部分ては適切な出力が得られず、不自然な輪
郭になってしまう。
b. In the case of the interpolation method using the vertical phase open 7-trix, an appropriate output cannot be obtained for the contour portion in the horizontal direction, resulting in an unnatural contour.

同様に、水平相関マトリクスを用いた補間方式の場合、
垂直方向の輪郭部分に同様な現象が表れる。
Similarly, in the case of an interpolation method using a horizontal correlation matrix,
A similar phenomenon appears in the vertical contour.

本発明は、このような事情のもとでなされたもので、解
像度の劣化が少なく、輪郭の自然な補間のできるこの種
撮像装置を提供することを目的とするものである。
The present invention has been made under these circumstances, and it is an object of the present invention to provide an imaging device of this type that is capable of natural interpolation of contours with little deterioration in resolution.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、前記目的を達成するため、撮像装置をつぎ
の(1)のとおりに構成する。
In the present invention, in order to achieve the above object, an imaging device is configured as shown in (1) below.

(1)垂直方向に隣接する画素が水平方向に互いに1/
2画素ずれて配置された撮像素子を有し、該画素にかこ
まれた仮想画素の補間を行う撮像装置であフて、複数種
の補間モードを有する補間手段と、該複数種の補間モー
ドを選択する選択手段と、補間を行う仮想画素近傍の画
像の輪郭を検出しその輪郭に合った補間モードの選択を
前記選択手段に指示する輪郭検出手段とを備えたことを
特徴とする撮像装置。
(1) Vertically adjacent pixels are horizontally 1/1/2
An imaging device having an imaging element arranged two pixels apart and interpolating a virtual pixel surrounded by the pixel; An imaging device comprising a selection means for making a selection, and an outline detection means for detecting an outline of an image near a virtual pixel to be interpolated and instructing the selection means to select an interpolation mode that matches the outline.

〔作用〕[Effect]

前記(1)の構成により、補間を行う仮想画素近傍の画
像の輪郭に合フだ補間方式が選択される。
With the configuration (1) above, the interpolation method is selected that matches the outline of the image near the virtual pixel to be interpolated.

(実施例〕 以下実施例により本発明の詳細な説明する。(Example〕 The present invention will be explained in detail below with reference to Examples.

第1図は本発明の一実施例である“撮像装置”の構成図
である。同図において、1は光学レンズ、2は垂直方向
に隣接する画素が水平方向に互いに1/2画素ずれて配
置された撮像素子、3はA−D (アナログ−デジタル
)変換器、4はフレームメモリ、5は輪郭検出回路、6
は補間マトリクスA、7は補間マトリクスB、8は補間
マトリクスC19は選択スイッチ、10はD−A (デ
ジタル−アナログ)変換器511は撮像信号処理ブロッ
クである。
FIG. 1 is a configuration diagram of an "imaging device" which is an embodiment of the present invention. In the figure, 1 is an optical lens, 2 is an image sensor in which vertically adjacent pixels are shifted horizontally by 1/2 pixel, 3 is an A-D (analog-digital) converter, and 4 is a frame. Memory, 5 is a contour detection circuit, 6
1 is an interpolation matrix A, 7 is an interpolation matrix B, 8 is an interpolation matrix C19 is a selection switch, and 10 is a DA (digital-to-analog) converter 511 is an imaging signal processing block.

第3図は、第1図の構成図における撮像素子2の画素配
置とその読出し経路、及び第1図6゜7.8で示される
補間マトリクスA、B、Cの具体的な方式を示すもので
ある。
FIG. 3 shows the pixel arrangement of the image sensor 2 and its readout path in the configuration diagram of FIG. 1, and the specific method of interpolation matrices A, B, and C shown in FIG. It is.

第3図(a)において、12は実際に存在する画素、】
3は補間されるべき仮想画素、14は信号の読出し経路
である。15は2次元座標であり、これはフレームメモ
リ4に取り込まtた際、メモリ4内のアドレスと1対1
の対応をとるものとする。第3図(b)は、上、下の信
号を用いる垂直相関方式の補間方式で、これは垂直方向
の解像度を低下させる特徴がある。第3図(e)は左、
右の信号を用いる水平相関方式の補間方式で、これは水
平方向の解像度を低下させる特徴がある。第3図(d)
は、上、下、左、右の信号を用いる垂直水平相関方式の
補間方式で、これは、垂直、水平両方向の解像度を低下
させる特徴を持つ 第2図は、第1図の構成図における、輪郭検出回路5と
6.7.8で示される補間マトリクスA、B、Cの具体
的な回路構成を示したものである。
In FIG. 3(a), 12 is an actually existing pixel, ]
3 is a virtual pixel to be interpolated, and 14 is a signal readout path. 15 is a two-dimensional coordinate, and when it is imported into the frame memory 4, it has a one-to-one relationship with the address in the memory 4.
The following measures shall be taken. FIG. 3(b) shows a vertical correlation interpolation method using upper and lower signals, which has the characteristic of lowering the resolution in the vertical direction. Figure 3(e) is on the left;
This is a horizontal correlation interpolation method that uses the right signal, which has the characteristic of reducing resolution in the horizontal direction. Figure 3(d)
is a vertical-horizontal correlation interpolation method that uses upper, lower, left, and right signals, and has the characteristic of reducing resolution in both vertical and horizontal directions. This figure shows the specific circuit configurations of the contour detection circuit 5 and the interpolation matrices A, B, and C shown in 6.7.8.

第1図、第2図、第3図の構成において、光学レンズ1
を通って撮像素子2の上に結像された映像は、電気信号
へと変換され、A−D変換器3により更にデジタルデー
タへと変換され、フレームメモリ4に蓄積される。この
際第3図に示される補間されるべき仮想画素13に相当
する座標のデータは0とする。蓄積されたデータは、補
間を行うため逐次読み出される。今、補間されるべき仮
想画素13に相当する(x、y)座標で示される点の補
間を考える。第2図において、フレームメモリ4より座
# (x、3’−1)、(x、y+1)、(x、 y)
、(x−1,y)、(x+1゜y)で示されるそれぞれ
の点に相当するデータ、D (X、 y−1)、D (
x、y+1)、D (x。
In the configurations shown in FIGS. 1, 2, and 3, the optical lens 1
The image formed on the image sensor 2 is converted into an electrical signal, further converted into digital data by the AD converter 3, and stored in the frame memory 4. At this time, the coordinate data corresponding to the virtual pixel 13 to be interpolated shown in FIG. 3 is set to 0. The accumulated data is read out sequentially to perform interpolation. Now, consider interpolation of a point indicated by (x, y) coordinates corresponding to the virtual pixel 13 to be interpolated. In Fig. 2, from frame memory 4, the positions # (x, 3'-1), (x, y+1), (x, y)
, (x-1, y), (x+1°y), D (X, y-1), D (
x, y+1), D (x.

y)、 D (x−1,y)、 D (x+1. y)
が読み出され、垂直相関マトリクス6、水平相関マトリ
クス7、垂直・水平相関マトリクス8でそれぞれ計算さ
れる。また、輪郭検出回路5で、D(x、y−1) −
D(x、y+]) I−l D(x−1,y) −D(
x+1.y) 1という計算が行われ、その結果が0以
上の場合、補間される仮想画素の近傍では、垂直方向よ
りも水平方向の輪郭が強いと判断され、選択スイッチ9
で垂直相関マトリクス6の出力が選択される。
y), D (x-1, y), D (x+1. y)
are read out and calculated using a vertical correlation matrix 6, a horizontal correlation matrix 7, and a vertical/horizontal correlation matrix 8, respectively. Also, in the contour detection circuit 5, D(x, y-1) −
D(x, y+]) I-l D(x-1, y) -D(
x+1. y) 1 is performed, and if the result is 0 or more, it is determined that the contour in the horizontal direction is stronger than in the vertical direction in the vicinity of the virtual pixel to be interpolated, and the selection switch 9 is
The output of the vertical correlation matrix 6 is selected.

また、輪郭検出回路5の出力が0以上の場合、水平方向
よりも垂直方向の輪郭が強いと判断され1選択スイッチ
9で水平相関マトリクス7の出力が選択される。
Further, when the output of the contour detection circuit 5 is 0 or more, it is determined that the contour in the vertical direction is stronger than in the horizontal direction, and the output of the horizontal correlation matrix 7 is selected by the 1 selection switch 9.

また、輪郭検出回路5の出力か0に等しい場合、水平、
垂直方向の輪郭酸ゲが同レベルど判断され、選択スイッ
チ9で垂直・水平7トリクス8の出力が選択される。そ
れぞわの場合において、選択スイッチ9の出力は再びフ
レームメモリ4へと書き込まわる。
Also, if the output of the contour detection circuit 5 is equal to 0, the horizontal
It is determined whether the contour edges in the vertical direction are at the same level, and the selection switch 9 selects the output of the vertical/horizontal 7 trix 8. In each case, the output of the selection switch 9 is written into the frame memory 4 again.

次に、実際に存在する画素12に相当する点について考
える。第3図(a)に示されるように、実際に存在する
画素12の上、下、左、右の画素は、全て補間されるへ
き仮想画素13であり、フレームメモリ4内では、その
データは0となっている。従フて第2図輪郭検出回路5
の出力は常に0であり、その結果、選択される垂直・水
平相関マトリクス8の出力は常に1元のデータを保持し
ているので、実際に存在する画素12の示す点では、補
間マトリクスを通過することでデータが変化することは
ない。
Next, consider a point corresponding to the actually existing pixel 12. As shown in FIG. 3(a), the pixels above, below, left, and right of the actually existing pixel 12 are all interpolated virtual pixels 13, and in the frame memory 4, the data is It is 0. Follow-up Figure 2 Contour detection circuit 5
The output of the vertical/horizontal correlation matrix 8 is always 0, and as a result, the output of the selected vertical/horizontal correlation matrix 8 always holds 1-element data, so the point indicated by the actually existing pixel 12 passes through the interpolation matrix. This will not change the data.

以上説明したような補間を行って得らゎたデータは、再
びフlノームメ干り4に蓄積され、D−A変換器10で
アナログ変換され、撮像信号処理ブロック11にて処理
さね、映像信号として出力される。
The data obtained by performing the interpolation as described above is stored again in the full scale memory 4, converted to analog by the D-A converter 10, processed by the imaging signal processing block 11, and then processed into the image signal processing block 11. Output as a signal.

なお、以上の実施例では、撮像素子の読出しを第3図(
a)に示すように、ジグザグに行っているか、本発明は
こねに限定されるものではなく、たとえば、水平方向に
読み出して実施することもできる。
In addition, in the above embodiment, the readout of the image sensor is performed as shown in FIG.
As shown in a), the present invention is not limited to kneading in a zigzag manner, but can also be carried out, for example, with reading in the horizontal direction.

又、実施例では6〜Bの補間回路の出力を切換えている
が、マイクロコンどl−夕のソフトを切換えることによ
り補間子−トを切換えても良いことは言うまでもない。
Further, in the embodiment, the outputs of the interpolation circuits 6 to B are switched, but it goes without saying that the interpolators may be switched by switching the software of the microcomputer.

(発明の効果) 以上説明したように、本発明によれば、補正を行う仮想
画素の近傍における画像の輪郭を検出し、その輪郭に合
った補間モードを選択して補間を行っているので、解像
度の劣化が少なく、自然な輪郭の画像が得られる。
(Effects of the Invention) As explained above, according to the present invention, the contour of the image in the vicinity of the virtual pixel to be corrected is detected, and the interpolation mode that matches the contour is selected to perform interpolation. Images with natural contours can be obtained with little deterioration in resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は同実施例
要部の回路図、第3図は撮像素子の画素配置、読出し経
路、補間方式を説明する図である。 2−m−撮像素子 5−・・・輪郭検出回路 6.7.8−m−補間マトリクス 9−・・・選択スイッチ 12−一画素 13−=仮想画素
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a circuit diagram of essential parts of the embodiment, and FIG. 3 is a diagram explaining the pixel arrangement, readout path, and interpolation method of the image sensor. 2-m-imaging element 5--contour detection circuit 6.7.8-m-interpolation matrix 9--selection switch 12-1 pixel 13-=virtual pixel

Claims (1)

【特許請求の範囲】[Claims] (1)垂直方向に隣接する画素が水平方向に互いに1/
2画素ずれて配置された撮像素子を有し、該画素にかこ
まれた仮想画素の補間を行う撮像装置であって、複数種
の補間モードを有する補間手段と、該複数種の補間モー
ドを選択する選択手段と、補間を行う仮想画素近傍の画
像の輪郭を検出しその輪郭に合った補間モードの選択を
前記選択手段に指示する輪郭検出手段とを備えたことを
特徴とする撮像装置。
(1) Vertically adjacent pixels are horizontally 1/1/2
An imaging device having an imaging element arranged two pixels apart and performing interpolation of a virtual pixel surrounded by the pixel, an interpolation means having a plurality of types of interpolation modes, and selecting the plurality of types of interpolation modes. and contour detection means for detecting the contour of an image in the vicinity of a virtual pixel to be interpolated and instructing the selection means to select an interpolation mode that matches the contour.
JP2168324A 1990-06-28 1990-06-28 Image pickup device Pending JPH0458682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2168324A JPH0458682A (en) 1990-06-28 1990-06-28 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2168324A JPH0458682A (en) 1990-06-28 1990-06-28 Image pickup device

Publications (1)

Publication Number Publication Date
JPH0458682A true JPH0458682A (en) 1992-02-25

Family

ID=15865931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2168324A Pending JPH0458682A (en) 1990-06-28 1990-06-28 Image pickup device

Country Status (1)

Country Link
JP (1) JPH0458682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145087A1 (en) * 2006-06-16 2007-12-21 Sony Corporation Image pickup device and signal processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145087A1 (en) * 2006-06-16 2007-12-21 Sony Corporation Image pickup device and signal processing method
JP2007336387A (en) * 2006-06-16 2007-12-27 Sony Corp Imaging device and signal processing method
JP4548390B2 (en) * 2006-06-16 2010-09-22 ソニー株式会社 Imaging apparatus and signal processing method
US8471936B2 (en) 2006-06-16 2013-06-25 Sony Corporation Imaging device and signal processing method

Similar Documents

Publication Publication Date Title
US6069351A (en) Focal plane processor for scaling information from image sensors
EP2063646A2 (en) Method and apparatus for predictive coding
US5689302A (en) Higher definition video signals from lower definition sources
JPH07118784B2 (en) Method for detecting motion of television signals
JP2008199177A (en) Image processor and its method, and electronic camera
US4689681A (en) Television special effects system
JPH04290385A (en) Blurring corrector
EP0264966B1 (en) Interpolator for television special effects system
JPH0832048B2 (en) Motion vector detector
US5083208A (en) Electronic zoom apparatus
JP2615693B2 (en) Shake correction imaging device
JPH1013860A (en) Stereoscopic picture interpolating device and its method
JP2638061B2 (en) Motion detector
JPH0458682A (en) Image pickup device
JP2001145012A (en) Image distorting correction device
JP3786300B2 (en) Motion vector detection apparatus and motion vector detection method
JP2693515B2 (en) Image motion detector
JPH0322118B2 (en)
JPS63166369A (en) Mobile vector detection circuit
JPH04345383A (en) Picture defect correcting circuit
JP3152556B2 (en) Method for converting a two-dimensional image to a three-dimensional image
JPH0767025A (en) Video processor
JP3327961B2 (en) Image processing device
JP3128445B2 (en) Motion vector detection device
JP3465910B2 (en) Automatic focusing method