JPH0458574B2 - - Google Patents

Info

Publication number
JPH0458574B2
JPH0458574B2 JP20848583A JP20848583A JPH0458574B2 JP H0458574 B2 JPH0458574 B2 JP H0458574B2 JP 20848583 A JP20848583 A JP 20848583A JP 20848583 A JP20848583 A JP 20848583A JP H0458574 B2 JPH0458574 B2 JP H0458574B2
Authority
JP
Japan
Prior art keywords
lymphocytes
pha
fluorescence
degree
patients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20848583A
Other languages
Japanese (ja)
Other versions
JPS60100761A (en
Inventor
Fuja Takahata
Kazuo Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20848583A priority Critical patent/JPS60100761A/en
Publication of JPS60100761A publication Critical patent/JPS60100761A/en
Publication of JPH0458574B2 publication Critical patent/JPH0458574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蛍光偏光測定法を利用し、リンパ球
等の細胞の刺激の程度を蛍光偏光度と単位時間当
りの変化量の二つのパラメータにより二次元的に
判定し、細胞の刺激の程度を判別するリンパ球刺
激測定装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses fluorescence polarization measurement to measure the degree of stimulation of cells such as lymphocytes based on two parameters: the degree of fluorescence polarization and the amount of change per unit time. The present invention relates to a lymphocyte stimulation measurement device that performs two-dimensional judgment to determine the degree of cell stimulation.

〔発明の背景〕[Background of the invention]

血液中からリンパ球を遠心分離によつて分離
し、この分取したリンパ球懸濁液を試料とし、こ
れに刺激物質、例えばフアイトヘマグルチニンの
ような植物性血球凝集素を加えて反応させると、
健康人の場合には幼若化が起るが、悪性腫瘍患者
の場合には幼若化がお起らないので、この原理を
利用して健康人と悪性腫瘍患者を判別する方法が
従来から行われている。
Lymphocytes are separated from the blood by centrifugation, this fractionated lymphocyte suspension is used as a sample, and a stimulating substance, for example, a phytohemagglutinin such as phytohemagglutinin, is added and reacted.
Juvenility occurs in healthy people, but not in patients with malignant tumors, so conventional methods have used this principle to distinguish between healthy people and patients with malignant tumors. It is being done.

このような刺激反応によるリンパ球内の動態を
蛍光偏光法によつて測定し、悪性腫瘍を発見しよ
うとする試みは、Drs.L.Cercek,B.Cercek,Dr.
J.A.V.Pritchardらの次のような文献に報告され
ている。
Attempts to detect malignant tumors by measuring the intralymphocyte dynamics due to stimulus responses using fluorescence polarization were carried out by Drs. L. Cercek, B. Cercek, and Dr.
It is reported in the following literature by JAV Pritchard et al.

(1) Europ.J.Cancer Vol.13 P.903〜915(1977) (2) Br.J.Cancer Vol.38 P.339〜343(1978) ここで報告されている方法は、いずれも非刺激
リンパ球の蛍光偏光度PCONT(Pcontrolの略)と、
PHA(Phytohaemagglutimin:フアイトヘマグ
ルチニンの略)刺激リンパ球の蛍光偏光度PPHA
の比、すなわちPPHA/PCONT×100(%)により、
リンパ球の刺激の程度を表わすようにしている。
この方法によれば、第1図に示すような実施結果
が得られており、傾向として悪性腫瘍患者の
PPHA/PCONT×100(%)は100〜90%程度に分布
し、健康人および良性腫瘍患者のPPHA/PCONT×
100(%)は90〜80%程度に分布しているので、こ
れにより健康人と悪性腫瘍患者を概略大別するこ
とができる。
(1) Europ.J.Cancer Vol.13 P.903-915 (1977) (2) Br.J.Cancer Vol.38 P.339-343 (1978) All of the methods reported here are The degree of fluorescence polarization of stimulated lymphocytes P CONT (abbreviation for Pcontrol)
The degree of fluorescence polarization of PHA (Phytohaemagglutimin) stimulated lymphocytes is determined by the ratio of P PHA to P PHA , that is, P PHA / P CONT × 100 (%).
It is designed to represent the degree of stimulation of lymphocytes.
According to this method, the results shown in Figure 1 have been obtained, and the tendency is for patients with malignant tumors to
P PHA /P CONT ×100 (%) is distributed around 100 to 90%, and P PHA /P CONT × of healthy people and benign tumor patients
Since 100 (%) is distributed around 90-80%, it is possible to roughly classify healthy people and malignant tumor patients based on this.

しかしながら、このようにPPHA/PCONTという
1つのパラメータのみを用いたデータでは第1図
からも明らかなように、健康人と悪性腫瘍患者の
PPHA/PCONTの値がオーバラツプして分布するも
のとなり、両者を明瞭に判別することが非常に難
しいという問題点がある。
However, as shown in Figure 1, data using only one parameter, P PHA / P CONT , shows that the difference between healthy people and patients with malignant tumors is
There is a problem that the values of P PHA /P CONT are distributed in an overlapping manner, and it is very difficult to clearly distinguish between the two.

そこで、悪性腫瘍患者のリンパ球を特異的に刺
激する癌塩基性蛋白(CaBP:Cancer Basic
Proteinの略)を用いて、前記判定と逆の現象に
よつて判別を明確にしようとする試みもされてい
るが、CaBP自体の入手が困難なため、実用に適
さないという問題がある。
Therefore, Cancer Basic Protein (CaBP), which specifically stimulates lymphocytes of patients with malignant tumors, has been developed.
Attempts have also been made to clarify the discrimination using CaBP (abbreviation for CaBP) based on a phenomenon opposite to the above-mentioned judgment, but there is a problem that it is not suitable for practical use because CaBP itself is difficult to obtain.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、健康人または良性腫瘍患者と
悪性腫瘍患者とを明瞭に判別し得る実用的なリン
パ球刺激測定装置を提供することにある。
An object of the present invention is to provide a practical lymphocyte stimulation measurement device that can clearly distinguish between healthy people or patients with benign tumors and patients with malignant tumors.

〔発明の概要〕[Summary of the invention]

本発明は、蛍光偏光度と単位時間当りの変化量
との複数のパラメータを採用し、分布データのオ
ーバラツプをなくして悪性腫瘍患者と健康人及び
良性腫瘍患者を明確に区別できるようにしたもの
である。
The present invention employs multiple parameters such as the degree of fluorescence polarization and the amount of change per unit time, and eliminates overlap in distribution data, making it possible to clearly distinguish between malignant tumor patients, healthy people, and benign tumor patients. be.

〔発明の実施例〕[Embodiments of the invention]

まず、本発明の基礎となる原理について説明す
る。
First, the principle underlying the present invention will be explained.

リンパ球等の細胞の動態(細胞の流動性)は、
蛍光偏光測定装置によつて観測されるが、細胞が
刺激を受けて細胞内の流動性が高まると、平行成
分の光は、偏光解消されて直交成分の光が増加す
る。他方、細胞の刺激が少ない場合には、偏光解
消される光は前者の場合に比べて少ない。
The dynamics of cells such as lymphocytes (cell fluidity) is
As observed by a fluorescence polarization measurement device, when cells are stimulated and intracellular fluidity increases, parallel components of light are depolarized and orthogonal components of light increase. On the other hand, if the cells are less stimulated, less light will be depolarized than in the former case.

この現象は下記の第(1)式の蛍光偏光度(P値)
によつて等価的に表わすことができる。
This phenomenon is expressed by the degree of fluorescence polarization (P value) in equation (1) below.
It can be equivalently expressed by .

P=I−IL×G/I+IL×G ……(1) 但し、I:平行成分の偏光強度 IL:直交成分の偏光強度 G:装置定数 上記第(1)式において、リンパ球が刺激を受け、
偏光解消が生じると、ILが増加してP値は低下す
る。従つてPCONT−PPHAの値は増加する。
P=I−I L ×G/I+I L ×G ……(1) However, I: Polarized light intensity of parallel component I L : Polarized light intensity of orthogonal component G: Instrument constant In the above equation (1), lymphocytes inspired,
When depolarization occurs, I L increases and the P value decreases. Therefore, the value of P CONT −P PHA increases.

このことから健康人及び良性腫瘍患者のリンパ
球は、PHAによつて刺激を受けるため、悪性腫
瘍患者に比べてPCONT−PPHAは高い値を示すもの
となる。
From this, the lymphocytes of healthy people and patients with benign tumors are stimulated by PHA, and thus exhibit a higher value of P CONT -P PHA than those of patients with malignant tumors.

一方単位時間当りの変化量から考えると、細胞
が刺激を受けて細胞内の流動性が高まり、下記の
蛍光反応が活発に行われると、直交成分の光の単
位時間当りの変化量が増加し、細胞の刺激が少い
場合には、直交成分の光の単位時間当りの変化量
は、非刺激の場合と変わらない。
On the other hand, when considering the amount of change per unit time, when cells are stimulated and the intracellular fluidity increases, and the fluorescence reaction described below is actively performed, the amount of change per unit time of the orthogonal component of light increases. , when the stimulation of the cell is small, the amount of change of the orthogonal component light per unit time is the same as in the case of no stimulation.

この蛍光反応を第(2)式に示す。 This fluorescence reaction is shown in equation (2).

FDA加水分解酵素 ―――――――――――――――――――→ ―――――――――――――――――――→ (FIuoresceindiacetate)Fluorescein+2CH3COOH……(
2) ここで、FDAは蛍光前駆物質であり、蛍光を
本来発しない。しかしながら、細胞内に取り込ま
れると、細胞中の加水分解酵素によつて分解さ
れ、フルオレツセイン(Fluorescein)となつて
蛍光を発するようになる。この加水分解反応は、
リンパ球が刺激を受けた程、活発に行われること
が考えられる。
FDA hydrolase――――――――――――――――――→ ――――――――――――――――――――→ (FIuoresceindiacetate) Fluorescein+2CH 3 COOH ...(
2) Here, FDA is a fluorescent precursor and does not inherently emit fluorescence. However, when it is taken into cells, it is broken down by hydrolytic enzymes in the cells and becomes fluorescein, which emits fluorescence. This hydrolysis reaction is
It is thought that the more stimulated the lymphocytes are, the more actively they are carried out.

この現象は、次の第(3)式によつて等価的に表わ
すことができる。
This phenomenon can be equivalently expressed by the following equation (3).

ΔIL×G/ΔI ……(3) 但し、 ΔI:平行成分の単位時間当りの偏光強度の
変化量、 ΔIL:直交成分の単位時間当りの偏光強度の変
化量、 G:装置定数、 上記第(3)式において、健康人及び良性腫瘍患者
のリンパ球の場合には、PHAによつて刺激を受
けるため、ΔILが増加する。
ΔI L ×G/ΔI ...(3) However, ΔI: Change amount of polarized light intensity per unit time of parallel component, ΔI L : Change amount of polarized light intensity per unit time of orthogonal component, G: Equipment constant, Above In equation (3), in the case of lymphocytes from healthy people and benign tumor patients, ΔI L increases because they are stimulated by PHA.

従つて、ΔIL×G/ΔI(CONT−PHA)は負
の値を示すものとなる。
Therefore, ΔI L ×G/ΔI (CONT−PHA) indicates a negative value.

従つて、上述した(1)蛍光偏光度の差のパラメー
タ、(2)単位時間当りの変化量の差のパラメータの
両者を用いてこれらを例えば二次元で表わすこと
によつて健康人及び良性腫瘍患者と悪性腫瘍患者
を明瞭に区別することが可能になる。
Therefore, by using both the above-mentioned (1) parameter of the difference in the degree of fluorescence polarization and (2) parameter of the difference in the amount of change per unit time and representing them in two dimensions, it is possible to distinguish between healthy people and benign tumors. It becomes possible to clearly distinguish patients with malignant tumors from patients with malignant tumors.

次に具体的な実施例に基づいて本発明を詳細に
説明する。
Next, the present invention will be explained in detail based on specific examples.

第2図は本発明の一実施例を示すブロツク図で
あつて、刺激を受けたリンパ球(懸濁液状態)ま
たは対象となる非刺激リンパ球(懸濁液状態)
は、蛍光前駆物質であるFDA試液に加えられ、
懸濁試料測定用キユベツト1に収容される。一定
時間測定後、懸濁液の濾過を行い、リンパ球のみ
を濾別する。これは、前記FDAの分解によつて
生じるフルオレツセイン(蛍光物質)が細胞内の
みに局在するのではなく、外部の溶液へも洩れ出
してくるので、この洩れの分を補正する目的で行
うものである。濾過後の液は、濾過液測定用キユ
ベツト2に収容されて蛍光偏光が行われる。
FIG. 2 is a block diagram showing one embodiment of the present invention, showing stimulated lymphocytes (in a suspension state) or target unstimulated lymphocytes (in a suspension state).
is added to the FDA test solution, which is a fluorescent precursor,
It is housed in a cuvette 1 for measuring suspended samples. After measuring for a certain period of time, the suspension is filtered to remove only lymphocytes. This is done to compensate for the fluorescein (fluorescent substance) produced by the decomposition of FDA, which is not only localized within the cell but also leaks into the external solution. It is. The liquid after filtration is stored in a filtrate measurement cuvette 2 and undergoes fluorescence polarization.

蛍光偏光測定系においては、まず光源3から発
した白色光は、励起側分光器4で単色光に分光さ
れる。励起光は、励起側偏光子5を通過して測定
用キユベツト1に照射される。この場合、通常測
定では偏光面が垂直方向にセツトされる。また装
置定数(G値)の測定に当つては偏光面が水平方
向にセツトされる。
In the fluorescence polarization measurement system, first, white light emitted from a light source 3 is separated into monochromatic light by an excitation side spectrometer 4. The excitation light passes through the excitation side polarizer 5 and is irradiated onto the measurement cuvette 1. In this case, the plane of polarization is normally set in the vertical direction in measurements. Furthermore, when measuring the device constant (G value), the plane of polarization is set in the horizontal direction.

励起光の照射により測定試料から発した蛍光
は、蛍光側偏光子6を通り蛍光側分光器9に導か
れる。蛍光側偏光子6は、励起側偏光子5に対し
て平行0°、直交90°の回転動作が可能なように構
成されている。この励起側偏光子5及び蛍光側偏
光子6の回転動作は、励起側偏光子駆動モータ7
及び蛍光側偏光子駆動モータ8に駆動信号を与え
ることによつて実現される。
Fluorescence emitted from the measurement sample by irradiation with excitation light passes through the fluorescence polarizer 6 and is guided to the fluorescence spectrometer 9. The fluorescence side polarizer 6 is configured to be able to rotate 0° parallel to the excitation side polarizer 5 and 90° perpendicular to the excitation side polarizer 5. The excitation side polarizer 5 and the fluorescence side polarizer 6 are rotated by an excitation side polarizer drive motor 7.
This is realized by applying a drive signal to the fluorescence side polarizer drive motor 8.

このようにして、蛍光側分光器9で得られた光
信号は、光検知器10で検知され、その検知信号
は前置増幅器11で増幅された後、A/D変換器
12によりアナログ信号からデイジタル信号に変
換される。そして、このデイジタル信号は、メモ
リー13に保存され、演算部14において後述す
る演算処理に使用される。演算結果は、表示部1
5に表示される。これらの信号処理系および駆動
系は、制御器16によつて動作のシーケンスが制
御される。
In this way, the optical signal obtained by the fluorescence side spectrometer 9 is detected by the photodetector 10, and the detected signal is amplified by the preamplifier 11, and then converted from an analog signal by the A/D converter 12. converted into a digital signal. This digital signal is then stored in the memory 13 and used in the calculation section 14 for calculation processing to be described later. The calculation result is displayed on the display section 1.
5 is displayed. The operation sequence of these signal processing systems and drive systems is controlled by a controller 16.

このようなシステムにより、第3図の模式図に
示すような測定結果が得られる。
With such a system, measurement results as shown in the schematic diagram of FIG. 3 can be obtained.

さて、蛍光偏光度および単位時間当りの変化量
の算出は次のようにして演算部14において算出
される。
Now, the degree of fluorescence polarization and the amount of change per unit time are calculated in the calculation unit 14 as follows.

すなわち、懸濁試料溶液の偏光測定の濾過中間
時点におけるIL(T):反応液全体の直交成分の値
をA,I:反応液全体の平行成分の値をJ、ま
た濾過液の偏光測定のIL(F):濾過液の直交成分
の値をB,I:濾過液の平行成分の値をKとす
ると、蛍光偏光度P値は、 P=I−IL×G/I+IL×G であり、次の第(4)式で示される。
In other words, I L (T) at the midpoint of filtration during polarization measurement of a suspended sample solution: A is the value of the orthogonal component of the entire reaction solution, I is J is the value of the parallel component of the entire reaction solution, and is the polarization measurement of the filtrate. I L (F): the value of the orthogonal component of the filtrate is B, I: the value of the parallel component of the filtrate is K, then the fluorescence polarization degree P value is P=I-I L ×G/I+I L × G, and is expressed by the following equation (4).

P=(A−B)−(J−K)×G/(A−B)+(
J−K)×G =C−L×G/C+L×G ……(4) ただし装置定数Gは、 G=iL/i=b/a ……(5) で表される。なお、C=A−B,L=J−Kであ
る。
P=(A-B)-(J-K)×G/(A-B)+(
J-K)×G = C-L×G/C+L×G...(4) However, the device constant G is expressed as G=i L /i=b/a...(5). Note that C=AB, L=JK.

演算部14はこの式(4)式で示される演算を各々
の検体の対象とする非刺リンパ球懸濁液とPHA
刺激リンパ球懸濁液の測定値について行い、
PCONT及びPPHAを求める。さらにこのPCONTとPPHA
の差(PCONT−PPHA)を求める。
The calculation unit 14 performs the calculation shown by this equation (4) on the non-pierced lymphocyte suspension and PHA for each sample.
The measurements of the stimulated lymphocyte suspension were carried out,
Find P CONT and P PHA . Furthermore, this P CONT and P PHA
Find the difference (P CONT − P PHA ).

次に、濾過中間時点における偏光強度は IL=C=A−B I=L=J−K で示される。 Next, the polarized light intensity at the middle point of filtration is expressed as I L =C=A-B I=L=JK.

また測定開始時点における偏光強度は ILO=D−D×B/A IO=M−M×K/J で表される。従つて、単位時間当りの変化量は、 ΔIL=IL−ILO =C−(D−D×B/A) ΔL=I−IO =L−(M−M×K/J) ……(6) を演算すればよいので、演算部14はこの第6式
に基づいて単位時間当りの変化量を非刺激リンパ
球(CONT)および刺激リンパ球(PHA)のそ
れぞれについて求め、さらにその変化量の比 ΔIL×G/ΔIを求める。
Further, the polarized light intensity at the time of starting the measurement is expressed as I LO =D−D×B/A IO =M−M×K/J. Therefore, the amount of change per unit time is: ΔI L =I L -I LO =C-(D-D×B/A) ΔL=I-I O =L-(M-M×K/J)... ...(6), the calculation unit 14 calculates the amount of change per unit time for each of the unstimulated lymphocytes (CONT) and stimulated lymphocytes (PHA) based on this sixth equation, and then calculates the Find the ratio of the amount of change ΔI L ×G/ΔI.

演算部14はこのようにして算出した蛍光偏光
度Pおよび時間当りの変化量の比を、前者を縦軸
に、後者を横軸にとつて例えば第4図に示すよう
に検体別にブロツトし、表示部15の表示画面に
表示させる。
The calculation unit 14 blots the ratio of the degree of fluorescence polarization P and the amount of change per time calculated in this manner for each sample, with the former on the vertical axis and the latter on the horizontal axis, as shown in FIG. 4, for example, It is displayed on the display screen of the display unit 15.

これにより、健康人および良性腫瘍患者のデー
タは第2象限左上方に群をなし、悪性腫瘍患者の
データは第2象限から第1象限にかけて右方に群
をなす分布となり、健康人と悪性腫瘍患者の蛍光
偏光測定値の分布のオーバラツプは大幅に少なく
なり、両者の判別が極めて容易になる。
As a result, the data for healthy people and benign tumor patients form a group in the upper left of the second quadrant, and the data for malignant tumor patients form a group on the right from the second quadrant to the first quadrant. The overlap in the distribution of patient fluorescence polarization measurements is significantly reduced, making it extremely easy to distinguish between the two.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれ
ば、複数のパラメータにより蛍光偏光値の分布を
オーバラツプをなくしているため、健康人および
良性腫瘍患者と悪性腫瘍患者とを明確に判別する
ことができたうえ、従来PHAとCaBPの二つの
刺激試薬で判定していたのが、PHAのみで判別
可能となる見通しが大となり、測定の簡略化が期
待できるなど実用上極めて優れた効果がある。
As is clear from the above description, according to the present invention, multiple parameters are used to eliminate overlap in the distribution of fluorescence polarization values, making it possible to clearly distinguish between healthy people, patients with benign tumors, and patients with malignant tumors. Furthermore, it is highly likely that it will be possible to make a distinction using only PHA, whereas conventional determinations were made using two stimulating reagents: PHA and CaBP, and this will have extremely excellent practical effects, such as simplification of measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による測定結果の一例を示す
図、第2図は本発明の一実施例を示すブロツク
図、第3図は本発明における信号処理の模式図、
第4図は本発明による測定結果表示の一例を示す
図である。 1……懸濁試料測定用キユベツト、2……濾過
液測定用キユベツト、3……光源、4……励起側
分光器、5……励起側偏光子、6……蛍光側偏光
子、7……励起側偏光子駆動モータ、8……蛍光
側偏光子駆動モータ、9……蛍光側分光器、10
……光検知器、11……前置増幅器、12……
A/D変換器、13……メモリ部、14……演算
部、15……表示部、16……制御器。
FIG. 1 is a diagram showing an example of measurement results by a conventional method, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a schematic diagram of signal processing in the present invention.
FIG. 4 is a diagram showing an example of a measurement result display according to the present invention. DESCRIPTION OF SYMBOLS 1... Cuvette for measuring suspended sample, 2... Cuvette for measuring filtrate, 3... Light source, 4... Excitation side spectrometer, 5... Excitation side polarizer, 6... Fluorescence side polarizer, 7... ... Excitation side polarizer drive motor, 8 ... Fluorescence side polarizer drive motor, 9 ... Fluorescence side spectrometer, 10
...Photodetector, 11...Preamplifier, 12...
A/D converter, 13... memory section, 14... calculation section, 15... display section, 16... controller.

Claims (1)

【特許請求の範囲】[Claims] 1 リンパ球等の細胞の刺激の程度を蛍光偏光法
を用いて測定するリンパ球刺激測定装置におい
て、刺激リンパ球の蛍光偏光度と非刺激リンパ球
の蛍光偏光度の差を求める第1の手段と、刺激リ
ンパ球および非刺激リンパ球の反応測定時の平行
成分と直交成分のそれぞれの単位時間当りの変化
量の比の差を求める第2の手段を有し、各々の算
出結果をプロツトすることによつてリンパ球の刺
激の程度を判定することを特徴とするリンパ球刺
激測定装置。
1. In a lymphocyte stimulation measurement device that measures the degree of stimulation of cells such as lymphocytes using fluorescence polarization, a first means for determining the difference between the degree of fluorescence polarization of stimulated lymphocytes and that of unstimulated lymphocytes. and a second means for determining the difference in the ratio of the change amount per unit time of the parallel component and the orthogonal component during reaction measurement of stimulated lymphocytes and unstimulated lymphocytes, and plots each calculation result. A lymphocyte stimulation measurement device characterized by determining the degree of stimulation of lymphocytes.
JP20848583A 1983-11-07 1983-11-07 Device for measuring stimulus of lymphocyte Granted JPS60100761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20848583A JPS60100761A (en) 1983-11-07 1983-11-07 Device for measuring stimulus of lymphocyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20848583A JPS60100761A (en) 1983-11-07 1983-11-07 Device for measuring stimulus of lymphocyte

Publications (2)

Publication Number Publication Date
JPS60100761A JPS60100761A (en) 1985-06-04
JPH0458574B2 true JPH0458574B2 (en) 1992-09-17

Family

ID=16556937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20848583A Granted JPS60100761A (en) 1983-11-07 1983-11-07 Device for measuring stimulus of lymphocyte

Country Status (1)

Country Link
JP (1) JPS60100761A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209343A (en) * 1988-02-16 1989-08-23 Shimadzu Corp Spectro-fluorophotometer
CN118443643B (en) * 2024-07-08 2024-09-24 上海大学 Spectrum detection method and device for nerve cell sample

Also Published As

Publication number Publication date
JPS60100761A (en) 1985-06-04

Similar Documents

Publication Publication Date Title
US4290433A (en) Method and apparatus for detecting the presence of caries in teeth using visible luminescence
JPH0558506B2 (en)
US5270788A (en) Apparatus for measuring polarization of bathochromically shifted fluorescence
EP0364583A4 (en) Method and device for analyzing thrombocyte aggregation
JPH0458574B2 (en)
Liao et al. Real-time frequency domain temperature and oxygen sensor with a single optical fiber
EP0272291B1 (en) Method for measuring polarized fluorescence emissions
Teshima et al. pH dependence of the binding constant of Ca2+ to cobra venom phospholipases A2
EP0125651A2 (en) A method for detecting cancerous cells
Oberfelder et al. [21] Measurement of ligand-protein interaction by electrophoretic and spectroscopic techniques
Jayasundar et al. Comparison of pH measurements made using 31P NMR and a fibreoptic pH meter
JPS613043A (en) Apparatus for determining base sequence of nucleic acid
CN109983132B (en) Competitive assay of enzyme substrates with internal enzymatic Activity Compensation
JPH1194743A (en) Reader for fluorescent pattern
JPH0213270B2 (en)
Hashimoto et al. Measurement of cytoplasmic viscosity by fluorescence polarization in phytohemagglutinin-stimulated and unstimulated human peripheral lymphocytes.
Thomas et al. Selective monitoring of stern-volmer quenching of chiral molecules via fluorescence detected circular dichroism
CA1200477A (en) Method for detecting luminescence in living cell system
RU2141660C1 (en) Differential diagnosis method for recognizing early and late forms of neurosyphilis
JPS61154638A (en) Multi-spectrum image analyser of living body tissue
JPH03120446A (en) Fluorescence measuring instrument
Molnar et al. Imaging immunometabolism in situ in live animals
RU2128005C1 (en) Method of diagnostics of malignant tumors and device for its embodiment
Hendler et al. A monitoring system for energy transduction by bacteriorhodopsin liposomes
JPS63205545A (en) Instrument for measuring calcium in cell