JPH0458373A - Method and device for sorting class/grade of shellfishes - Google Patents

Method and device for sorting class/grade of shellfishes

Info

Publication number
JPH0458373A
JPH0458373A JP2170484A JP17048490A JPH0458373A JP H0458373 A JPH0458373 A JP H0458373A JP 2170484 A JP2170484 A JP 2170484A JP 17048490 A JP17048490 A JP 17048490A JP H0458373 A JPH0458373 A JP H0458373A
Authority
JP
Japan
Prior art keywords
shellfish
image
light
class
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2170484A
Other languages
Japanese (ja)
Inventor
Hideo Koide
英夫 小出
Fumitaka Hayata
早田 文隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2170484A priority Critical patent/JPH0458373A/en
Publication of JPH0458373A publication Critical patent/JPH0458373A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Processing Of Meat And Fish (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To sort the shellfish, finely ranking the class of the shellfish by installing the shellfish on a transparent belt conveyor and sorting the class and grade of the shellfish with a picture processor while taking in video with an image pickup camera. CONSTITUTION:Shellfishes 10 are continuously carried by a belt conveyor 12 equipped with light transmittence, and black-and-white gradation video is prepared while the shellfishes 10 on carrying is irradiated with the light of a illumination device 18 for class measurement and the reflection video of light is hotographed by a photographic camera 28. Next, the luminance frequency distribution of the prepared black-and-white gradation video is prepared by a picture processor 40, the distribution pattern is normalized to prescribed size, and the normalized distribution pattern and the rank pattern stored in the picture processor 40 in advance are collectively operated. A weighted average value is determined from each assembly area, and an output signal discriminating the class of the shellfish 10 is transmitted to a sorting device 48. Thus, the class of a clam can be finely ranked.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は貝類の等階級選別方法及びその装置に係り、特
に蛤等の白黒縞状模様を有する貝類の濃淡による等級選
別と、外形の大きさによる階級選別を行う為の貝類の等
階級選別方法及びその装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for sorting shellfish into equal classes, and in particular, to sorting shellfish, such as clams, with black and white striped patterns according to their grading based on light and shade, and the size of their external shape. The present invention relates to a method and apparatus for sorting shellfish into classes based on their size.

〔従来の技術〕[Conventional technology]

従来、蛤の等級選別、即ち蛤の白黒縞状模様の濃いか淡
いかの選別は、検査員の目視により行われている。
Conventionally, classification of clams, that is, classification of whether the black and white striped pattern of clams is dark or light, has been carried out visually by an inspector.

また、蛤の階級選別、即ち蛤の外形の大きさによる選別
は、回転ドラム式の機械式自動選別装置で行われている
Further, class sorting of clams, that is, sorting according to the external size of clams, is carried out using a rotating drum-type mechanical automatic sorting device.

〔発すが解決しようとする課題〕[Issues that are raised but sought to be solved]

しかしながら、従来の蛤の等級選別は、前述したように
検査員の目視検査により行われるので、ばらつきが発生
し、また3段階以上の分類が極めて難しいという欠点が
ある。
However, conventional grading of clams is carried out by visual inspection by inspectors as described above, which has the disadvantage that variations occur and it is extremely difficult to classify clams into three or more levels.

また最近、蛤の等級選別は表面の濃淡色の濃さだけでは
なく、縞模様の濃淡に基づいて等級を細かくランク分け
することで商品格差を付けるという傾向がある。しかし
ながら、従来の等級選別方法では、等級を細かくランク
分けすることができないという欠点がある。
Recently, there has been a trend in grading clams to differentiate products by grading them not only based on the depth of the surface color, but also on the shading of the striped pattern. However, the conventional grading method has the disadvantage that it is not possible to classify the grades into fine ranks.

一方、回転ドラム式の階級選別装置では、回転ドラムで
蛤が回転されるので、蛤に回転ドラムとの接触による損
傷を与えるという欠点がある。
On the other hand, in a rotary drum-type grade sorting device, the clams are rotated by the rotary drum, so there is a drawback that the clams are damaged by contact with the rotary drum.

本発明はこのような事情に鑑みてなされたもので、蛤の
等級を細かくランク分けすることができると共に、蛤に
損傷を与えないで階級選別を行うことができる貝類の等
階級選別方法及びその装置を提供することを目的とする
The present invention has been made in view of the above circumstances, and provides a method for sorting shellfish into equal classes, which can finely classify clams into ranks, and sort the clams by class without damaging the clams. The purpose is to provide equipment.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は、前記目的を達成する為に、貝に光を照射し、
その光の反射映像を撮影して白黒濃淡映像を作成し、作
成した前記白黒濃淡映像を空間領域サイズ、映像の輝度
の両面でデジタル変換して白黒濃淡映像の輝度頻度分布
を作成し、作成した前記輝度頻度分布の分布パターンを
所定の大きさに正規化すると共に、正規化した分布パタ
ーンと所定のファジィ集合で構成された複数のランクパ
ターンとをそれぞれ集合演算し、集合演算して求tられ
た各集合面積から総集合面積の加重平均値を求め、この
加重平均値に基づいて前記貝の等級を選別すると共に、
前記貝に向けて貝と背景とのコントラスト差を与える光
を照射し、その光の透過映像を撮影して白黒濃淡映像を
作成し、作成した前記白黒濃淡映像の映像信号を所定の
しきい値で二値化して二値化画像に変換し、二値化画像
中に於ける貝の画像の総画素数に基づいて貝の階級選別
を行うことを特徴とする。
In order to achieve the above object, the present invention irradiates the shellfish with light,
A black and white grayscale image was created by photographing the reflected light image, and the created black and white grayscale image was digitally converted in terms of both spatial area size and image brightness to create a brightness frequency distribution of the black and white grayscale image. The distribution pattern of the brightness frequency distribution is normalized to a predetermined size, and the normalized distribution pattern and a plurality of rank patterns each composed of a predetermined fuzzy set are subjected to a set operation, and t is determined by the set operation. Find a weighted average value of the total aggregation area from each aggregation area, and select the grade of the shellfish based on this weighted average value, and
A light that provides a contrast difference between the shellfish and the background is irradiated toward the shellfish, a transmitted image of the light is photographed to create a black-and-white grayscale image, and a video signal of the created black-and-white grayscale image is set at a predetermined threshold. The method is characterized in that it is binarized and converted into a binarized image, and the shellfish are classified into classes based on the total number of pixels of the shellfish image in the binarized image.

〔作用〕[Effect]

本発明によれば、貝(1のを光透過性を存するベルトコ
ンベア(12)で連続搬送する。次に、等級計測用照明
装置(18)で搬送中の貝(1のに光を照射し、その光
の反射映像を撮像カメラ(28)で撮影して白黒濃淡映
像を作成する。
According to the present invention, shellfish (1) are continuously transported by a light-transmitting belt conveyor (12).Next, the light is irradiated onto the shellfish (1) being transported by a lighting device (18) for grade measurement. , a reflected image of the light is photographed by an imaging camera (28) to create a black and white grayscale image.

次いで、作成した前記白黒濃淡映像を画像処理装置(4
のによって、先ず空間領域サイズ、映像の輝度の両面で
ディジタル変換して白黒濃淡映像の輝度頻度分布を作成
する。次に、前記輝度頻度分布の分布パターンを所定の
大きさに正規化すると共に正規化した分布パターンと前
記画像処理装置f(4のに予め記憶された所定のファジ
ィ集合で構成された複数のランクパターンとをそれぞれ
集合演算する。次いで、集合演算して求tられた各集合
面積から総集合面積の加重平均値を求め、この加重平均
値に基づいて選別装置(48)に前記量(1のの等級を
判別する為の出力信号を送信する。
Next, the created black and white grayscale image is processed by an image processing device (4).
First, both the spatial area size and image brightness are digitally converted to create a brightness frequency distribution of a black and white grayscale image. Next, the distribution pattern of the luminance frequency distribution is normalized to a predetermined size, and the normalized distribution pattern and a plurality of ranks composed of a predetermined fuzzy set stored in advance in the image processing device f (4) are Then, a weighted average value of the total aggregate area is calculated from each aggregate area obtained by the set operation, and based on this weighted average value, the sorting device (48) is given the amount (1). Sends an output signal to determine the grade of.

また、この等級選別と同時に、階級計測用照明装置(1
4)で前記搬送中の貝(1のに貝(1のと背景とにコン
トラスト差を与える光を照射する。そして、その透過映
像を前記撮像カメラ(28)で撮影して白黒濃淡映像を
作成し、この白黒濃淡映像の映像信号を前記画像処理装
置(4ので所定のしきい値で二値化して二値化画像に変
換する。そして、二値化画像に於ける貝(1のの画像の
総画素数に基づいて前記選別装置(48)に貝(1のの
階級を判別する為の出力信号を送信する。
In addition, at the same time as this grade selection, a lighting device for grade measurement (1
In step 4), the shellfish being transported (1) is irradiated with light that gives a contrast difference between the shellfish (1) and the background. Then, the transmitted image is photographed by the imaging camera (28) to create a black and white grayscale image. Then, the image processing device (4) binarizes this black-and-white gray video signal using a predetermined threshold value and converts it into a binary image. An output signal for determining the class of the shellfish (1) is transmitted to the sorting device (48) based on the total number of pixels of the shellfish (1).

〔実施例〕〔Example〕

以下添付図面に従って本発明に係る貝類の等階級選別方
法及びその装置の好ましい実施例を詳説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method and apparatus for sorting shellfish into equal classes according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明に係る貝類の等階級選別装置の実施例を
示すシステム構成図が示されている。
FIG. 1 shows a system configuration diagram showing an embodiment of the equal class sorting device for shellfish according to the present invention.

第1図によれば、蛤10がベルトコンベア12によって
図中矢印方向に搬送される。前記ベルトコンベア12は
、光透過性を有する塩化ビニール等の半透明の材料で構
成される。前記ベルトコンベア12の下方には一対の下
室光灯14.14が設置される。前記下室光灯14.1
4は、40kHz変調の高周波点灯方式であるLOW蛍
光灯が用いられている。また、前記下室光灯14.14
の下方には湾曲状のりフレフタ16が配設される。
According to FIG. 1, clams 10 are conveyed by a belt conveyor 12 in the direction of the arrow in the figure. The belt conveyor 12 is made of a translucent material such as vinyl chloride that transmits light. A pair of lower chamber lights 14.14 are installed below the belt conveyor 12. Said lower room light 14.1
4 uses a LOW fluorescent lamp which is a high frequency lighting method with 40 kHz modulation. In addition, the lower room light 14.14
A curved glue flap 16 is disposed below.

これにより、前記下室光灯14.14から照射された光
は、前記リフレクタ16により反射されてベルトコンベ
ア12の方向、即ち上方に照射される。
Thereby, the light emitted from the lower chamber light lamps 14.14 is reflected by the reflector 16 and is emitted in the direction of the belt conveyor 12, that is, upward.

一方、上室光灯18が前言己ベルトコンベア12の上方
で、且つベルトコンベア12を挟んで前記下室光灯14
の反対側に設置される。前記上室光灯18は、ルクスの
異なる一対の蛍光灯20.22によって構成される。前
記一対の蛍光灯20.22のうち下側の蛍光灯20は、
4QkHz変調の高周波点灯方式である4 0W!Iン
グ蛍光灯が用いられている。また、上側の蛍光灯22は
、同じ<40kHz変調の高周波点灯方式である32W
リング蛍光灯が用いられている。前記蛍光灯20の下方
にはリング散光板24が配設される。これにより、前記
蛍光灯18から照射された光は、前記ベルトコンベア1
2上の蛤10に向けて照射される。
On the other hand, the upper chamber light 18 is located above the belt conveyor 12 and across the belt conveyor 12 from the lower chamber light 14.
installed on the opposite side. The upper room light 18 is composed of a pair of fluorescent lights 20 and 22 having different lux. The lower fluorescent lamp 20 of the pair of fluorescent lamps 20 and 22 is
40W, a high frequency lighting method with 4QkHz modulation! Ignition fluorescent lamps are used. In addition, the upper fluorescent lamp 22 is a 32W high-frequency lighting method with the same <40kHz modulation.
Ring fluorescent lights are used. A ring diffuser plate 24 is disposed below the fluorescent lamp 20. Thereby, the light emitted from the fluorescent lamp 18 is transmitted to the belt conveyor 1.
The light is irradiated toward the clam 10 on top of the shell 2.

尚、前記蛍光灯14.18は、ベルトコンベア12で搬
送される蛤10がその上方及び下方にそれぞれ位置した
タイミングで同時に照射するように図示しないタイマー
制御装置によって照射タイミングが制御されている。
Incidentally, the irradiation timing of the fluorescent lamps 14 and 18 is controlled by a timer control device (not shown) so that the fluorescent lamps 14 and 18 are irradiated at the same time when the clams 10 being conveyed by the belt conveyor 12 are positioned above and below them, respectively.

ところで、前記上室光灯18の上方には、レンズ26を
備えた高速シャッタカメラ28が固定設置されている。
Incidentally, a high-speed shutter camera 28 equipped with a lens 26 is fixedly installed above the upper chamber light 18.

前記レンズ26の受光部は、前記下室光灯14と上室光
灯18との間を通過する蛤10に向けて取付けられる。
The light receiving portion of the lens 26 is attached to face the clam 10 passing between the lower chamber light 14 and the upper chamber light 18.

また、前記高速シャッタカメラ28は、シャッタスピー
ドが1/600秒の高速シャッタカメラが用いられ、そ
の撮影タイミングは前述したタイミング制御装置によっ
て制御されている。従って、前記下室光灯14、上室光
灯18から光が照射されると同時にンヤッタが切られる
ように制御されている。これにより、前記高速シャッタ
カメラ28は、下室光灯14からの光、即ちベルトコン
ベア12を透過した背景を含む蛤10の影を有する映像
(透過映像)と、上室光灯18からの光によって反射し
た蛤10の白黒濃淡縞模様の映像(反射映像)を同時に
撮影することができる。尚、重要なことは、前記高速シ
ャッタカメラ28で前述した2つの映像を撮影する為に
、前記下室光灯14と上室光灯18とのルクス比率を1
:1〜10程度にしなければならない。
Further, the high-speed shutter camera 28 is a high-speed shutter camera with a shutter speed of 1/600 seconds, and its photographing timing is controlled by the timing control device described above. Therefore, the light is controlled to be turned off at the same time as the light is emitted from the lower chamber light 14 and the upper chamber light 18. As a result, the high-speed shutter camera 28 captures the light from the lower chamber light 14, that is, the image (transparent image) including the background transmitted through the belt conveyor 12 and including the shadow of the clam 10, and the light from the upper chamber light 18. At the same time, an image (reflected image) of the black and white shading striped pattern of the clam 10 reflected by the camera can be photographed. It is important to note that in order to capture the two images mentioned above with the high-speed shutter camera 28, the lux ratio of the lower chamber light 14 and the upper chamber light 18 is set to 1.
: Must be about 1 to 10.

前記高速シャッタカメラ28には、ケーブル30を介し
てアナログゲインアンプ32が接続される。また、アナ
ログゲインアンプ32にはローパスフィルタ34が接続
される。更に、前記−一バスフイルタ34には、ケーブ
ル36を介してCPU38が接続された画像処理装置4
0が接続される。また、ローパスフィルタ34には、ケ
ーブル42を介してTVモニタ44が接続される。
An analog gain amplifier 32 is connected to the high-speed shutter camera 28 via a cable 30. Further, a low pass filter 34 is connected to the analog gain amplifier 32. Further, the -1 bus filter 34 is connected to an image processing device 4 to which a CPU 38 is connected via a cable 36.
0 is connected. Furthermore, a TV monitor 44 is connected to the low-pass filter 34 via a cable 42 .

前記画像処理装置40は、256X256画面展開能力
を有し、更に6ビツト(64階調)の濃度分解能力を有
している。前記6ビツトの濃度分解能力を必要とする理
由は、後述する濃度ヒストグラムのパターン計測の為の
濃度分解を円滑に行う為である。
The image processing device 40 has a 256×256 screen development capability and a 6-bit (64 gradation) density resolution capability. The reason why the 6-bit density resolution capability is required is to smoothly perform density resolution for pattern measurement of a density histogram, which will be described later.

一方、前記画像処理装置40には図中点線で示すケーブ
ル46を介して選別装置48が接続される。この選別装
置48は、画像処理装置40から送信された出力信号に
基づいて、前記ベルトコンベア12で搬送された蛤10
の等階級選別を行う為に設けられる。
On the other hand, a sorting device 48 is connected to the image processing device 40 via a cable 46 indicated by a dotted line in the figure. This sorting device 48 selects the clams 10 conveyed by the belt conveyor 12 based on the output signal transmitted from the image processing device 40.
It is established to perform class sorting.

次に、前記の如く構成された貝類の等階級選別装置の前
記画像処理装置400作用について説明する。
Next, the operation of the image processing device 400 of the shellfish equal class sorting device configured as described above will be explained.

先ず、前記画像処理装置40には前記高速シャッタカメ
ラ28で撮影された映像、即ち下室光灯14による透過
映像と上室光灯18による反射映像との2つの映像がケ
ーブル30、アナログゲインアン7’32、ローパスフ
ィルタ34及びケーブル36を介して同時に取込まれる
。また、前記2つの映像はアナログゲインアンプ32、
ローパスフィルタ34を通過することにより空間領域サ
イズ、映像の輝度の両面でディジタル変換されて白黒濃
淡映像を示す映像信号となり、この映像信号がケーブル
36を介して画像処理装置40に出力される。
First, the image processing device 40 receives two images taken by the high-speed shutter camera 28, that is, a transmitted image by the lower chamber light 14 and a reflected image by the upper chamber light 18, through a cable 30 and an analog gain amplifier. 7'32, low pass filter 34 and cable 36. Further, the two images are connected to an analog gain amplifier 32,
By passing through the low-pass filter 34, both the spatial area size and image brightness are digitally converted into a video signal showing a black and white gray video, and this video signal is output to the image processing device 40 via the cable 36.

前記画像処理装置40に出力された2つの白黒濃淡映像
のうち、先ず上室光灯18によって得られた蛤10の反
射映像の処理工程について説明する。
Of the two black and white gray images outputted to the image processing device 40, the processing steps for the reflected image of the clam 10 obtained by the upper chamber light 18 will be described first.

第2図には前記画像処理装置40の画像処理工程を示す
ブロック図が示されている。第2図によれば、先ず前記
上室光灯18によって得られた白黒濃淡映像信号から第
3図(A)に示す輝度頻度分布(輝度のヒストグラム)
を作成する。次に、前記輝度のヒストグラムの分布パタ
ーンを第3図(B)に示すように、最大ピーク値が1に
なるように正規化して三角形状にパターン化する。次い
で、この正規化した分布パターンと、画像処理装置40
に予め記憶された第3図(C)に示す蛤の等級ランクの
中間ファジィパターンとをそれぞれ集合演算する。即ち
、前記中間ファジィパターンの良パターンと正規化パタ
ーンとを第3図(D)に示す理論演算を行う。次に、中
間ファジィパターンの優パターンと正規化パターンとを
第3図(E)に示す理論演算を行う。尚、この正規化パ
ターンは第3図(C)で示した中間ファジィパターンの
秀パターンと重複部分がないので、秀/<ターンとの理
論演算は行わない。
FIG. 2 shows a block diagram showing the image processing steps of the image processing device 40. According to FIG. 2, first, a brightness frequency distribution (brightness histogram) shown in FIG.
Create. Next, the distribution pattern of the luminance histogram is normalized so that the maximum peak value becomes 1 and patterned into a triangular shape, as shown in FIG. 3(B). Next, this normalized distribution pattern and the image processing device 40
The intermediate fuzzy patterns of the grade ranks of clams shown in FIG. 3(C) stored in advance are subjected to set calculations. That is, the theoretical calculation shown in FIG. 3(D) is performed on the good pattern and the normalized pattern of the intermediate fuzzy pattern. Next, the theoretical calculation shown in FIG. 3(E) is performed on the superior pattern and the normalized pattern of the intermediate fuzzy pattern. Note that this normalized pattern has no overlap with the intermediate fuzzy pattern shown in FIG. 3(C), so the theoretical calculation of "excellent/<turn" is not performed.

そして、正規化パターンと中間ファジィパターンとの第
3図(D)、(E)で求めた重複部分の中心値を求め、
この中心値から重複集合総面積の加重平均値を第3図(
F)で示すように求める。
Then, find the center value of the overlapping part found in FIGS. 3(D) and (E) between the normalized pattern and the intermediate fuzzy pattern,
Figure 3 (
Obtain as shown in F).

そして、この求めた加重平均値に基づいて、前述した選
別装置48に蛤10の等級を判別する為の出力信号を送
信する。これによって、蛤10の等級を細かいランクに
分けて選別することができる。
Then, based on the weighted average value obtained, an output signal for determining the grade of the clam 10 is transmitted to the aforementioned sorting device 48. This allows the classification of the 10 clams to be divided into fine ranks and sorted.

第4図には複数個の蛤10の等級選別を実施した説明図
が示されている。
FIG. 4 shows an explanatory diagram in which a plurality of clams 10 are graded.

第4図によれば、サンプル1.4.7の蛤はそれぞれの
輝度のヒストグラムと前述したファジィ集合との理論演
算を行うとランク1に該当する。
According to FIG. 4, the clams of samples 1, 4, and 7 fall under rank 1 when a theoretical calculation is performed between the brightness histograms and the aforementioned fuzzy set.

即ち、サンプル1.4.7の蛤は黒い色彩の蛤に相当す
る。また、サンプル2.5の蛤のヒストグラムを同様に
理論演算を行うとサンプル2.5の蛤はランク2に該当
し、黒と淡い縞の蛤に相当する。更に、サンプル3.8
の蛤のヒストグラムによれば、サンプル3.8の蛤はラ
ンク3に該当し、中間濃度の蛤に相当する。サンプル6
.9の蛤のヒストグラムによれば、このサンプル6.9
の蛤はランク4に該当し、淡い蛤に相当する。尚、蛤1
0のランク分けはランク数が高いほど下級品として判別
される。
That is, the clam of sample 1.4.7 corresponds to a black clam. Further, when the histogram of the clam of sample 2.5 is similarly subjected to theoretical calculation, the clam of sample 2.5 corresponds to rank 2, and corresponds to a clam with black and light stripes. Furthermore, sample 3.8
According to the clam histogram of sample 3.8, the clam of sample 3.8 corresponds to rank 3, which corresponds to a clam of intermediate concentration. sample 6
.. According to the clam histogram of 9, this sample is 6.9
The clam corresponds to rank 4, and is equivalent to a pale clam. In addition, clam 1
In the ranking of 0, the higher the rank number, the lower the quality of the product.

次に、前記蛍光灯14によって得られた蛤10の透過映
像の処理工程について説明する。
Next, a process for processing the transmitted image of the clam 10 obtained by the fluorescent lamp 14 will be explained.

前記透過映像は、前述したように蛤10とその蛤10の
周辺部分とに大きなコントラスト差が発生している映像
である。この透過映像の映像信号が前記画像処理装置4
0に送信されると、画像処理装置40は、先ず前記映像
信号を所定のしきい値で二値化して二値化画像に変換す
る。次に、二値化画像に変換した画像のうち貝の画像の
総画素数を算出する。次いで、算出した前記総画素数に
基づいて、前記選別装置に貝の階級を判別する為の出力
信号を送信する。即ち、貝の総画素数が3万画素以下の
場合には、第5図に示すように蛤の最長が50mm程度
なので小型の蛤に該当し、また総画素数が6万画素近傍
であると蛤の最長が70mm程度なので中型の蛤に該当
し、更に総画素が7万画素以上の場合には蛤の最大長が
3Qmm以上あるので大型の蛤に該当するとして、選別
装置48にそれぞれの出力信号を送信する。このように
、蛤の総画素数に基づいて蛤の階級を選別するようにし
たので、蛤の階級選別を正確に、且つ蛤を損傷させない
で行うことができる。
The transmitted image is an image in which a large contrast difference occurs between the clam 10 and the surrounding area of the clam 10, as described above. The video signal of this transparent video is transmitted to the image processing device 4.
0, the image processing device 40 first binarizes the video signal using a predetermined threshold value and converts it into a binarized image. Next, the total number of pixels of the shellfish image in the image converted into a binarized image is calculated. Next, based on the calculated total number of pixels, an output signal for determining the class of shellfish is transmitted to the sorting device. In other words, if the total number of pixels of a shellfish is 30,000 pixels or less, it is considered a small clam because the longest length of the clam is about 50 mm, as shown in Figure 5, and if the total number of pixels is around 60,000 pixels, it is considered a small clam. Since the maximum length of the clam is about 70 mm, it corresponds to a medium-sized clam. Furthermore, if the total number of pixels is 70,000 pixels or more, the maximum length of the clam is 3Q mm or more, so it corresponds to a large-sized clam, and the respective outputs are sent to the sorting device 48. Send a signal. In this way, since the class of the clam is sorted based on the total number of pixels of the clam, the class of the clam can be sorted accurately and without damaging the clam.

また、前記画像処理装置40で蛤10の等級選別と階級
選別とを同時に行うようにしたので、等級と階級を組み
合わせた多種類の選別を正確に行うことができる。
Further, since the image processing device 40 performs grade sorting and class sorting of the clams 10 at the same time, it is possible to accurately sort many types of clams by combining grades and classes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る貝類の等階級選別方法
及びその装置によれば、等階級計測用照明装置と階級計
測用照明装置とを透過性のベルトコンベアを挟んで設置
し、撮像カメラで前記2つの照明装置によって得られた
2つの映像を取込んで、この映像を画像処理装置で貝の
等級と階級を選別するようにしたので、貝の等級を細か
くランク分けして選別できる。また、貝の階級を画像処
理技術によって行うようにしたので、貝を損傷させるこ
となく階級選別することができる。
As explained above, according to the method and apparatus for sorting shellfish into equal classes according to the present invention, the illumination device for equal class measurement and the illumination device for class measurement are installed with a transparent belt conveyor in between, and an imaging camera is used. Since the two images obtained by the two lighting devices are taken in and the images are used to sort out the grade and class of the shellfish using the image processing device, the grade and class of the shellfish can be sorted by finely ranking them. Furthermore, since the classification of shellfish is performed using image processing technology, classification can be performed without damaging the shellfish.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る貝類の等階級選別装置の実施例を
示す説明図、第2図は本発明に係る貝類の等階級選別装
置の画像処理装置のブロック図、第3図は本発明に係る
貝類の等階級選別装置の画像処理装置の画像処理工程を
示す説明図、第4図は本発明に係る貝類の等階級選別装
置で蛤の等級選別を実施した説明図、第5図は本発明に
係る貝類の等階級選別装置で蛤の階級選別を実施した説
明図である。 10・・蛤、     12・・・ベルトコンベア、1
4.18.20.22・・・蛍光灯、28・・・高速シ
ャッタカメラ、 32・・・アナログゲインアンプ、 34・・・ローパスフィルタ、 40・・・画像処理装
置、48・・・選別装置。 出願人 日立プラント建設株式会社 第4 図 (濃度ヒストク“ラムパターン)
FIG. 1 is an explanatory diagram showing an embodiment of the apparatus for sorting equal classes of shellfish according to the present invention, FIG. 2 is a block diagram of an image processing device of the apparatus for sorting equal classes of shellfish according to the present invention, and FIG. 3 is a diagram of the present invention. FIG. 4 is an explanatory diagram showing the image processing process of the image processing device of the shellfish equal class sorting device according to the present invention, FIG. FIG. 3 is an explanatory diagram showing clam classification performed using the shellfish equal class classification apparatus according to the present invention. 10...Clam, 12...Belt conveyor, 1
4.18.20.22... Fluorescent lamp, 28... High-speed shutter camera, 32... Analog gain amplifier, 34... Low pass filter, 40... Image processing device, 48... Sorting device . Applicant: Hitachi Plant Construction Co., Ltd. Figure 4 (Concentration histogram “ram pattern”)

Claims (2)

【特許請求の範囲】[Claims] (1)貝に光を照射し、その光の反射映像を撮影して白
黒濃淡映像を作成し、 作成した前記白黒濃淡映像を空間領域サイズ、映像の輝
度の両面でデジタル変換して白黒濃淡映像の輝度頻度分
布を作成し、 作成した前記輝度頻度分布の分布パターンを所定の大き
さに正規化すると共に、正規化した分布パターンと所定
のファジィ集合で構成された複数のランクパターンとを
それぞれ集合演算し、集合演算して求められた各集合面
積から総集合面積の加重平均値を求め、この加重平均値
に基づいて前記貝の等級を選別すると共に、 前記貝に向けて貝と背景とのコントラスト差を与える光
を照射し、その光の透過映像を撮影して白黒濃淡映像を
作成し、 作成した前記白黒濃淡映像の映像信号を所定のしきい値
で二値化して二値化画像に変換し、二値化画像中に於け
る貝の画像の総画素数に基づいて貝の階級選別を行うこ
とを特徴とする貝類の等階級選別方法。
(1) Shine light on the shellfish and take a picture of the reflection of the light to create a black-and-white grayscale image.The created black-and-white grayscale image is digitally converted in terms of both spatial area size and image brightness to create a black-and-white grayscale image. create a brightness frequency distribution, normalize the created distribution pattern of the brightness frequency distribution to a predetermined size, and collect the normalized distribution pattern and a plurality of rank patterns each composed of a predetermined fuzzy set. A weighted average value of the total aggregation area is calculated from each aggregation area obtained by the aggregation area, and the grade of the shellfish is selected based on this weighted average value. Light that provides a contrast difference is irradiated, a transmitted image of the light is photographed to create a black and white grayscale image, and the video signal of the created black and white grayscale image is binarized using a predetermined threshold value to create a binary image. 1. A method for classifying shellfish into equal classes, characterized by classifying shellfish into classes based on the total number of pixels of a shellfish image in a binarized image.
(2)貝を搬送すると共に光透過性の材料で形成された
ベルトコンベアと、 ベルトコンベアの上方若しくは下方に設置され搬送中の
貝に光を照射する等級計測用照射装置と、ベルトコンベ
アを挟んで前記等級計測用照明装置の反対側に設置され
、前記貝に光を照射する階級計測用照明装置と、 前記等級計測用照明装置によって反射した貝の第1の映
像と、前記階級計測用照明装置によって透過した背景を
含む貝の第2の映像とを同時に撮影可能な撮影カメラと
、 撮影カメラからの映像信号を画像処理する画像処理装置
と、 画像処理装置からの出力信号に基づいて前記貝の等階級
を選別する選別装置と、 から成り、前記画像処理装置は、前記第1の映像を空間
領域サイズ、映像の輝度の両面でデジタル変換して白黒
濃淡映像の輝度頻度分布を作成し、この輝度頻度分布の
分布パターンを所定の大きさに正規化すると共に正規化
した分布パターンと予め記憶された所定のファジィ集合
で構成された複数のランクパターンとをそれぞれ集合演
算し、集合演算で求めた各集合面積から総集合面積の加
重平均値を求め、この加重平均値に基づいて前記選別装
置に貝の等級を判別する為の出力信号を作成し、また、
前記第2の映像信号を所定のしきい値で二値化して二値
化画像に変換し、二値化画像中に於ける貝の画像の総画
素数に基づいて前記選別装置に貝の階級を判別する為の
出力信号を作成することを特徴とする貝類の等階級選別
装置。
(2) A belt conveyor that transports shellfish and is made of a light-transmitting material, a grade measurement irradiation device that is installed above or below the belt conveyor and irradiates light onto the shellfish being transported, and a belt conveyor that is sandwiched between a lighting device for class measurement that is installed on the opposite side of the lighting device for class measurement and irradiates the shellfish with light, a first image of the shellfish reflected by the lighting device for class measurement, and the lighting device for class measurement a camera capable of simultaneously capturing a second image of the shellfish including the background transmitted by the device; an image processing device that processes the video signal from the camera; and an image processing device that processes the video signal from the camera; a sorting device for sorting equal classes; the image processing device digitally converts the first video in terms of both the spatial area size and the brightness of the video to create a brightness frequency distribution of the black and white gray video; The distribution pattern of this luminance frequency distribution is normalized to a predetermined size, and the normalized distribution pattern and a plurality of rank patterns composed of pre-stored predetermined fuzzy sets are each subjected to a set operation, and are determined by set operations. A weighted average value of the total aggregation area is determined from each aggregation area, and an output signal for determining the grade of the shellfish is generated for the sorting device based on this weighted average value, and
The second video signal is binarized using a predetermined threshold value and converted into a binarized image, and the class of the shellfish is assigned to the sorting device based on the total number of pixels of the shellfish image in the binarized image. A device for sorting shellfish into equal classes, characterized in that it creates an output signal for discrimination.
JP2170484A 1990-06-28 1990-06-28 Method and device for sorting class/grade of shellfishes Pending JPH0458373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2170484A JPH0458373A (en) 1990-06-28 1990-06-28 Method and device for sorting class/grade of shellfishes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2170484A JPH0458373A (en) 1990-06-28 1990-06-28 Method and device for sorting class/grade of shellfishes

Publications (1)

Publication Number Publication Date
JPH0458373A true JPH0458373A (en) 1992-02-25

Family

ID=15905809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170484A Pending JPH0458373A (en) 1990-06-28 1990-06-28 Method and device for sorting class/grade of shellfishes

Country Status (1)

Country Link
JP (1) JPH0458373A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808448B1 (en) * 1999-09-08 2004-10-26 Nichirei Corporation Method and device for detecting/removing crustacean with untorn shell
DK178532B1 (en) * 2012-12-19 2016-06-06 Laitram Llc Shrimp processing system and methods
US9886752B2 (en) 2015-02-05 2018-02-06 Laitram, L.L.C. Vision-based grading with automatic weight calibration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808448B1 (en) * 1999-09-08 2004-10-26 Nichirei Corporation Method and device for detecting/removing crustacean with untorn shell
DK178532B1 (en) * 2012-12-19 2016-06-06 Laitram Llc Shrimp processing system and methods
US9930896B2 (en) 2012-12-19 2018-04-03 Laitram, L.L.C. Shrimp processing system and methods
US9886752B2 (en) 2015-02-05 2018-02-06 Laitram, L.L.C. Vision-based grading with automatic weight calibration

Similar Documents

Publication Publication Date Title
EP0452905B1 (en) Method and apparatus for inspecting surface pattern of object
US20100091272A1 (en) Surface inspection apparatus
JPH07218451A (en) Device for optically inspecting steel plate for surface flaw
JPH0458373A (en) Method and device for sorting class/grade of shellfishes
JP4184511B2 (en) Method and apparatus for defect inspection of metal sample surface
JPH0792104A (en) Method for inspecting defective point of object
JPH07104290B2 (en) Bottle inspection equipment
JP3047168B2 (en) Inspection method of chicken eggs
JPH0949805A (en) Method and device for inspecting optical member
JPH08304295A (en) Method and apparatus for detecting surface defect
JPH04204356A (en) Sorting of color shade of shellfish
JPH0979990A (en) Device and method for inspecting semiconductor device
JPH03229678A (en) Apparatus for classifying grade of shellfish
JPH09264851A (en) Evaluator for grain particle
JPH11281588A (en) Surface inspecting apparatus
JPS60207980A (en) Method and device for fetching picture
JP2003050212A (en) Appearance inspection device for liquid crystal module for electronic appliance
JPH05188006A (en) Surface flaw detecting device
JP3402994B2 (en) Solder paste quality judgment method
JP4039984B2 (en) Embossed soot identification apparatus and method
JP2997306B2 (en) Method and apparatus for detecting pattern position using transmitted illumination
JP6980241B2 (en) Foreign matter inspection device and foreign matter inspection method
JP2003130807A (en) Defect detector
JP2001272351A (en) Defect-inspecting apparatus
KR0152885B1 (en) Classifying method of soldering for pcb