JPH0458155A - Bf separation for immunological measurement - Google Patents

Bf separation for immunological measurement

Info

Publication number
JPH0458155A
JPH0458155A JP16868290A JP16868290A JPH0458155A JP H0458155 A JPH0458155 A JP H0458155A JP 16868290 A JP16868290 A JP 16868290A JP 16868290 A JP16868290 A JP 16868290A JP H0458155 A JPH0458155 A JP H0458155A
Authority
JP
Japan
Prior art keywords
biotin
solid phase
antigen
antibody
labeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16868290A
Other languages
Japanese (ja)
Inventor
Reiko Mogi
茂木 玲子
Shoji Maruyama
丸山 昭治
Yoshihiro Terasoma
寺杣 至弘
Masahiro Niwa
丹羽 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B M L KK
Original Assignee
B M L KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B M L KK filed Critical B M L KK
Priority to JP16868290A priority Critical patent/JPH0458155A/en
Publication of JPH0458155A publication Critical patent/JPH0458155A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the method effective in terms of production, management or speeding up of measurement without having the possibility of deactivation upon lapse of time by previously conjugating biotin with a solid phase for BF sepn. and conjugating an antigen labeled with the biotin, etc. via adipin with this solid phase at the time of measurement. CONSTITUTION:The biotin B is previously conjugated with the solid phase 1 and antibody 3 labeled with the biotin B is conjugated via the adipin A therewith. The antigen 2 labeled with the biotin B is conjugated via the adipin A with the biotin B conjugated with the solid phase 1. The biotin B is an org. compd. and is hardly decomposed, like protein, etc., by the influence of temp., enzyme, etc., and is relatively stable. The biotin-labeled antigen2 or antibody 3 is conjugated via the adipin A with the biotin directly conjugated with the solid phase 1 and, therefore, the solid phase 1 to be prepd. is the common solid phase conjugated with the biotin B. The production line is thereby simplified and the cost of production is reduced. In addition, the management is facilitated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ヒトまたは動物の体液中の各a物質を抗原抗
体反応を利用して測定する場合に使用される免疫学的測
定用BF分離法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to BF separation for immunoassays used when measuring each substance a in human or animal body fluids using antigen-antibody reactions. Regarding the law.

(従来の技術と発明か解決しようとする課!&i)血液
や尿等の体液中に存在するホルモン、癌細胞に由来する
物質、病原性微生物に由来する物質、自己抗体、あるい
は病原性微生物に対する抗体等を検出、測定する場合、
抗原に抗体か結合する抗原抗体反応か利用される。この
抗原抗体反応を利用した測定方法(以下免疫測定法と略
す)において、BF分離(Bは抗体または抗原に結合し
た抗原または抗体、Fは非結合であるフリーの抗原また
は抗体)が必要な方法としては。
(Conventional techniques and inventions! &i) Hormones present in body fluids such as blood and urine, substances derived from cancer cells, substances derived from pathogenic microorganisms, autoantibodies, or pathogenic microorganisms When detecting and measuring antibodies, etc.
An antigen-antibody reaction in which an antibody binds to an antigen is used. This measurement method using antigen-antibody reaction (hereinafter abbreviated as immunoassay) requires BF separation (B is antibody or antigen bound to antigen or antibody, F is unbound free antigen or antibody) as.

(1)酵素免疫測定法(Enzywie fwunoa
ssay−E IA) (2)放射免疫測定法(Radio Immunoas
say −RIA) (3)蛍光免疫測定法(Fluoro Immunoa
ssay−F IA) (4)時間分解蛍光免疫測定法(Time Re5ol
vedFluoro Immunoassay−T R
−F I A )などかある。
(1) Enzyme immunoassay (Enzywie fwunoa)
ssay-E IA) (2) Radioimmunoassay
say-RIA) (3) Fluorescence immunoassay (Fluoro Immunoassay)
(4) Time-resolved fluorescence immunoassay (Time Re5ol)
vedFluoro Immunoassay-TR
-FIA) etc.

前記酵素免疫測定法は、第9図にサンドイッチEIA法
について示すように、固相l(なお、この固相は1図示
のような容器状をなすプレートと称されるもの、あるい
はビーズ状をなすもの、またはチューブ状をなすものか
ある)の表面に予め測定すべき抗原(抗体である場合も
ある)2に対応する抗体(抗原である場合もある)3を
結合しておき、抗原2と、酵素Eて標識した抗体3Aを
入れると、液4内で図示のような抗体3−抗原2−抗体
3Aからなるサイドイッチ状の抗原抗体複合体か形成さ
れ、その後液4を洗い流し、抗原2の量に対応している
酵素Eの量を比色法により測定する方法である。すなわ
ち、固相lに結合している抗体3Aと反応する抗原2の
量は、液4中の抗原2の含有量に比例することに鑑み、
この抗原2の量を酵素Eの量として測定する方法である
。なお、この酵素Eの琶の測定は、液4を流出し、固相
1を洗浄した後、酵素Eにより発色または脱色する物質
(基質)を含む液をプレートに加え、吸光度の変化を測
定することにより行なう。
As shown in FIG. 9 for the sandwich EIA method, the enzyme immunoassay method uses a solid phase 1 (this solid phase is a container-shaped plate as shown in FIG. 1, or a bead-shaped solid phase). An antibody (which may be an antigen) 3 corresponding to the antigen (which may be an antibody) 2 to be measured is bound in advance to the surface of a tube-shaped object or a tube-shaped object. When antibody 3A labeled with enzyme E is added, a side-ditch-like antigen-antibody complex consisting of antibody 3-antigen 2-antibody 3A as shown in the figure is formed in solution 4, and then solution 4 is washed away and antigen 2 is added. This method uses a colorimetric method to measure the amount of enzyme E that corresponds to the amount of . That is, considering that the amount of antigen 2 that reacts with antibody 3A bound to solid phase 1 is proportional to the content of antigen 2 in liquid 4,
This method measures the amount of antigen 2 as the amount of enzyme E. In addition, to measure the intensity of enzyme E, after draining liquid 4 and washing solid phase 1, a liquid containing a substance (substrate) that is colored or decolored by enzyme E is added to the plate, and the change in absorbance is measured. Do it by doing this.

前記放射免疫測音法は、前記酵素Eの代わりに、標識物
質として放射性元素を用い、抗原の量を、液流出後の放
射性元素の量から測定する方法てあり、蛍光免疫測定法
は、酵素Eの代わりに蛍光物質を用い、抗原の量を、液
流出後の蛍光物質の光量から測定する方法である。
The radioimmunoassay method uses a radioactive element as a labeling substance instead of the enzyme E, and the amount of antigen is measured from the amount of radioactive element after the liquid has flowed out.The fluorescence immunoassay method uses an enzyme E as a labeling substance. In this method, a fluorescent substance is used instead of E, and the amount of antigen is measured from the amount of light from the fluorescent substance after the liquid has flowed out.

この従来の測定方法には次のような問題点かあった・ (1)予め抗体くまたは抗原)3を固相lに結合してい
るので、抗体(または抗原)3か不安定である場合に、
期間の経過による抗体、抗原の失活あるいは保存の場合
の安定性に問題かあフた。
This conventional measurement method has the following problems: (1) Since the antibody (or antigen) 3 is bound to the solid phase in advance, there may be cases where the antibody (or antigen) 3 is unstable. To,
There may be problems with the inactivation of antibodies and antigens over time, or with stability during storage.

(2)予め、測定すべき抗原(または抗体)2にそれぞ
れ対応する抗体(または抗FK)3を結合した固相lを
用意しなければならず、数百種類もある抗原または抗体
ごとに異なる固相1を用意することは5製造上あるいは
管理上煩雑となり、製造原価の1昇を招くことにもなる
(2) A solid phase 1 bound with antibodies (or anti-FK) 3 corresponding to each antigen (or antibody) 2 to be measured must be prepared in advance, and it differs for each of the hundreds of types of antigens or antibodies. Preparing the solid phase 1 is complicated in terms of production or management, and also leads to an increase in production costs.

(3)ミクロ的に見て、固相lに結合している抗体(ま
たは抗原)3に液4中の抗原(または抗体)2か近接し
なければ抗原抗体反応か起こらず、いわば固相反応であ
るから、反応速度が遅く、測定に時間がかかる。
(3) Microscopically, unless the antigen (or antibody) 2 in the liquid 4 comes close to the antibody (or antigen) 3 bound to the solid phase 1, an antigen-antibody reaction will not occur, so to speak, a solid phase reaction. Therefore, the reaction rate is slow and measurement takes time.

上記(2)または(3)の問題点を解決する方法として
、アとシンとビオチンを用いたBF分離法が[日本産科
婦人科学会雑誌ACTA 0BST GYNAECJP
N  Vol、3[i  No、5  P763〜P7
70]において報告されている。これは、810図に示
すように、固相1にアビジンAを結合しておき、予め別
の試験管内てビオチンB標識抗原2と、酵素E標識抗体
3とを反応させた後、固相内にその液を加えると、アビ
ジンAとビオチンBか結合し、ビオチンB標識抗体2と
酵素で標識した抗体3の複合体か固相に結合することを
利用した分離法である。なお、この方法をサンドイッチ
RIA法に適用し、固相としてビーズを用いた方法も報
告されている[核医学:27巻2号(1990) P1
55〜P16:lコ。
As a method to solve the above problems (2) or (3), the BF separation method using atomine and biotin [Japanese Society of Obstetrics and Gynecology ACTA 0BST GYNAECJP]
N Vol, 3[i No, 5 P763~P7
70]. As shown in Figure 810, avidin A is bound to the solid phase 1, and biotin B-labeled antigen 2 and enzyme E-labeled antibody 3 are reacted in advance in a separate test tube. This is a separation method that utilizes the fact that when the solution is added to the solution, avidin A and biotin B bind together, and the complex of biotin B-labeled antibody 2 and enzyme-labeled antibody 3 binds to a solid phase. A method in which this method is applied to the sandwich RIA method and beads are used as the solid phase has also been reported [Nuclear Medicine: Vol. 27, No. 2 (1990) P1
55-P16:l.

このように、固相1にアジピンAを結合させる方法によ
ると、時間経過によるアビジンAの失活あるいは保存の
場合の安定性に問題がある。
As described above, according to the method of binding adipine A to the solid phase 1, there are problems with deactivation of avidin A over time or stability during storage.

本発明は、上記問題点に鑑み、期間の経過による失活の
おそれがなく、製造、管理あるいは測定の迅速化の面で
も有利となるBF分離法を提供することを目的とする。
In view of the above-mentioned problems, an object of the present invention is to provide a BF separation method that is free from the risk of deactivation over time and is advantageous in terms of speeding up production, management, and measurement.

(課題を解決するための手段) 本発明によるBF分離法は、上記目的を達成するため、
BF分離用固相に予めビオチン(その類似物質、誘導体
を含む)を結合させておき、該固相に、測定時、アビジ
ン(その類似物質を含む)を介して、ビオチン(その類
似物質、誘導体を含む)を標識した抗原もしくは抗体を
結合させることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the BF separation method according to the present invention has the following features:
Biotin (including its analogs and derivatives) is bound to the solid phase for BF separation in advance, and biotin (including its analogs and derivatives) is bonded to the solid phase via avidin (including its analogs) during measurement. It is characterized by binding an antigen or antibody labeled with (including).

第1図は本発明の測定原理を説明する図であり、予めビ
オチンBを固相工に結合しておき、これに、ビオチンB
で標識した抗体3(2は抗体3と複合体を形成している
抗原である)をアビジンAを介して結合する。また、第
2図に示すように、固相lに結合したビオチンBに、ビ
オチンBで標識した抗原2(3は抗原2と複合体を形成
している抗体である)をアビジンAを介して結合する。
FIG. 1 is a diagram explaining the measurement principle of the present invention, in which biotin B is bound to a solid phase material in advance, and biotin B
Antibody 3 labeled with (2 is an antigen forming a complex with antibody 3) is bound via avidin A. In addition, as shown in Fig. 2, antigen 2 labeled with biotin B (3 is an antibody forming a complex with antigen 2) is added to biotin B bound to solid phase 1 via avidin A. Join.

なお、ビオチン、アビジンの代わりにそれぞれこれらの
類似物質あるいは誘導体を用いることができる。具体的
には例えばビオチンの代わりに、その誘導体である2−
イミノ−ビオチン(2−1m1n−obiotin) 
、ビオシチン(biocytin)、ビスノルビオチン
(bisnorbiotin)、テトラノルビオチン(
tet−oranorbiotin)、デスチオビオチ
ン(destiobiotin)、オキシビオチン(o
xybiotin )等のビオチン関連物質を用いるこ
とかでき、また、アビジンの類似物質として、例えばス
トレプトアビジン(放線菌から得られるアビジンに類似
した物質)を用いることかてきる。
Note that similar substances or derivatives thereof can be used instead of biotin and avidin, respectively. Specifically, for example, instead of biotin, its derivative 2-
Imino-biotin (2-1m1n-obiotin)
, biocytin, bisnorbiotin, tetranorbiotin (
tet-oranorbiotin), desthiobiotin, oxybiotin (o
A biotin-related substance such as xybiotin) can be used, and as an avidin analogue, for example, streptavidin (a substance similar to avidin obtained from actinomycetes) can be used.

(作用) アビジンは、ビオチンとの結合部を4個所有しており、
このことを利用し、本発明は、予め固相にビオチンを結
合させておき、このビオチンにアビジンを介して、ビオ
チン等で標識した抗原または抗体を結合させる。ビオチ
ンは安定な物質であり、期間経過による失活は少ない。
(Action) Avidin has 4 binding sites with biotin,
Taking advantage of this, the present invention binds biotin to a solid phase in advance, and binds an antigen or antibody labeled with biotin or the like to this biotin via avidin. Biotin is a stable substance and rarely loses its activity over time.

また、アビジンはビオチンと極めて高い親和性を有して
おり(解離定数=10−I5M)、抗原−抗体よりも極
めて強固な結合力を持つ複合体を形成する。また、本発
明においては、抗原抗体反応は液層て起こる。
Furthermore, avidin has extremely high affinity with biotin (dissociation constant = 10-I5M), and forms a complex with extremely stronger binding force than antigen-antibody. Furthermore, in the present invention, the antigen-antibody reaction occurs in a liquid phase.

(実施例1) 第3図は本発明を[サンドイッチEIA]へ応用した場
合の測定原理説明図てあり、ビオチンBを結合させた固
相(プレートのウェル)lにアビジンA、抗jK2、ビ
オチンB標識抗体3および酵素E標識抗体3Aを加え、
洗浄後、固相面に残った酵素量を測定する。すなわち、
抗原2をサンドイッチのように挟んて結合する2つの抗
体3.3Aのうち、一方の抗体3をビオチンBて標識し
ておき、このビオチン標識抗体3のビオチンBを、アビ
ジンAを介して、固相lに予め結合しているビオチンB
に結合させることにより、抗原2と抗体3Aとの複合体
を固相に固定する方法であるこの実施例1の具体的な実
験を、ヒト血清アルブミンの測定について行なった結果
について述べる。EIA用のプレートのウェルに、ビオ
チン標識ウシ血清アルブミン20 gg/mlを200
g+加え、室温で2時間反応させ、ビオチン標識ウシ血
清アルブミンを結合させた後、洗浄液でプレートを洗い
ビオチン結合プレートを作製した。続いて下記の試薬を
加えて室温にて2時間反応させた。
(Example 1) Figure 3 is a diagram explaining the measurement principle when the present invention is applied to [sandwich EIA], in which avidin A, anti-jK2, and biotin are added to the solid phase (well of the plate) to which biotin B is bound. Add B-labeled antibody 3 and enzyme E-labeled antibody 3A,
After washing, measure the amount of enzyme remaining on the solid phase surface. That is,
Of the two antibodies 3.3A that sandwich antigen 2 and bind to it, one antibody 3 is labeled with biotin B, and the biotin B of this biotin-labeled antibody 3 is immobilized via avidin A. Biotin B pre-bound to phase I
The results of a specific experiment of this Example 1, which is a method of immobilizing a complex of antigen 2 and antibody 3A on a solid phase by binding to a solid phase, will be described regarding the measurement of human serum albumin. Add 200 g/ml of biotin-labeled bovine serum albumin to the wells of the EIA plate.
After adding g+ and reacting at room temperature for 2 hours to bind biotin-labeled bovine serum albumin, the plate was washed with a washing solution to prepare a biotin-bound plate. Subsequently, the following reagents were added and reacted at room temperature for 2 hours.

試薬1(抗原):ヒト血清アルブミン50JL1(0〜
 1 0 0 0  ng/ml)試薬2(ビオチン標
識抗体):ビオチン標識抗ヒト血清アルブミン抗体50
JL+(20終g/■1)試薬3(酵素標識抗体):ベ
ルオキシターゼ標識抗ヒト血清アルブミン抗体50 I
Ll(5u−g/曹■)試薬4(アビジン):アビジン
50 g+(10ILg/■1) 反応終了後、ベルオキシターゼ基質液二0.251g/
璽IオJレトフェニレンシアミン・2HCl−0,01
5%H2020,11MNaz HPO,−0,044
Mクエン酸(PH5,4)200ILlを加え、室温て
30分反応させた後、波長492nmにおける吸光度を
測定し、検量線を作製した。第4図の方法lはその検量
線であり、アルブミン濃度と吸光度との明瞭な相関関係
が得られ、本方法か利用可能であることか確認できた。
Reagent 1 (antigen): Human serum albumin 50JL1 (0-
1000 ng/ml) Reagent 2 (biotin-labeled antibody): biotin-labeled anti-human serum albumin antibody 50
JL+ (20 g/■1) Reagent 3 (enzyme-labeled antibody): Veroxidase-labeled anti-human serum albumin antibody 50 I
Ll (5u-g/kg) Reagent 4 (avidin): Avidin 50g+(10ILg/■1) After the reaction, add peroxidase substrate solution 2 0.251g/
Seal I OJ Retophenylenecyamine・2HCl-0,01
5%H2020, 11MNaz HPO, -0,044
After adding 200 ILl of M citric acid (PH5,4) and reacting at room temperature for 30 minutes, the absorbance at a wavelength of 492 nm was measured to prepare a calibration curve. Method 1 in FIG. 4 is its calibration curve, and a clear correlation between albumin concentration and absorbance was obtained, confirming that this method can be used.

また、第4図には前記4種類の試薬を加える手順を変え
て得られた検量線を比較して示す。fJS4図において
、方法1〜方法4はそれぞれ次の手順で試薬を加えたも
のである。
Further, FIG. 4 shows a comparison of calibration curves obtained by changing the procedure for adding the four types of reagents. In the fJS4 diagram, methods 1 to 4 each involve adding reagents in the following steps.

方法l:前述のように試薬1〜4を同時に加える。Method 1: Add reagents 1-4 simultaneously as described above.

方法2:試薬1〜3を加え、2時間反応後、試薬4を加
えて1時間反応 方法3.試薬4を加え、1時間反応後、試薬1〜3を加
えて2時間反応 方法4:試薬l、3.4を加え2時間反応後、試薬2を
加え、1時間反応 第4図に示すように、試薬を加える手順によって抗原濃
度と吸光度(抗原の固相への付着量)との関係に変化は
あるが、いずれの方法によっても、抗原濃度と固相への
付着量との関係に相関関係か得られた。
Method 2: Add reagents 1 to 3 and react for 2 hours, then add reagent 4 and react for 1 hour. Method 3. Add reagent 4 and react for 1 hour, then add reagents 1 to 3 and react for 2 hours. Method 4: Add reagents 1 and 3.4 and react for 2 hours, then add reagent 2 and react for 1 hour as shown in Figure 4. Although the relationship between antigen concentration and absorbance (the amount of antigen attached to the solid phase) changes depending on the procedure for adding the reagent, no matter which method is used, the relationship between antigen concentration and the amount of antigen attached to the solid phase changes. I got a relationship.

また、前記方法2において2加えるアビジン(試薬4)
の至適濃度についても検討を加えた。
In addition, avidin (reagent 4) added by 2 in the method 2 above.
We also considered the optimal concentration of

すなわち、アビジンの濃度を0.5JLg/ml、2゜
0川g/l、logg/賜1.50延g/mlと変化さ
せ。
That is, the concentration of avidin was changed to 0.5 JLg/ml, 2°0g/l, and 1.50 g/ml.

検量線の変動を検討した。その結果を第5図に示す。The variation of the calibration curve was examined. The results are shown in FIG.

第5図から分かるように、アビジンの濃度について、あ
る程度の濃度までは濃度の増加に伴なって吸光度が増大
するか、ある程度以上の濃度になるとかえって吸光度か
減少し、至適な濃度か存在することか判明した。
As can be seen from Figure 5, regarding the concentration of avidin, either the absorbance increases as the concentration increases up to a certain level, or the absorbance decreases when the concentration exceeds a certain level, so there is an optimal concentration. It turned out that.

さらに至適な濃度と応用可能な濃度を決定する検討を行
なった。前記方法2において、ヒト血清アルラミン濃度
を50 ng/ml 、ベルオキシターゼ標識ヒト血清
アルブミン抗体濃度を5gg/鱈と一定としておき、ビ
オチン標識抗ヒト血清アルブミン濃度か1ルg/鳳l、
2JLg/層1. 5kg/■1.10gg/ml、2
0uLg/■1の各濃度において、アビジン濃度を0〜
2000μg/mlの範囲で変化させ、吸光度の変動を
検討した結果、第6図のグラフか得られた。第6図から
分かるように、ビオチン標識抗ヒト血清アルブミン抗体
濃度に依存して、最も至適なアビジン濃度は変化するか
、その応用可能な範囲は、アビジンを加えない場合の吸
光度との差か生しる0、5gg/+*l〜2000IL
g/■lてあった。なお、この濃度は当然のことなから
、固相に結合しであるビオチンの量、ビオチン標識抗ヒ
ト血清アルブミン量およびこれにjWj11シであるビ
オチン量、アビジン溶液の用量、反応溶液の総量等に影
響される。従って、応用可能なアビジン濃度は上記要因
と相関関係かあるものと考えられる。
Further studies were conducted to determine the optimal concentration and applicable concentration. In method 2, the human serum albumin concentration was kept constant at 50 ng/ml, the peroxidase-labeled human serum albumin antibody concentration was kept constant at 5 ng/cod, and the biotin-labeled anti-human serum albumin concentration was 1 g/l,
2JLg/layer 1. 5kg/■1.10gg/ml, 2
At each concentration of 0 uLg/■1, the avidin concentration was changed from 0 to
As a result of varying the absorbance within a range of 2000 μg/ml and examining the variation in absorbance, the graph shown in FIG. 6 was obtained. As can be seen from Figure 6, does the most optimal avidin concentration change depending on the biotin-labeled anti-human serum albumin antibody concentration, and does the applicable range differ from the absorbance when no avidin is added? Fresh 0,5gg/+*l~2000IL
g/■l. Note that this concentration is a matter of course, and depends on the amount of biotin bound to the solid phase, the amount of biotin-labeled anti-human serum albumin, the amount of biotin added to it, the amount of avidin solution, the total amount of reaction solution, etc. affected. Therefore, the applicable avidin concentration is considered to be correlated with the above factors.

(実施例2) 第7図は本発明を[競合法ETA]へ応用した場合の測
定原理図であり、固相lにビオチンBを結合させておき
、これにアビジンA、抗#、 2 、ビオチンB標識抗
原2Aおよび酵素E標識抗体3Aを加え、ウェル固相面
にアビジンAを介して抗原2A抗体3A複合体を固定さ
せ、洗浄後、固相面に残った酵素量(活性)を測定する
(Example 2) Figure 7 is a diagram showing the measurement principle when the present invention is applied to [competitive ETA]. Biotin B is bound to the solid phase I, and avidin A, anti-#, 2, Add biotin B labeled antigen 2A and enzyme E labeled antibody 3A, immobilize the antigen 2A antibody 3A complex on the solid phase surface of the well via avidin A, and measure the amount of enzyme (activity) remaining on the solid phase surface after washing. do.

この実施例2の具体的な実験例を前記同様にヒト血清ア
ルブミンの測定について行なった結果について述べる。
A specific experimental example of this Example 2 will be described with reference to the results of measuring human serum albumin in the same manner as described above.

前記実施例1と同様の方法で作製したビオチン結合ウェ
ルに下記の試薬1〜3を加えて室温にて2時間反応させ
た。
The following reagents 1 to 3 were added to a biotin-binding well prepared in the same manner as in Example 1, and reacted at room temperature for 2 hours.

試薬1(抗原):ヒト血清アルブミン50#1(0〜1
000 pg/ml) 試薬2(ビオチン標識抗原):ビオチン標識ヒト血清ア
ルブミン50鉢1(5牌g/■l)試薬3(酵素標識抗
体);ベルオキシターゼ標識抗ヒト血清アルブミン抗体
50 g I(5gg/■l)試薬4(アビジン):ア
ビジン50川1(10gg/■l) 続いて試薬4(アビジン)を加え、固相面に抗原抗体複
合体を結合させ、洗浄後、実験例1と同一の操作を行な
い、酵素量(活性)を測定し、検量線を作製した。その
結果を第8図に示す。この実験例においては、試薬2、
すなわちビオチン標識抗原2Aの濃度は一定で、抗原2
の濃度が変わるが、抗原2の濃度か大であるほど、試薬
3(酵素E標識抗体3A)とビオチン標識抗原2Aとの
結合数か減少するため、抗原2の濃度が大であるほど固
相に結合する酵素E標識抗体3Aの結合量も減少するこ
とになる。第8図の検量線はこのことを裏づけでおり、
本方法が利用できることか確認てきた。
Reagent 1 (antigen): Human serum albumin 50#1 (0-1
000 pg/ml) Reagent 2 (biotin-labeled antigen): biotin-labeled human serum albumin 50 pots 1 (5 tiles g/l) Reagent 3 (enzyme-labeled antibody); peroxidase-labeled anti-human serum albumin antibody 50 g I (5 g /■l) Reagent 4 (avidin): Avidin 50 River 1 (10 gg/■l) Next, reagent 4 (avidin) was added to bind the antigen-antibody complex to the solid phase surface, and after washing, the same as in Experimental Example 1 was added. The following operations were performed, the enzyme amount (activity) was measured, and a calibration curve was prepared. The results are shown in FIG. In this example experiment, reagent 2,
That is, the concentration of biotin-labeled antigen 2A is constant, and the concentration of biotin-labeled antigen 2A is constant.
However, as the concentration of antigen 2 increases, the number of bonds between reagent 3 (enzyme E-labeled antibody 3A) and biotin-labeled antigen 2A decreases. The amount of enzyme E-labeled antibody 3A that binds to will also decrease. The calibration curve in Figure 8 supports this,
I have confirmed that this method can be used.

[反応速度の比較] また、従来法と本発明の方法との反応速度を比較するた
め、競合法EIAで同し抗!lX濃度について次のよう
な比較実験を行なった。
[Comparison of reaction rates] In addition, in order to compare the reaction rates between the conventional method and the method of the present invention, a competitive EIA method was used to compare the same results! The following comparative experiment was conducted regarding lX concentration.

(従来法) EIA用プレートのウェルにヒト血清アルブミン溶液(
5終g/l)を50JL1加え、室温で2時間反応させ
、洗浄を行なうことにより、ヒト血清アルフミンを結合
させ、抗原結合プレートを作製した。
(Conventional method) Human serum albumin solution (
5 g/l) was added, reacted for 2 hours at room temperature, and washed to bind human serum albumin to prepare an antigen-binding plate.

続いてヒト血清アルブミン(OILgI厘1〜250μ
g/■1)を50kl、ベルオキシターゼ標識抗ヒト血
清アルブミン抗体(10gg/ml)を50g1をそれ
ぞれ加え、反応時間を0.5時間、1時間、2時間、4
時間と変え、洗浄後、前記実施例1と同じ操作を行ない
、酵素量(活性)を測定した。
Next, human serum albumin (OILgI 1-250μ
Add 50kl of g/■1) and 50g1 of peroxidase-labeled anti-human serum albumin antibody (10gg/ml), and react for 0.5 hours, 1 hour, 2 hours, 4 hours.
After washing, the same operation as in Example 1 was performed except for the time, and the enzyme amount (activity) was measured.

(本発明) ビオチンを結合させであるウェルに、ヒト血清アJレブ
ミン溶液(OuLg/ml〜250 g g/ml)を
50.1.ベルオキシターゼ標識抗ヒト血清アルブミン
抗体(10ug/■1)を50g+、ビオチン標識ヒト
血清アルブミン(5pg/ml)を50ルIそれぞれ加
え、反応時間を0.5時間、1時間、2時間、4時間と
変えて反応させた後、アビジン(10gg/ml)を5
07zl加えて1時間反応させた。そして洗浄後、前記
実施例1と同じ操作を行ない、酵素量(活性)を測定し
た。
(The present invention) A human serum aerebumin solution (OuLg/ml to 250 g g/ml) was added to a well containing biotin at a concentration of 50.1. Add 50g of peroxidase-labeled anti-human serum albumin antibody (10ug/■1) and 50g of biotin-labeled human serum albumin (5pg/ml), and react for 0.5 hours, 1 hour, 2 hours, and 4 hours. After reaction, avidin (10 gg/ml) was added to
07zl was added and reacted for 1 hour. After washing, the same operation as in Example 1 was performed to measure the enzyme amount (activity).

第9図はこのような比較実験による結果を示しており1
本発明による場合は、0.5時間の反応時間で吸光度が
4時間反応の場合とほぼ同じとなり、約30分以下の反
応時間ですむが、従来法によれば、4時間反応後でも反
応が終了に至っておらず1本発明による場合の方が従来
法による場合よりはるかに速く反応か進行することか分
かる。
Figure 9 shows the results of such a comparative experiment.1
In the case of the present invention, the absorbance after a reaction time of 0.5 hours is almost the same as in the case of a 4-hour reaction, and the reaction time is about 30 minutes or less, but according to the conventional method, the reaction does not occur even after a 4-hour reaction. It can be seen that the reaction proceeded much faster in the case of the present invention than in the case of the conventional method.

従来法によれば、このように反応が遅いため、反応時間
を一定時間に設定して測定を行なっていたが、温度の影
響を受けやすい。一方本発明による場合は、温度の影響
が少なくなり、時間管理も鮎密にする必要かない。
According to the conventional method, since the reaction is slow as described above, the reaction time is set to a certain period of time for measurement, but it is easily affected by temperature. On the other hand, according to the present invention, the influence of temperature is reduced and there is no need for careful time management.

[安定性の比較] 競合法EIAにおけるヒト血清アルブミンの測定につい
て、第1O図で説明した従来法と、WSi2図て説明し
た公知の方法と、前記実施例の方法におけるそれぞれの
安定性の比較を、ヒト血清アルブミンの測定について行
った。
[Comparison of stability] Regarding the measurement of human serum albumin in competitive EIA, we compared the stability of the conventional method explained in Figure 1O, the known method explained in Figure WSi2, and the method of the above example. , human serum albumin was measured.

抗体3を予め固相に結合してお〈従来法については、前
記反応速度の比較で行なった方法で試薬を調製した。
Antibody 3 was bound to a solid phase in advance (for the conventional method, a reagent was prepared by the method used in the reaction rate comparison above).

第11図の方法については、EIA用のプレートのウェ
ルに、実施例1と同様の方法てアビジン(20ILg/
腸I)を200μ!加え、室温で2時間反応させ、アビ
ジンDを結合させた後、洗浄液てプレートを洗い、アジ
ピン結合プレートを作製した。
Regarding the method shown in FIG. 11, avidin (20 ILg/
Intestine I) 200μ! After addition, the mixture was reacted at room temperature for 2 hours to bind avidin D, and then the plate was washed with a washing solution to prepare an adipine-bound plate.

アビジン結合プレートを室温で2時間乾燥後、作製時、
作製7日間、作製30日間室温で放置した。別の試験管
内で下記の試薬1〜3を4時間反応させた後、その20
0弘1をアビジン結合プレートに加え、1時間反応させ
、洗浄後、実施例1と同一の方法で酵素量を測定した。
After drying the avidin-bound plate for 2 hours at room temperature, at the time of preparation,
It was left at room temperature for 7 days after preparation and 30 days after preparation. After reacting the following reagents 1 to 3 for 4 hours in a separate test tube,
0 Ko1 was added to an avidin-binding plate, reacted for 1 hour, and after washing, the amount of enzyme was measured in the same manner as in Example 1.

試薬l(抗原):ヒト血清アルブミン100!+(0〜
250 終gem+ ) 試薬2(ビオチン標識抗IX) :ビオチン標識ヒト血
清アルブミン100弘1(5JLg/鳳l)試薬3(酵
素標識抗体):ベルオキシターゼ標識抗ヒト血清アルブ
ミン抗体200g1(2,5gg/膳1) また、実施例1と同様に作製したビオチン結合プレート
と実施例2と同様に作製した抗原結合プレートを2作製
時、作製後7日間、作製後30日間室温で放置し、実施
例2と同一の操作を行ない、反応時間4時間において、
酵素量(活性)を測定した。
Reagent 1 (antigen): Human serum albumin 100! +(0~
250 Gem+) Reagent 2 (Biotin-labeled anti-IX): Biotin-labeled human serum albumin 100 g (5 JLg/L) Reagent 3 (enzyme-labeled antibody): Veroxidase-labeled anti-human serum albumin antibody 200 g (2.5 g/meal) 1) In addition, a biotin-binding plate prepared in the same manner as in Example 1 and an antigen-binding plate prepared in the same manner as in Example 2 were left at room temperature for 7 days and 30 days after preparation. Perform the same operation, and at a reaction time of 4 hours,
Enzyme amount (activity) was measured.

第12図(A)〜CC)は、それぞれ、抗体結合プレー
ト、アビジン結合プレート、本実施例の各場合における
時間経過による安定性の比較実験結果を示す。アビジン
結合プレートと、抗原結合プレートは時間経過により吸
光度の低下か認められ、アビジン、抗原(ヒト血清アル
ブミン)のような蛋白質は固相面での安定性に問題かあ
ることか判明した。ビオチンは第13図の構造式で示さ
れる低分子量の化合物であり、安定性の面て優れている
ことが確認できた。
Figures 12 (A) to CC) show the results of a comparative experiment of stability over time in each case of an antibody-bound plate, an avidin-bound plate, and the present example. It was observed that the absorbance of the avidin-binding plate and the antigen-binding plate decreased over time, indicating that proteins such as avidin and antigen (human serum albumin) had stability problems on the solid phase surface. Biotin is a low molecular weight compound shown by the structural formula of FIG. 13, and it was confirmed that it has excellent stability.

以上の説明は、EIA法について行なったか、本発明は
、前記RIA、FIA、TR−FIA等、標識を放射性
物質や蛍光物質により行なう場合にも適用しうろことは
、上記の説明から明白である。
Although the above explanation has been made regarding the EIA method, it is clear from the above explanation that the present invention can also be applied to cases where the labeling is performed using a radioactive substance or a fluorescent substance, such as the RIA, FIA, TR-FIA, etc. .

(発明の効果) 本発明は、予めビオチンを固相に結合させておく方法で
あり、ビオチンは有機化合物であるため、タンパク質等
のように温度、酵素等の影響による分解作用を受けに〈
〈、比較的安定であり、安定性の面で有利である。
(Effects of the Invention) The present invention is a method in which biotin is bound to a solid phase in advance, and since biotin is an organic compound, it is not susceptible to decomposition effects due to temperature, enzymes, etc. like proteins.
〈It is relatively stable and has advantages in terms of stability.

また、固相に直接結合されるものはビオチンであり、こ
れにアビジンを介してビオチン標識抗原または抗体か結
合されるので、固相として用意するものはビオチンを結
合した共通のものてあり、従来のように、抗原あるいは
抗体の種類毎に固相を用意する必要かないため、製造ラ
インか単純化され、製造原価が低減され、管理も容易と
なる。
In addition, biotin is directly bound to the solid phase, and biotin-labeled antigens or antibodies are bound to this via avidin, so the solid phase prepared is a common one that binds biotin. As there is no need to prepare a solid phase for each type of antigen or antibody, the production line is simplified, production costs are reduced, and management is facilitated.

また、本発明においては、抗原抗体反応は液層で起こる
ため、反応速度か速くなり測定時間が短縮される。また
、従来法のように1時間を設定して測定する場合のよう
な温度や時間の相違による影響を受けにくく、測定精度
を向上させることができ、かつ時間管理がラフてすむた
め、測定が容易となる。
Furthermore, in the present invention, since the antigen-antibody reaction occurs in a liquid layer, the reaction rate is faster and the measurement time is shortened. In addition, it is less susceptible to the effects of temperature and time differences when measuring by setting one hour as in the conventional method, improving measurement accuracy and requiring less rough time management. It becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の測定原理図、第3図は本
発明をサンドイッチEIAに応用した場合の測定原理図
、第4図はサンドイッチEIAに関する該実施例におい
て、試薬を加える手順を変えた場合における検量線の変
化を示す図、第5図は該実施例においてアビジンの量を
変えた場合ノ検量線の変化を示す図、第6図は本実施例
での種々の抗体濃度におけるアビジン濃度と吸光度との
関係図、第7図は本発明を競合法EIAに応用した場合
の原理説明図、第8図は該EIAを応用した本発明の実
施例における検量線を示す図、第9図は従来法と本発明
の方法による場合の測定結果の比較図、第10図は従来
法の測定原理図、第11図はアビジン使用の公知の測定
方法の原理図、第12図(A)〜(C)は前記従来方法
、公知の方法および本発明による方法の安定性について
の比較図、第13図はビオチンの構造式である。 A:アビジン、B:ビオチン、E:酵素、■:固相、2
.2A:抗原、3.3A:抗体
Figures 1 and 2 are diagrams of the measurement principle of the present invention, Figure 3 is a diagram of the measurement principle when the present invention is applied to sandwich EIA, and Figure 4 is the procedure for adding reagents in this embodiment regarding sandwich EIA. FIG. 5 is a diagram showing changes in the standard curve when the amount of avidin is changed in this example, and FIG. 6 is a diagram showing changes in the calibration curve when the amount of avidin is changed in this example. A diagram showing the relationship between avidin concentration and absorbance, FIG. 7 is a diagram explaining the principle when the present invention is applied to competitive EIA, and FIG. 8 is a diagram showing a calibration curve in an example of the present invention applying the EIA. Figure 9 is a comparison diagram of the measurement results of the conventional method and the method of the present invention, Figure 10 is a diagram of the measurement principle of the conventional method, Figure 11 is a diagram of the principle of a known measurement method using avidin, and Figure 12 (A ) to (C) are comparative diagrams of the stability of the conventional method, the known method, and the method according to the present invention, and FIG. 13 is the structural formula of biotin. A: Avidin, B: Biotin, E: Enzyme, ■: Solid phase, 2
.. 2A: Antigen, 3.3A: Antibody

Claims (1)

【特許請求の範囲】 1、BF分離用固相に予めビオチン(その類似物質、誘
導体を含む)を結合させておき、該固相に、測定時、ア
ビジン(その類似物質を含む)を介して、ビオチン(そ
の類似物質、誘導体を含む)を標識した抗原もしくは抗
体を結合させることを特徴とする免疫学的測定用BF分
離法。 2、請求項1において、前記アビジン濃度が0.5μg
/ml〜2000μg/mlであることを特徴とする免
疫学的測定用BF分離法。
[Claims] 1. Biotin (including its analogues and derivatives) is bound in advance to the solid phase for BF separation, and at the time of measurement, biotin (including its analogues and derivatives) is bonded to the solid phase through avidin (including its analogues). , a BF separation method for immunoassay, characterized by binding an antigen or antibody labeled with biotin (including analogues and derivatives thereof). 2. In claim 1, the avidin concentration is 0.5 μg.
1. A BF separation method for immunoassay, characterized in that the concentration is 2000 μg/ml to 2000 μg/ml.
JP16868290A 1990-06-27 1990-06-27 Bf separation for immunological measurement Pending JPH0458155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16868290A JPH0458155A (en) 1990-06-27 1990-06-27 Bf separation for immunological measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16868290A JPH0458155A (en) 1990-06-27 1990-06-27 Bf separation for immunological measurement

Publications (1)

Publication Number Publication Date
JPH0458155A true JPH0458155A (en) 1992-02-25

Family

ID=15872524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16868290A Pending JPH0458155A (en) 1990-06-27 1990-06-27 Bf separation for immunological measurement

Country Status (1)

Country Link
JP (1) JPH0458155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085779A (en) * 2005-09-20 2007-04-05 Nissui Pharm Co Ltd Analysis method of biological substance using microchip and analyzing kit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085779A (en) * 2005-09-20 2007-04-05 Nissui Pharm Co Ltd Analysis method of biological substance using microchip and analyzing kit

Similar Documents

Publication Publication Date Title
US6184042B1 (en) Method for reducing hook effect in an immunoassay
US4228237A (en) Methods for the detection and determination of ligands
US5126241A (en) Process for the determination of a specifically bindable substance
IE920778A1 (en) Method for specific binding assays using a releasable ligand
DK165381B (en) IMMUNO ANALYSIS FOR THE DETERMINATION OF LIGANDS BY BIOTIN AND ANTIBIOTIN
JPH0926423A (en) Synthetic calibrator for use in immunoassay containing body under test formed as composite for inactive carrier moleculeor partial alignment thereof
US5316784A (en) Process for the production of a solid phase matrix coated with an immunologically active substance
US4929543A (en) Process for the determination of an antibody in human body fluids
US5792606A (en) Nucleic acid hybridization based assay for determining a substance of interest
JPH0264459A (en) Method and reagent for measuring substance, which can be bonded
US5437981A (en) Method for the immunological determination of ligands
EP0161107A2 (en) Immunometric method for the determination of a hapten
JPH01209370A (en) Method and apparatus for measuring immunologically active substance
JPH0458155A (en) Bf separation for immunological measurement
Hiroyuki et al. An enzyme immunoassay system for measurement of serum insulin
JPH04236353A (en) Measuring method for antibody
KR940008091B1 (en) Method for the immunological determination of ligands
AU703940B2 (en) Regenerable solid phase for carrying out specific binding reactions
JP2807831B2 (en) Immunoassay
JPH0273158A (en) Measuring method for material in sample
JPS59210366A (en) Manufacture of insolubilized antigen and insolubilized antibody for immunological assay
JPH0466871A (en) High sensitive immunoassay
US5998157A (en) Acylated protein aggregates and their use as signal enhancers in an immunoassay for the detection of antibodies
JPS6082966A (en) Assay of antigen
JP2000241431A (en) Immunological measuring reagent and measuring method for immunoglobulin a-fibronectin complex