JPH0458192A - Production of oxide nuclear fuel pellet - Google Patents

Production of oxide nuclear fuel pellet

Info

Publication number
JPH0458192A
JPH0458192A JP2166675A JP16667590A JPH0458192A JP H0458192 A JPH0458192 A JP H0458192A JP 2166675 A JP2166675 A JP 2166675A JP 16667590 A JP16667590 A JP 16667590A JP H0458192 A JPH0458192 A JP H0458192A
Authority
JP
Japan
Prior art keywords
nuclear fuel
pellets
uranium oxide
activity
oxide powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2166675A
Other languages
Japanese (ja)
Inventor
Yuhei Harada
雄平 原田
Yuji Kosaka
高阪 裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nuclear Development Corp
Original Assignee
Mitsubishi Atomic Power Industries Inc
Nuclear Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc, Nuclear Development Corp filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP2166675A priority Critical patent/JPH0458192A/en
Publication of JPH0458192A publication Critical patent/JPH0458192A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To decrease the amt. of the gaseous fission products to be released under high burnup of fuel and to mitigate the mechanical interaction between pellets and a cladding pipe by respectively pelletizing two kinds of uranium oxide powders which are different in activity, then mixing these powders, molding the mixture to a required size and sintering the molding under specific heating conditions. CONSTITUTION:Two kinds of the uranium oxide powders which are different in activity are respectively pelletized and thereafter, the pellets are mixed and molded to circular cylindrical bodies of a required size. The moldings are sintered under >=5 minute heating conditions in a 1000 to 2000 deg.C range in a reducing or oxidative atmosphere. The degrees of the density, grain size distribution, thermal dimensional stability, and mechanical characteristics of the sintered pellets are freely changed by arbitrarily changing the mixing ratios of two kinds of the uranium oxide powders which are different in activity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、U02ペレットの大粒径化により核分裂性生
成ガス(FPガス)の保持力を高めるとともに、燃料ペ
レットと被覆管との機械的相互作用(PCMI)による
影響を緩和するよう改良した主として軽水炉用の酸化物
核燃料ペレットの製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention improves the retention force of fissile product gas (FP gas) by increasing the particle size of U02 pellets, and also improves the mechanical strength between the fuel pellets and the cladding tube. This invention relates to a method for producing oxide nuclear fuel pellets mainly for light water reactors, which has been improved to alleviate the effects of interaction (PCMI).

[従来の技術] 従来から軽水炉用として使用されている酸化物核燃料ペ
レットは、第2図の製造工程から明らかなように、UO
2粉末を造粒し、潤滑剤添加・混合して直径及び高さを
約1cmの円柱状に圧縮成形した後、水素雰囲気中て焼
結し、これら焼結体の外周研削を行い、検査をして製造
された結晶粒径か5〜10gmの範囲で均一な焼結体ペ
レットである。
[Prior art] Oxide nuclear fuel pellets conventionally used for light water reactors are UO as shown in the manufacturing process shown in Figure 2.
After granulating the two powders, adding and mixing lubricant, and compressing them into a cylinder shape with a diameter and height of about 1 cm, sintering in a hydrogen atmosphere, grinding the outer periphery of these sintered bodies, and inspecting them. The sintered pellets are uniform in crystal grain size in the range of 5 to 10 gm.

さらに燃料の高燃焼度利用においで問題となるFPガス
放出の低減化を狙うため、結晶粒径を粗大化した酸化物
核燃料ペレットを製造することが知られている。また、
特開昭55−87089号公報によれば、同様の圧縮成
形体を酸化性雰囲気化て1000〜1400°Cて焼結
することにより、同様の焼結体ペレットか得られること
が知られており、また原料粉末にU3O8粉末を添加す
ることにより約2g層のマトリックス粒子の間に20〜
50Byaの粒子フラクションか埋め込まれる2モ一ド
粒子構造の焼結ペレットか得られることが知られている
。このような2モ一ト粒子構造ては微粒子区域か焼結体
の骨格を構成して機械的負荷を引き受けるとともに、粗
大化した結晶粒領域てFPガス放出を低減化する2つの
改良効果を有するペレットであることか知られている。
Furthermore, it is known to produce oxide nuclear fuel pellets with coarser crystal grains in order to reduce FP gas release, which is a problem when using fuel with high burnup. Also,
According to Japanese Patent Application Laid-Open No. 55-87089, it is known that similar sintered pellets can be obtained by sintering a similar compression molded product at 1000 to 1400°C in an oxidizing atmosphere. In addition, by adding U3O8 powder to the raw material powder, 20~20~
It is known that sintered pellets with a bimodal grain structure embedded in a grain fraction of 50 Bya can be obtained. Such a bi-monograin structure has two improving effects: the fine grain region constitutes the skeleton of the sintered body and takes up the mechanical load, and the coarse grain region reduces FP gas release. It is known that it is a pellet.

[発明か解決しようとする課題] ところて、上記のような方法で作られる酸化物核燃料ペ
レットは、高燃焼度時の核分裂生成ガス放出低減化及び
ペレットと被覆管との間の機械的相互作用(PCMI)
の緩和を改良効果として狙ったものであるか、2モ一ト
粒子構造を得るために、製造工程てリサイクルした酸化
ウラン粉末あるいはUO2ペレットをばい焼したU30
.粉末を使用しているため、常に一定量のU306粉末
を必要とするとともに、広範囲の微細結晶粒構造領域の
組織を制御することには限界かある。また、結晶粒径粗
大化に伴い、高密度化するのて、所定の密度並びにその
、熱的寸法安定性の制御か困難となる。
[Problem to be solved by the invention] Incidentally, the oxide nuclear fuel pellets produced by the method described above have problems in reducing the release of fission product gas at high burnup and in mechanical interaction between the pellets and the cladding tube. (PCMI)
This may be due to the improvement effect of uranium oxide powder or UO2 pellets recycled during the manufacturing process in order to obtain a bimodal particle structure.
.. Since powder is used, a certain amount of U306 powder is always required, and there is a limit to controlling the structure of a wide range of fine grain structure regions. Further, as the crystal grain size becomes coarser and the density increases, it becomes difficult to control the predetermined density and its thermal dimensional stability.

本発明は、かかる状況に鑑みてなされたもので、高燃焼
度下でのFPガス放出低減化ならびにPCMIの緩和の
改良効果をそこなうことなく、前述のふたつの問題点を
解決する酸化物核燃料ペレットの製造方法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above circumstances, and provides an oxide nuclear fuel pellet that solves the above two problems without impairing the effects of reducing FP gas emission under high burnup and improving PCMI mitigation. The purpose of this invention is to provide a method for manufacturing.

[課題を解決するための手段] 上記の目的を達成するために、この発明の酸化物核燃料
ペレットの製造方法は、2種類の異なる活性度を有する
酸化ウラン粉末をそれぞれ造粒した後、これらを混合し
所要の大きさの円柱体に成形し、還元性または酸化性雰
囲気下て1000〜2000℃の温度範囲て、5分以上
の加熱条件て焼結することにより、大粒径及び小粒径の
各領域か重量比で9:1から1・9の範囲割合で混在す
る酸化物核燃料ペレットを製造するものである。
[Means for Solving the Problems] In order to achieve the above object, the method for producing oxide nuclear fuel pellets of the present invention involves granulating two types of uranium oxide powders having different activities, and then pulverizing them. Large particle size and small particle size are obtained by mixing the mixture, forming it into a cylindrical body of the desired size, and sintering it under heating conditions of 5 minutes or more at a temperature range of 1000 to 2000 °C in a reducing or oxidizing atmosphere. The method is to produce oxide nuclear fuel pellets in which each region is mixed at a weight ratio of 9:1 to 1.9.

[作用] 本発明の製造工程によれば、焼結ペレット内においで高
活性化酸化ウラン粉末を造粒した領域は、20〜100
gmの大粒径の結晶を構成し、FPガス放出低減化の改
良効果を担うことかできる。一方、低活性化酸化ウラン
粉末を造粒した領域は、1〜20gmの範囲の結晶粒径
を有し、従来ペレットと同等の緻密化量ならびに機械的
特性を担う領域を構成する。本方法では、2種類の活性
度を有する酸化ウラン粉末の混合割合を任意に変えるこ
とにより、焼結ペレットの密度、粒径分布、熱的寸法安
定性ならびに機械的特性などの程度を自在に変えること
ができる。また、各原料粉末の造粒工程においで、造粒
粉体の密度ならびに大きさを制御することにより、2モ
一ト粒子構造における2つの結晶粒径領域の分布状態を
広範囲に制御することができる。
[Function] According to the manufacturing process of the present invention, the area in which the highly activated uranium oxide powder is granulated in the sintered pellet is 20 to 100
It constitutes crystals with a large grain size of gm, and can play an improving effect in reducing FP gas release. On the other hand, the region in which the low-activated uranium oxide powder is granulated has a crystal grain size in the range of 1 to 20 gm, and constitutes a region that has the same amount of densification and mechanical properties as conventional pellets. In this method, the density, particle size distribution, thermal dimensional stability, and mechanical properties of the sintered pellets can be freely changed by arbitrarily changing the mixing ratio of uranium oxide powder having two types of activity. be able to. In addition, in the granulation process of each raw material powder, by controlling the density and size of the granulated powder, it is possible to control the distribution state of the two crystal grain size regions in the two-moist particle structure over a wide range. can.

[実施例] 第1図は本発明による酸化物核燃料ペレットの製造工程
を示すフロック図である、第2図に示す従来の製造工程
に比較して第1図の製造工程では、まず、原料の六フッ
化ウランを粉末活性度を制御可能な転換方法により、活
性度の異なる酸化ウラン粉末に転換する。これらの転換
方法についでは、例えばA D U (Ammoniu
m diuranate)法。
[Example] Figure 1 is a flow diagram showing the manufacturing process of oxide nuclear fuel pellets according to the present invention.Compared to the conventional manufacturing process shown in Figure 2, in the manufacturing process of Figure 1, first, the raw material is Uranium hexafluoride is converted into uranium oxide powder with different activities by a conversion method that allows control of powder activity. Regarding these conversion methods, for example, ADU (Ammoniu
m diuranate) method.

改良ADO法、A U C(=Ams+onium I
Jranyl Carbonate)法、改良AUG法
などの方法が知られている。これらの転換方法ては、得
られる酸化ウラン粉末の活性度を広い範囲で変えられる
のて、その焼結ペレットの焼結粒径な従来の10倍以上
に達することか回旋である。このような方法で得られた
比表面積が3−27g以上を有する高活性化酸化ウラン
粉末と、3 m27g未満の低活性化酸化ウラン粉末を
、各々造粒した後に潤滑材を添加して混合する。但し、
この場合製造工程におけるスクラップ回収ウランの再利
用等の目的てU30.粉を10%以下の範囲で添加する
場合がある。その後の成形・焼結の工程は従来の技術と
同しである。
Improved ADO method, A U C (=Ams+onium I
Methods such as the Jranyl Carbonate method and the modified AUG method are known. In these conversion methods, the activity of the obtained uranium oxide powder can be varied over a wide range, and the sintered particle size of the sintered pellets can be increased to more than 10 times that of the conventional method. The highly activated uranium oxide powder with a specific surface area of 3-27 g or more obtained by such a method and the low activated uranium oxide powder with a specific surface area of less than 3 m27 g are granulated, and then a lubricant is added and mixed. . however,
In this case, U30. Powder may be added in an amount of 10% or less. The subsequent molding and sintering steps are the same as in the conventional technology.

次に、本発明を第1図の実施例に基すいで具体的に説明
する。原料穴フッ化ウランを通常のいわゆるADU法て
転換することにより得られる低活性化酸化ウラン粉末(
UO2゜8)の場合、通常の冷間・圧縮による成形体を
還元性雰囲気で1700℃以上て加熱して焼結すると、
約5〜lOμ層の結晶粒径を有するペレットが製造され
る。
Next, the present invention will be specifically explained based on the embodiment shown in FIG. Low activated uranium oxide powder (
In the case of UO2゜8), when a compact formed by normal cold compression is heated and sintered at 1700℃ or higher in a reducing atmosphere,
Pellets with a grain size of approximately 5 to 10μ layers are produced.

高活性化酸化ウラン(UO,やX)粉末は、原料穴フッ
化ウランを改良転換法により転換することにより作製さ
れ、これらの焼結が容易に進行する高活性化粉末の場合
上記と同様に加熱して焼結すると、20〜1001の結
晶粒径のペレットが製造される。
Highly activated uranium oxide (UO, or When heated and sintered, pellets with a grain size of 20 to 1001 are produced.

これらの事実にもとすいでこの発明の酸化物核燃料ペレ
ットは次のようにして作られる。
Based on these facts, the oxide nuclear fuel pellets of the present invention are produced as follows.

すなわち、造粒工程においで、高活性化酸化ウラン粉末
を、例えば約100gm以上の粒子に造粒し、低活性化
酸化ウラン粉末を約100gm以下に造粒する。あるい
は後者の粉末についでは造粒しないで使用する。このよ
うな造粒粉を高活性化U O2粉末の割合を10〜90
重量%の範囲で混合する。
That is, in the granulation step, highly activated uranium oxide powder is granulated into particles of about 100 gm or more, and low activated uranium oxide powder is granulated into particles of about 100 gm or less. Alternatively, the latter powder may be used without granulation. The proportion of highly activated U O2 powder in such granulated powder is 10 to 90.
Mix within the range of weight %.

以上の方法により得られた混合粉末に潤滑剤(例えばス
テアリン酸亜鉛0.2重量%)を添加した後、従来の公
知粉末成形プレス技術により成形体(グリーンペレット
)とし、還元性雰囲気中て1750°Cて5時間の加熱
条件で焼結した。
After adding a lubricant (e.g. 0.2% by weight of zinc stearate) to the mixed powder obtained by the above method, it was made into a green pellet by a conventional known powder compaction press technique and heated to 1750 ml in a reducing atmosphere. Sintering was carried out under heating conditions of 5 hours at °C.

第3図(a)は、この実施例により得られた酸化物核燃
料ペレットの微細構造を示す光学顕微鏡写真てあり、第
3図(b)は、第3図(a)の説明図である。第3図か
ら明らかなように、本発明の酸化物核燃料ペレットは、
小気孔領域2を有する大結晶粒領域lと、多気孔領域3
を有する小結晶粒領域3とか、互いに混在している状態
かわかる。
FIG. 3(a) is an optical microscope photograph showing the fine structure of the oxide nuclear fuel pellet obtained in this example, and FIG. 3(b) is an explanatory diagram of FIG. 3(a). As is clear from FIG. 3, the oxide nuclear fuel pellets of the present invention are
Large grain region l having small pore region 2 and multi-porous region 3
It can be seen that the small crystal grain regions 3 having .

上記の活性度の異なる造粒粉からなる成形体を酸化性雰
囲気の焼結に供しても、同様の微細構造を有する酸化物
核燃料レベットが製造される。
Even if a molded body made of the above-mentioned granulated powders having different degrees of activity is subjected to sintering in an oxidizing atmosphere, an oxide nuclear fuel levette having a similar microstructure is produced.

[発明の効果] 以上、説明したとおり、本発明の方法により得られた酸
化物核燃料ペレットは低活性化酸化ウラン粉末により調
整された約5〜10gg+の微細結晶構造を連続的に有
する領域中に、高活性化酸化ウラン粉末により調整され
た大粒径(約20〜1100Itの結晶粒径)の結晶構
造を有する島状の孤立した領域か存在する2モ一ド粒子
構造(第3図参照)を有するので燃料の高燃焼度下にお
けるFPガス放出量を制御し、燃料被覆管との機械的相
互作用を緩和できる。
[Effects of the Invention] As explained above, the oxide nuclear fuel pellets obtained by the method of the present invention have a continuous microcrystalline structure of about 5 to 10 g+ adjusted by the low activated uranium oxide powder. , a bimodal grain structure in which island-like isolated regions exist with a crystal structure with a large grain size (crystal grain size of about 20 to 1100 It) adjusted by highly activated uranium oxide powder (see Figure 3). Therefore, it is possible to control the amount of FP gas released under high fuel burnup and to alleviate mechanical interaction with the fuel cladding tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の酸化物核燃料ペレットの製造方法の
工程を示すブロック図、第2図は、従来の酸化物核燃料
ペレットの製造方法の工程を示すブロック図、第3図(
a)は、本発明の原子燃料ペレットの粒子の構造を示す
顕微鏡写真、第3図(b)は同図(a)の顕微鏡写真の
説明図である。 図中。 l二大結品粒領域 3:小結晶粒領域 4:多気孔領域 代理人 弁理士 1)北 嵩 晴 2:少気孔領域 第 図 第 図
FIG. 1 is a block diagram showing the steps of the method for producing oxide nuclear fuel pellets of the present invention, FIG. 2 is a block diagram showing the steps of the conventional method for producing oxide nuclear fuel pellets, and FIG.
FIG. 3(a) is a microscopic photograph showing the particle structure of the nuclear fuel pellet of the present invention, and FIG. 3(b) is an explanatory diagram of the microscopic photograph of FIG. 3(a). In the figure. l Two large crystal grain regions 3: Small grain regions 4: Multi-porous region Agent Patent attorney 1) Haru Kitatake 2: Low-porous regions Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)2種類の異なる活性度を有する酸化ウラン粉末を
それぞれ造粒した後、これらを混合して、所要の大きさ
に成形し、還元性または酸化性雰囲気下で、1000〜
2000℃の温度範囲で、5分以上の加熱条件で焼結す
ることにより、大粒径及び小粒径の各領域が重量比で、
1:9から9:1の範囲の割合いで混在する酸化物核燃
料ペレットを製造することを特徴とする、酸化物核燃料
ペレットの製造方法。
(1) After granulating two types of uranium oxide powders with different activities, they are mixed, molded to the required size, and granulated in a reducing or oxidizing atmosphere.
By sintering in a temperature range of 2000°C for 5 minutes or more, each region of large particle size and small particle size is
A method for producing oxide nuclear fuel pellets, comprising producing oxide nuclear fuel pellets in which oxide nuclear fuel pellets are mixed at a ratio ranging from 1:9 to 9:1.
(2)2種類の異なる活性化酸化ウラン粉末は、比表面
積が3m^2/g以上で高い焼結活性度を有する高活性
化酸化ウラン粉末と、それ以外の低活性化酸化ウラン粉
末とからなることを特徴とする請求項(1)に記載の酸
化物核燃料ペレットの製造方法。
(2) Two different types of activated uranium oxide powders are highly activated uranium oxide powder with a specific surface area of 3 m^2/g or more and high sintering activity, and other low activated uranium oxide powders. The method for producing oxide nuclear fuel pellets according to claim (1).
JP2166675A 1990-06-27 1990-06-27 Production of oxide nuclear fuel pellet Pending JPH0458192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166675A JPH0458192A (en) 1990-06-27 1990-06-27 Production of oxide nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166675A JPH0458192A (en) 1990-06-27 1990-06-27 Production of oxide nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPH0458192A true JPH0458192A (en) 1992-02-25

Family

ID=15835642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166675A Pending JPH0458192A (en) 1990-06-27 1990-06-27 Production of oxide nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPH0458192A (en)

Similar Documents

Publication Publication Date Title
US6251310B1 (en) Method of manufacturing a nuclear fuel pellet by recycling an irradiated oxide fuel pellet
US5882552A (en) Method for recycling fuel scrap into manufacture of nuclear fuel pellets
US3806565A (en) Method of preparing relatively low density oxide fuel for a nuclear reactor
KR20040029408A (en) Method for producing a mixed oxide nuclear fuel powder and a mixed oxide nuclear fuel sintered compact
JPH01148994A (en) Manufacture of nuclear fuel pellet for mixed oxide (u,pu)o2 base
JPS6126637B2 (en)
CN1319848A (en) Method for preparing Gd2O3-UO2 flammable poison fuel core block by using U3O8 powder
JPS60188881A (en) Manufacture of oxide nuclear fuel sintered body
JP3919929B2 (en) NUCLEAR PELLET, ITS MANUFACTURING METHOD, FUEL ELEMENT AND FUEL ASSEMBLY
US3270098A (en) Method of making hollow, spherical uo2 particles
JPH0954187A (en) Producing method for nuclear fuel pellet using uranium oxide particle as raw material
KR100331483B1 (en) Method of manufacturing oxide fuel pellets containing neutron-absorbing materials
KR20110089801A (en) Uranium dioxide fuel pellet including ni oxide and al oxide and the manufacturing method thereof
JPH0458192A (en) Production of oxide nuclear fuel pellet
JPH11183686A (en) Manufacture of nuclear fuel particle and nuclear fuel pellet
US3404200A (en) Method of preparing a cermet nuclear fuel
KR100450711B1 (en) Method of manufacturing nuclear fuel pellet consisting of duplex grains
KR100266480B1 (en) Uranium dioxide pellet manufacturing method
JPH0295298A (en) Manufacture of oxide nuclear fuel sintered body
US3254030A (en) Plutonium enriched uranium fuel for nuclear reactors
KR100424331B1 (en) Property control technique of the mixed oxide fuel pellet by the addition method of M3O8 scrap powder and the sintering process
JPH02259596A (en) Production of sintered body of nuclear fuel
WO2022075880A1 (en) Method for producing uranium-gadolinium nuclear fuel
JP2701043B2 (en) Method for producing oxide nuclear fuel body having double microstructure
JP2907694B2 (en) Method for producing nuclear fuel pellets