JPH04581Y2 - - Google Patents

Info

Publication number
JPH04581Y2
JPH04581Y2 JP18290081U JP18290081U JPH04581Y2 JP H04581 Y2 JPH04581 Y2 JP H04581Y2 JP 18290081 U JP18290081 U JP 18290081U JP 18290081 U JP18290081 U JP 18290081U JP H04581 Y2 JPH04581 Y2 JP H04581Y2
Authority
JP
Japan
Prior art keywords
signal
delay
output
input
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18290081U
Other languages
Japanese (ja)
Other versions
JPS5888429U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18290081U priority Critical patent/JPS5888429U/en
Publication of JPS5888429U publication Critical patent/JPS5888429U/en
Application granted granted Critical
Publication of JPH04581Y2 publication Critical patent/JPH04581Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Networks Using Active Elements (AREA)

Description

【考案の詳細な説明】 本考案は2個の固体超音波遅延素子とコイル、
トランジスタ等の回路素子によつて構成された超
音波遅延回路に関するもので、不要信号特性を改
良した超音波遅延回路に関する。
[Detailed description of the invention] This invention consists of two solid-state ultrasonic delay elements, a coil,
The present invention relates to an ultrasonic delay circuit constituted by circuit elements such as transistors, and relates to an ultrasonic delay circuit with improved unnecessary signal characteristics.

固体超音波遅延素子は、第1図に示すように金
属、水晶、ガラス、セラミツクス等の固体よりな
る超音波を伝播する遅延媒体1とこの媒体の適当
に選ばれた面上にとりつけられた水晶あるいはチ
タン酸ジルコン酸鉛等の圧電体からなる電気信号
を機械信号に変換する入力変換子2および機械信
号を電気信号に変換する出力変換子3よりなる。
入力変換子2に電気信号が印加されると、この信
号は機械的信号に変換され、遅延媒体1の中を矢
印4に示すように進む。出力変換子3に達した機
械的信号は電気的信号に変換される。
As shown in Fig. 1, a solid-state ultrasonic delay element consists of a delay medium 1 made of a solid material such as metal, crystal, glass, ceramics, etc., which propagates ultrasonic waves, and a crystal mounted on an appropriately selected surface of this medium. Alternatively, it consists of an input transducer 2 made of a piezoelectric material such as lead zirconate titanate, which converts an electrical signal into a mechanical signal, and an output transducer 3, which converts the mechanical signal into an electrical signal.
When an electrical signal is applied to input transducer 2, this signal is converted into a mechanical signal and travels through delay medium 1 as indicated by arrow 4. The mechanical signal reaching the output transducer 3 is converted into an electrical signal.

従来1個の超音波遅延素子を用いてある遅延時
間を持つ遅延回路を構成するとき、第2図に示す
不要信号特性が劣化するために小型化が困難であ
つた。即ち、超音波遅延素子を小型化しようとす
れば、超音波が遅延媒体中で多数回反射する多重
反射型とする必要があり、その結果、反射面で主
信号の経路からはずれて反射及び散乱する成分が
多くなり不要信号成分のレベルが大きくなつた
り、入力変換子と出力変換子との距離も小さくな
るため不要信号が十分減衰されずに出力変換子へ
到達するというような問題点があつた。
Conventionally, when constructing a delay circuit having a certain delay time using one ultrasonic delay element, it has been difficult to downsize the delay circuit because the unnecessary signal characteristics shown in FIG. 2 deteriorate. In other words, in order to miniaturize an ultrasonic delay element, it is necessary to use a multiple reflection type in which the ultrasonic wave is reflected many times in the delay medium, and as a result, it is reflected and scattered away from the main signal path at the reflecting surface. As the number of components increases, the level of unnecessary signal components increases, and the distance between the input transducer and the output transducer becomes smaller, causing problems such as unnecessary signals reaching the output transducer without being sufficiently attenuated. Ta.

第2図において、横軸は時間軸で、縦軸は信号
の振幅強度である。なお、遅延素子の通過信号帯
域付近における波長を使用して信号を示すと図の
横軸のスケールに対して非常に細かくなるため、
図の信号は、それらの信号の描く包絡線で示して
ある。主信号5に対して、遅延時間の異なる不要
信号6,7が発生する。これは遅延媒体中で音波
が回折、散乱し、入力変換子から出力変換子へ主
信号と異なる経路を通つて到達する音波が存在す
ること等に起因している。例えば、不要信号6は
超音波が遅延媒体中で主信号と異なる経路で反射
及び散乱された出力されるような信号であり、不
要信号7は主信号と同じ経路を何度か往復するた
めに主信号の遅延時間の奇数倍の遅延時間で出力
される信号、即ち3τスプリアス(3次反射信号)
等の信号である。
In FIG. 2, the horizontal axis is the time axis, and the vertical axis is the amplitude intensity of the signal. Note that if the signal is shown using a wavelength near the pass signal band of the delay element, the signal will be very fine compared to the scale of the horizontal axis in the figure.
The signals in the figure are shown by their envelopes. Unnecessary signals 6 and 7 having different delay times are generated with respect to the main signal 5. This is due to the fact that sound waves are diffracted and scattered in the delay medium, and some sound waves reach the output transducer from the input transducer through a path different from that of the main signal. For example, the unnecessary signal 6 is a signal that is output as an ultrasonic wave that is reflected and scattered on a different path from the main signal in a delay medium, and the unnecessary signal 7 is a signal that is output because it goes back and forth several times along the same path as the main signal. A signal output with a delay time that is an odd multiple of the main signal delay time, i.e. 3τ spurious (third-order reflected signal)
etc. signals.

この欠点をとり除いた遅延回路として、必要な
遅延時間の1/2の遅延時間を持つ超音波遅延素子
を2個、第1の超音波遅延素子の出力変換子の電
極の一方を第2の超音波遅延素子の入力変換子の
一方に、かつ、第1の出力変換子の他方を第2の
入力変換子の他方に導電接続した回路、即ち継続
に接続した遅延回路が提案されている。
As a delay circuit that eliminates this drawback, two ultrasonic delay elements each having a delay time of 1/2 of the required delay time are used, and one of the electrodes of the output transducer of the first ultrasonic delay element is connected to the second ultrasonic delay element. A delay circuit has been proposed in which one of the input transducers of an ultrasonic delay element is conductively connected, and the other of the first output transducer is conductively connected to the other of the second input transducer, that is, the delay circuit is continuously connected.

しかるに、かかる構造を持つ遅延回路において
も不要信号特性が劣化していることが判明した。
However, it has been found that unnecessary signal characteristics are degraded even in a delay circuit having such a structure.

本考案者はかかる点に鑑み種々実験的、理論的
検討を加えた結果、第3図a,bに示すように一
素子通過後に発生した不要信号6,7が、二素子
通過後に主信号5が新たに第2の素子を通過する
ことによつて発生した不要信号と同位相で重なり
あうことによつて、不要信号特性を劣化させてい
るとの知見を得た。
In view of this, the present inventor has made various experimental and theoretical studies, and has found that the unnecessary signals 6 and 7 generated after passing through one element are changed to the main signal 5 after passing through two elements, as shown in FIGS. It has been found that the unnecessary signal characteristics are deteriorated by overlapping in the same phase with the unnecessary signal generated by newly passing through the second element.

第3図aは第1の素子を通過した後の信号であ
り、第3図bは第2の素子を通過した後の信号で
ある。bにおいてはaの不要信号6,7が第2の
素子を通過した信号に加えて、主信号5が第2の
素子を通過したために新たに生じる破線で示した
不要信号がそれと同位相で重なる。そのため、第
2の素子の通過後の不要信号6′,7′は図に示す
ように、第1の素子通過後の不要信号の倍程度大
きくなる。
FIG. 3a shows the signal after passing through the first element, and FIG. 3b shows the signal after passing through the second element. In b, in addition to the unnecessary signals 6 and 7 of a that have passed through the second element, the unnecessary signal shown by the broken line that is newly generated due to the main signal 5 passing through the second element overlaps in the same phase. . Therefore, as shown in the figure, the unnecessary signals 6' and 7' after passing through the second element become about twice as large as the unnecessary signals after passing through the first element.

本考案者は、上記知見に基づき更に実験をくり
返した結果、第一の素子の遅延時間と第二の素子
の遅延時間を、その通過帯域の中心周波数におけ
る入出力信号位相差でおのおのΘ1,Θ2と規定し
たとき、45°+m×180°≦|Θ1−Θ2|≦135°+m
×180°(mは0以上の整数)とすることによつて、
2つの固体超音波遅延素子のうちいずれか一方を
主信号として通過し他方を3次反射信号として通
過する位相差Θ1+3Θ2と3Θ1+Θ2の2つの不要信
号が重なり合つた信号を、効果的に減衰させ得る
ことを見い出した。
As a result of further repeated experiments based on the above knowledge, the inventor of the present invention determined that the delay time of the first element and the delay time of the second element are each Θ 1 , When Θ 2 is specified, 45° + m × 180° ≦ | Θ 1 − Θ 2 | ≦ 135° + m
By setting ×180° (m is an integer greater than or equal to 0),
A signal in which two unnecessary signals with phase differences Θ 1 +3Θ 2 and 3Θ 12 that pass through one of the two solid-state ultrasonic delay elements as a main signal and the other as a tertiary reflected signal are superimposed, It has been found that it can be effectively attenuated.

遅延素子の入力信号と出力信号との間の遅延時
間を測定するとき、位相差計を用いて入出力信号
間の位相差(位相遅延時間)として測定すること
が知られている。この場合、入力信号と出力信号
との位相差は、Θ=n×360°+θ(nは整数、0
≦θ<360°)で表わされる。実際には位相差計で
はθのみしか測定されず、nは他の方法によつて
決められる。この位相差より遅延時間は、 遅延時間(T)=n×360°+θ/360°× 但し、は位相差を測定した周波数を示す。
When measuring the delay time between the input signal and the output signal of a delay element, it is known to use a phase difference meter to measure the phase difference (phase delay time) between the input and output signals. In this case, the phase difference between the input signal and the output signal is Θ=n×360°+θ (n is an integer, 0
≦θ<360°). In reality, only θ is measured by the phase difference meter, and n is determined by another method. The delay time from this phase difference is as follows: Delay time (T)=n×360°+θ/360°× However, indicates the frequency at which the phase difference was measured.

この式より位相差は遅延時間に対応することが
わかる。
From this equation, it can be seen that the phase difference corresponds to the delay time.

例えば、遅延時間63.5556μS、通過帯域の中心
周波数3.579545MHzの遅延素子の入出力信号の位
相差;Θ°=n×360°+θは Θ=n×360°+θ=63.5556×10-6×360° ×3.579545×106=81900° =227×360°+180° となる。即ちn=227,θ=180°となる。
For example, the phase difference between the input and output signals of a delay element with a delay time of 63.5556μS and a center frequency of the passband of 3.579545MHz ; ×3.579545×10 6 = 81900° = 227×360° + 180°. That is, n=227 and θ=180°.

入出力信号の位相差は、遅延時間と異なり測定
周波数を指定しないと意味がなく、周波数を指定
しないとこの位相差から遅延時間を算出すること
ができない。本考案においてこの測定周波数
は、遅延素子の通過信号帯域の中心周波数とし、
2つの素子間で帯域が異なるときは両方の中心周
波数の平均周波数を用いる。
Unlike the delay time, the phase difference between the input and output signals has no meaning unless the measurement frequency is specified, and the delay time cannot be calculated from this phase difference unless the frequency is specified. In the present invention, this measurement frequency is the center frequency of the pass signal band of the delay element,
When the bands are different between two elements, the average frequency of both center frequencies is used.

本考案において、2つの遅延素子の遅延時間を
入出力信号の位相差Θ1,Θ2で規定したとき、第
1の遅延素子の入出力信号の遅延時間に対応する
位相差Θ1 即ちΘ1=T1×360°× と。第2の遅延素子の入出力信号の遅延時間に対
応する位相差Θ2 即ちΘ2=T2×360°× (T1,T2……時間で表わした遅延時間) との間に、45°+m×180°≦|Θ1−Θ2|≦135°+
m×180°(mは0以上の整数)という関係をもた
せるようにする。
In the present invention, when the delay time of two delay elements is defined by the phase difference Θ 1 and Θ 2 of the input and output signals, the phase difference Θ 1 corresponding to the delay time of the input and output signal of the first delay element, that is Θ 1 =T 1 ×360°×. The phase difference Θ 2 corresponding to the delay time of the input and output signals of the second delay element, that is, Θ 2 = T 2 × 360° × (T 1 , T 2 ...delay time expressed in time), is 45 °+m×180°≦|Θ 1 −Θ 2 |≦135°+
The relationship should be m x 180° (m is an integer greater than or equal to 0).

第4図aは第1の素子を通過した後の信号であ
り、第4図bは第2の素子を通過した後の信号で
ある。例えば信号7を、所定の遅延時間の3倍の
ところに生じる不要信号、即ち3τでスプリアス信
号(3次反射信号)とした場合の本考案の作用に
ついて説明する。まず、主信号5は第1の素子へ
の入力からΘ1経過後に、また不要信号7は3Θ1
過後に第1の素子から出力される。これら2つの
信号は出力とほぼ同時に第2の素子に入力され
る。そして、主信号5の第2の素子への入力から
Θ2経過後に主信号5″が、また3Θ2経過後に主信
号5の入力に伴う不要信号が出力される。後者は
第4図b中で破線で示したもので、これを以下、
不要信号Aと称する。即ち、不要信号Aは第1の
素子の入力後Θ1+3Θ2経過後に第2の素子から出
力される。一方不要信号7の第2の素子への入力
により、その所定の遅延時間Θ2経過後に第2の
素子からの出力があり、これは第1の素子の入力
から3Θ1+Θ2経過後に第2の素子から出力される
ことになる。(これを以下、不要信号Bと称す。)
不要信号Aと不要信号Bは近接した時刻に出力さ
れるが、その時間差は位相差で2|Θ1−Θ2|で
ある。この場合、2つの波形の信号が打ち消し合
つて最も減衰される位相差は180°+m×360°(m
は0以上の整数)であるので、2|Θ1−Θ2|=
180°+m×360°より|Θ1−Θ2|=90°+m×180°

時が最も減衰され強め合うことはない。2つの不
要信号が互いに打ち消し合うような位相差とする
ことが望ましいが、その値は、その不要信号が所
定の遅延時間の何倍のところに生じるかによつて
異なる。従つて実際には、遅延素子の特性によつ
て、もつとも好都合な位相差|Θ1−Θ2|を選ぶ
のがよい。
FIG. 4a shows the signal after passing through the first element, and FIG. 4b shows the signal after passing through the second element. For example, the operation of the present invention will be explained when the signal 7 is an unnecessary signal occurring at three times the predetermined delay time, that is, a spurious signal (third-order reflected signal) at 3τ. First, the main signal 5 is output from the first element after Θ 1 has elapsed from its input to the first element, and the unnecessary signal 7 is output from the first element after 3Θ 1 has elapsed. These two signals are input to the second element at approximately the same time as the output. Then, the main signal 5'' is output after Θ 2 elapses from the input of the main signal 5 to the second element, and the unnecessary signal associated with the input of the main signal 5 is output after 3Θ 2 elapses.The latter is shown in Fig. 4b. This is shown by a broken line in the following,
It is called unnecessary signal A. That is, the unnecessary signal A is output from the second element after Θ 1 +3Θ 2 has elapsed after being input to the first element. On the other hand, due to the input of the unnecessary signal 7 to the second element, there is an output from the second element after the predetermined delay time Θ 2 has elapsed, and this is because the second It will be output from the element. (Hereinafter, this will be referred to as unnecessary signal B.)
The unnecessary signal A and the unnecessary signal B are output at close times, and the time difference between them is a phase difference of 2|Θ 12 |. In this case, the phase difference that is most attenuated when the two waveform signals cancel each other out is 180° + m × 360° (m
is an integer greater than or equal to 0), so 2|Θ 1 −Θ 2 |=
From 180° + m x 360° | Θ 1 - Θ 2 | = 90° + m x 180°
They are attenuated the most and do not strengthen each other. It is desirable to have a phase difference such that the two unnecessary signals cancel each other out, but the value differs depending on how many times the unnecessary signal occurs at a predetermined delay time. Therefore, in practice, it is preferable to select the most convenient phase difference |Θ 1 −Θ 2 | depending on the characteristics of the delay element.

尚、二つの素子の位相差|Θ1−Θ2|が45°より
も小さいときには2つの不要信号の位相のずれが
大きくないので、打ち消し効果が小さい。|Θ1
Θ2|の好ましい範囲は、位相差90°+m×180°を
中心とした、45°+m×180°≦|Θ1−Θ2|≦135°
+m×180°(mは0以上の整数)の範囲が好まし
い。
Note that when the phase difference |Θ 1 −Θ 2 | between the two elements is smaller than 45°, the phase shift between the two unnecessary signals is not large, so the cancellation effect is small. |Θ 1
The preferred range of Θ 2 | is 45° + m × 180° ≦ | Θ 1 − Θ 2 | ≦ 135°, centered on the phase difference of 90° + m × 180°.
A range of +m×180° (m is an integer of 0 or more) is preferable.

第5図は、本考案に係る遅延回路の全体を示
し、ここで11は第1の遅延素子、12,13は
それぞれ入力変換子、出力変換子、14は第2の
遅延素子、15,16はそれぞれ入力変換子、出
力変換子を示す。第1の遅延素子の出力変換子1
3と第2の遅延素子の入力変換子15とは受動イ
ンピーダンス素子であるコイル17が設けられた
リード線18によつて接続されており、これによ
り2つの遅延素子間のインピーダンスマツチング
をとる。コイル17に代えて、トランジスタの如
き能動回路素子を設けてもよい。尚、19は入力
端子、20は入力側マツチング抵抗、21は入力
側マツチング用コイル、22は出力側マツチング
コイル、23は出力側マツチング抵抗、24は出
力端子を示す。
FIG. 5 shows the entire delay circuit according to the present invention, where 11 is a first delay element, 12 and 13 are input transducers and output transducers, respectively, 14 is a second delay element, and 15 and 16 indicate input transformer and output transformer, respectively. Output converter 1 of the first delay element
3 and the input transducer 15 of the second delay element are connected by a lead wire 18 provided with a coil 17, which is a passive impedance element, thereby achieving impedance matching between the two delay elements. Instead of the coil 17, an active circuit element such as a transistor may be provided. 19 is an input terminal, 20 is an input matching resistor, 21 is an input matching coil, 22 is an output matching coil, 23 is an output matching resistor, and 24 is an output terminal.

実施例 通過帯域の中心周波数4.43362MHz、 遅延時間63.973μSの遅延素子の入出力信号の位
相差Θ1は、 Θ1=63.973×10-6×360°×4.43362×106
102108° である。
Example The phase difference Θ 1 between the input and output signals of a delay element with a passband center frequency of 4.43362 MHz and a delay time of 63.973 μS is Θ 1 = 63.973 × 10 -6 × 360° × 4.43362 × 10 6 =
It is 102108°.

この素子に、遅延時間63.913μSの遅延素子(中
心周波数4.43362MHz,入出力位相差Θ2
102012°)を、第5図に示すように、コイルを介
して継続接続したとき、3τスプリアス信号(3次
反射信号)の強度は、主要信号に対して−50dB,
その他の不要信号の強度は−32dBであつた。尚、
両素子の中心周波数の位相差はΘ1−Θ2=96°であ
る。
In addition to this element, a delay element with a delay time of 63.913μS (center frequency 4.43362MHz, input/output phase difference Θ 2 =
102012°) is continuously connected through the coil as shown in Figure 5, the strength of the 3τ spurious signal (third reflected signal) is -50dB relative to the main signal.
The strength of other unnecessary signals was -32 dB. still,
The phase difference between the center frequencies of both elements is Θ 1 −Θ 2 =96°.

比較のため、遅延時間93.943μSの遅延素子を2
個(両素子間の位相で規定した遅延時間差は0°で
ある)継続に接続したとき、3τスプリアス信号の
強度は主信号に対して−34dB、その他の不要信
号は−27dBであつた。ここで、第6図に不要信
号A,Bが重ね合わされた信号の強度(縦軸)と
位相差(横軸)の関係を、周波数3.9,4.2,4.43,
4.6,4.9MHzの5通りについて測定した例につい
て具体的に示す。
For comparison, two delay elements with a delay time of 93.943 μS were used.
When connected continuously (the delay time difference defined by the phase between both elements is 0°), the strength of the 3τ spurious signal was -34 dB with respect to the main signal, and the strength of other unnecessary signals was -27 dB. Here, FIG. 6 shows the relationship between the intensity (vertical axis) and phase difference (horizontal axis) of the signal in which unnecessary signals A and B are superimposed at frequencies of 3.9, 4.2, 4.43,
A specific example of measurement for 5 different frequencies of 4.6 and 4.9 MHz will be shown below.

横軸は遅延時間T(ns)及びそれを位相差Θ1
Θ2に換算した値を単位としており、T=(Θ1
Θ2)/(360°×)(は周波数)である。この
例では、4.43MHzを横軸の単位の基準とし360°が
約226nsに相当する。縦軸は主信号を600とした場
合の相対的な信号強度を示している。いずれの周
波数においても、位相差が90°付近と270°付近が
最も信号強度が小さくなり減衰されている。
The horizontal axis is the delay time T (ns) and its phase difference Θ 1
The unit is the value converted to Θ 2 , and T = (Θ 1
Θ 2 )/(360°×) (where frequency is). In this example, 4.43 MHz is the reference unit on the horizontal axis, and 360° corresponds to approximately 226 ns. The vertical axis shows the relative signal strength when the main signal is 600. At any frequency, the signal strength is lowest and attenuated when the phase difference is around 90° and around 270°.

本考案によれば、小型で且つ不要信号特性が良
好な遅延回路が実現される。
According to the present invention, a delay circuit that is small in size and has good unnecessary signal characteristics is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、固体超音波遅延素子の1例の平面図
を示す。第2図は、従来の1個の遅延素子の出力
信号の状態、第3図は従来の2個接続された遅延
素子の出力信号の状態、第4図は本考案の2個接
続された遅延素子の出力信号の状態を、それぞれ
示す。第5図は、本考案の超音波遅延回路の1例
の全体を示す回路図である。第6図は、本考案の
不要信号A,Bを重ね合わせた信号の位相差と信
号強度を5つの周波数について測定したグラフで
ある。
FIG. 1 shows a plan view of an example of a solid-state ultrasonic delay element. Fig. 2 shows the state of the output signal of one conventional delay element, Fig. 3 shows the state of the output signal of the conventional delay element with two connected delay elements, and Fig. 4 shows the state of the output signal of the conventional delay element with two connected delay elements. The states of the output signals of the elements are shown respectively. FIG. 5 is a circuit diagram showing an entire example of the ultrasonic delay circuit of the present invention. FIG. 6 is a graph obtained by measuring the phase difference and signal strength of a superimposed signal of unnecessary signals A and B of the present invention at five frequencies.

Claims (1)

【実用新案登録請求の範囲】 (1) 2つの固体超音波遅延素子について、遅延時
間をそれぞれの通過帯域の中心周波数における
入出力間の位相差Θ1,Θ2で規定したとき、45°
+m×180°≦|Θ1,Θ2|≦135°+m×180°(m
は0以上の整数)となる2つの固体超音波遅延
素子を、縦続接続してなり、前記2つの固体超
音波遅延素子のうちいずれか一方を主信号とし
て通過し他方を3次反射信号として通過する位
相差Θ1+3Θ2と3Θ1+Θ2の2つの不要信号が重
なり合つた信号を、減衰せしめてなることを特
徴とする超音波遅延回路。 (2) 2つの固体超音波遅延素子の間にコイル等の
受動インピーダンス素子からなる回路素子を並
列に接続して、該2つの固体超音波遅延素子を
縦続接続してなる実用新案登録請求の範囲第1
項記載の超音波遅延回路。 (3) 前記2つの遅延素子の前記中心周波数が異な
る場合には、両素子の中心周波数の平均周波数
を用いて入出力間の位相差に基ずく遅延時間を
規定する実用新案登録請求の範囲第1又は第2
項記載の超音波遅延回路。
[Claims for Utility Model Registration] (1) For two solid-state ultrasonic delay elements, when the delay time is defined by the phase difference Θ 1 and Θ 2 between the input and output at the center frequency of the respective passbands, the delay time is 45°.
+m×180°≦| Θ1 , Θ2 |≦135°+m×180°(m
is an integer greater than or equal to 0), two solid-state ultrasonic delay elements are connected in cascade, and one of the two solid-state ultrasonic delay elements is passed as a main signal, and the other is passed as a tertiary reflected signal. An ultrasonic delay circuit characterized by attenuating a signal in which two unnecessary signals having phase differences Θ 1 +3Θ 2 and 3Θ 12 overlap. (2) Claims for utility model registration in which a circuit element consisting of a passive impedance element such as a coil is connected in parallel between two solid-state ultrasonic delay elements, and the two solid-state ultrasonic delay elements are connected in cascade. 1st
The ultrasonic delay circuit described in Section 1. (3) If the center frequencies of the two delay elements are different, the utility model registration claim 1 stipulates the delay time based on the phase difference between input and output using the average frequency of the center frequencies of both elements. 1st or 2nd
The ultrasonic delay circuit described in Section 1.
JP18290081U 1981-12-10 1981-12-10 ultrasonic delay circuit Granted JPS5888429U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18290081U JPS5888429U (en) 1981-12-10 1981-12-10 ultrasonic delay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18290081U JPS5888429U (en) 1981-12-10 1981-12-10 ultrasonic delay circuit

Publications (2)

Publication Number Publication Date
JPS5888429U JPS5888429U (en) 1983-06-15
JPH04581Y2 true JPH04581Y2 (en) 1992-01-09

Family

ID=29981680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18290081U Granted JPS5888429U (en) 1981-12-10 1981-12-10 ultrasonic delay circuit

Country Status (1)

Country Link
JP (1) JPS5888429U (en)

Also Published As

Publication number Publication date
JPS5888429U (en) 1983-06-15

Similar Documents

Publication Publication Date Title
US4353046A (en) Surface acoustic wave device with reflectors
JPH0736501B2 (en) Acoustic transducer
JP3606944B2 (en) SAW filter
US4044321A (en) Surface acoustic wave band pass filtering
US3936774A (en) High bulk mode rejection surface wave device
US3987376A (en) Acoustic surface wave device with harmonic coupled transducers
US4454488A (en) Surface acoustic wave resonator with middle grating
JPH0758585A (en) Surface acoustic wave filter
JPS5937605B2 (en) surface acoustic wave device
US3870975A (en) Surface wave transducer with reduced reflection coefficient
US4406964A (en) Acoustic surface wave transducer with improved inband frequency characteristics
US4047130A (en) Surface acoustic wave filter
US5818310A (en) Series-block and line-width weighted saw filter device
US3582837A (en) Signal filter utilizing frequency-dependent variation of input impedance of one-port transducer
US4513261A (en) Low-loss acoustic wave filter device
JPH04581Y2 (en)
US3968461A (en) Acoustic surface-wave devices
US3801937A (en) Acoustic pulse compression weighting filter transducer
US3859608A (en) Reflectionless surface wave transducer
RU201785U1 (en) FAN FILTER ON SURFACE ACOUSTIC WAVES
JPS61230419A (en) Two-port idt excitation type resonator and resonance filter
US5781083A (en) Surface wave resonator having a plurality of resonance frequencies
JPS585605B2 (en) surface acoustic wave transducer
Martin et al. A SAW resonator filter using longitudinal and transverse modes
JP3245688B2 (en) Ultrasonic transducer