JPH0457949A - Production of blended felt consisting essentially of pitch-based carbon fiber - Google Patents
Production of blended felt consisting essentially of pitch-based carbon fiberInfo
- Publication number
- JPH0457949A JPH0457949A JP2164198A JP16419890A JPH0457949A JP H0457949 A JPH0457949 A JP H0457949A JP 2164198 A JP2164198 A JP 2164198A JP 16419890 A JP16419890 A JP 16419890A JP H0457949 A JPH0457949 A JP H0457949A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- fiber
- fibers
- felt
- based carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 23
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 13
- 239000000835 fiber Substances 0.000 claims abstract description 74
- 239000007833 carbon precursor Substances 0.000 claims abstract description 24
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 18
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 18
- 238000003763 carbonization Methods 0.000 claims description 7
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 2
- 238000004080 punching Methods 0.000 abstract description 10
- 238000002156 mixing Methods 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 description 11
- 238000009960 carding Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 238000009987 spinning Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 229920002972 Acrylic fiber Polymers 0.000 description 2
- 229920006282 Phenolic fiber Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical class C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 241000347389 Serranus cabrilla Species 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000009656 pre-carbonization Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Landscapes
- Nonwoven Fabrics (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明はピッチ系炭素材からなる繊維杖集合体を原料と
して、断熱材・C/C材(炭素繊維強化炭素複合材料)
・活性炭素繊維等の原料となるピッチ系炭素繊維を主成
分とするフェルトを安定的に製造する方法に関するもの
である。[Detailed description of the invention] <Industrial application field> The present invention uses a fiber cane aggregate made of pitch-based carbon material as a raw material to produce heat insulating materials and C/C materials (carbon fiber reinforced carbon composite materials).
- It relates to a method for stably producing felt whose main component is pitch-based carbon fiber, which is a raw material for activated carbon fiber and the like.
〈従来の技術〉
一般に炭素繊維を主成分としたフェルトを製造する方法
としては特公昭51−33223号公報に示されている
ように繊維形成性ピッチを溶融紡糸し、ピッチ繊維から
なる不織布を形成した後不融化及び炭化を行って、−旦
炭素繊維(以後炭素繊維をCFと略記する)の不織布を
得、ついで得られたCFの不織布を積層し単位面積当り
の目付量を調整した後ニードルパンチを施してフェルト
を得る方法及び一般的方法であるがCFをカード機にか
けた後ニルドルパンチによりフェルト化する方法即ち、
繊維形成性ピッチを溶融紡糸し、不融化・炭化処理をし
てCF集合体を製造しこれをカード機により単繊維にほ
ぐしく以下開繊と略記する)任意の量を積層し単位面積
当りの目付量を調整した後ニードルパンチを施してフェ
ルトを得る方法がある。<Prior art> In general, a method for producing felt mainly composed of carbon fibers is to melt-spun fiber-forming pitch to form a nonwoven fabric made of pitch fibers, as shown in Japanese Patent Publication No. 51-33223. After that, it is infusible and carbonized to obtain a carbon fiber (hereinafter abbreviated as CF) non-woven fabric, and then the obtained CF non-woven fabric is laminated and the weight per unit area is adjusted, and then needles are formed. A method to obtain felt by punching and a general method in which CF is applied to a card machine and then made into felt by a nildol punch, that is,
Fiber-forming pitch is melt-spun, infusible and carbonized to produce a CF aggregate, which is loosened into single fibers using a card machine (hereinafter abbreviated as fiber opening) and laminated in any amount to produce a CF aggregate per unit area. There is a method of obtaining felt by needle punching after adjusting the basis weight.
前者は一旦CFの不織布を作ってCFの力学的特性を発
現させた後、ニードルパンチによりフェルトを形成させ
るため、不織布を形成している単繊維は自由度が少ない
状態で三次元方向に引張られるため剛性の強い繊維の折
損は免かれず製造されたフェルトは形態保持力が極めて
弱いものとならざるを得ない。In the former method, a CF nonwoven fabric is made to exhibit the mechanical properties of CF, and then felt is formed by needle punching, so the single fibers forming the nonwoven fabric are pulled in three-dimensional directions with few degrees of freedom. Therefore, the highly rigid fibers are inevitably broken, and the produced felt inevitably has extremely weak shape retention.
一方後者の方式である焼成後のCFを出発原料とするフ
ェルト製造法では、短繊維の集合体からなるトウ又はシ
ート状繊維を単糸状に開繊する工程が重要なポイントと
なり、脆弱なCFはカード機による開繊製条工程で一部
は粉化し一部は極く短繊維化し処理中に落下し、カード
ウェブとなって得られる繊維はたかだか50〜60%と
収率が悪い上に、形態保持力が極めて弱いため次工程へ
進めない場合も発生する。従って安定的なフェルトの製
造は期待出来ない。On the other hand, in the latter method, a felt manufacturing method that uses fired CF as a starting material, the important point is the process of opening tow or sheet-like fibers made of aggregates of short fibers into single filaments. During the opening and manufacturing process using a carding machine, some of the fibers are powdered and some of them become extremely short fibers that fall during processing, and the fibers obtained as a carded web are at most 50-60%, which is poor yield. There are cases where it is impossible to proceed to the next step because the shape retention is extremely weak. Therefore, stable production of felt cannot be expected.
第1図に公知のカード機を示すが、原料のCFはコンベ
ヤー1によりフィードローラー2及びテーカインローラ
−3を経てシリンダー6の表面に装入され、シリンダー
6の表面に植込まれたメタリンクワイヤー7によりシリ
ンダー6の回転方向に移動する。同時にシリンダー表面
にほぼ接触する様に設置されて回転するストリッパー5
を備えた複数のローラーカード4の表面の針が順次原料
繊維中に差し込まれ、シリンダー周速とローラーカード
周速の差によって原料繊維は梳ずられる。FIG. 1 shows a known carding machine, in which raw material CF is charged onto the surface of a cylinder 6 via a conveyor 1 via a feed roller 2 and a take-in roller 3, and a metal link embedded in the surface of the cylinder 6. The wire 7 moves the cylinder 6 in the direction of rotation. At the same time, the stripper 5 is installed and rotates so as to be almost in contact with the cylinder surface.
The needles on the surface of a plurality of roller cards 4 equipped with a roller card 4 are sequentially inserted into the raw material fibers, and the raw fibers are combed by the difference between the peripheral speed of the cylinder and the peripheral speed of the roller card.
このIICFの絡み合いが多いため、単繊維の移動抵抗
が大きく且つ曲げに対して極めて脆い原料CFはローラ
ーカード針が差し込まれると、引っ掛けられた繊維が移
動することなく、その場で大半が折損して、短繊維化し
てしまう、このため次工程であるドツファ−8において
振動コーム9により、はぎ取られてカレンダーローラー
10を経て得られるウェブの製品収率は低く、然もこの
ウェブは自重で破断してしまう程形態保持力が極めて低
い不安定なものとなる。Due to the large amount of intertwining of these IICFs, when a roller card needle is inserted into the raw material CF, which has a large movement resistance and is extremely brittle against bending, most of the caught fibers do not move and break on the spot. Therefore, in the next process, the docker 8, the web is stripped off by the vibrating comb 9 and passed through the calendar roller 10, resulting in a low product yield, and the web breaks under its own weight. The more the shape is retained, the more unstable it becomes.
〈発明が解決しようとする課題〉
そこで本発明の目的は、高剛性のために曲げに対して跪
く、相互の絡み合いの悪いピッチ系炭素材からなる繊維
を開繊する工程を経てフェルトにするに際して、繊維状
集合体を折損させることなく、歩留りよく、密度及び厚
みが均一なピッチ系CFを主成分としたフェルトを安定
的に効率よく製造する方法を提供することにある。<Problems to be Solved by the Invention> Therefore, the purpose of the present invention is to provide a method for making felt through a process of opening fibers made of a pitch-based carbon material that has high rigidity and bends against bending and has poor mutual entanglement. An object of the present invention is to provide a method for stably and efficiently producing felt containing pitch-based CF as a main component with a high yield and uniform density and thickness without causing breakage of the fibrous aggregate.
〈!!題を解決するための手段〉
本発明は、ピッチ系炭素材からなる繊維集合体にピッチ
系以外の炭素前駆体からなる繊維を重量比で9対1乃至
6対4の範囲で混入させピッチ系炭素繊維間の摩擦抵抗
を減少させ、ついで、該混合ウェブを積層した後、物理
的または機械的な作用で結合させる処理を施すことを特
徴とするピッチ系炭素繊維を主成分とする混紡フェルト
の製造方法であり、ピッチ系以外の炭素前駆体からなる
繊維としては、フェノール系耐炎化糸又はポリアクリル
ニトリル系耐炎化糸を用いることが望ましく、また必要
に応じて、混紡フェルトにさらに炭化処理を施すことも
できる。<! ! Means for Solving the Problem> The present invention provides a pitch-based carbon material by mixing fibers made of a carbon precursor other than pitch-based material into a fiber aggregate made of a pitch-based carbon material at a weight ratio of 9:1 to 6:4. A blended felt mainly composed of pitch-based carbon fibers, which is characterized in that the frictional resistance between carbon fibers is reduced, and then, after the mixed webs are laminated, they are bonded by physical or mechanical action. In this manufacturing method, it is preferable to use phenolic flame-resistant yarn or polyacrylonitrile flame-resistant yarn as the fiber made of a carbon precursor other than pitch-based yarn, and if necessary, the blended felt may be further carbonized. It can also be applied.
〈作用〉
本発明は断熱材・C/C材・濾材等の原料に適した炭素
繊維フェルトを製造するにあたり、紡糸に続く不融化・
予備炭化後に得られる種々の形態のピッチ系炭素材から
なる繊維状集合体にピッチ系以外の炭素前駆体繊維を重
量比で9対1乃至6対4の範囲で混入させ、開繊処理を
施したのち、混合ウェブを得、ついでこの混合ウェブを
積層して所要の目付量とした後、ニードルパンチ等物理
的または機械的な作用で結合させフェルトを得るか、更
に該フェルトを炭化処理することによりピッチ系炭素繊
維を主成分とする混紡フェルトの製造方法である。<Function> In producing carbon fiber felt suitable as a raw material for heat insulating materials, C/C materials, filter media, etc., the present invention provides infusible and
Carbon precursor fibers other than pitch-based fibers are mixed in a fibrous aggregate made of pitch-based carbon materials in various forms obtained after preliminary carbonization at a weight ratio of 9:1 to 6:4, and subjected to fiber opening treatment. After that, a mixed web is obtained, and then this mixed web is laminated to obtain the required basis weight, and then bonded by physical or mechanical action such as needle punching to obtain a felt, or the felt is further carbonized. This is a method for producing a blended felt whose main component is pitch-based carbon fiber.
前記ピッチ系炭素材としてはピッチ系炭素繊維が挙げら
れ、700℃以上で炭化処理を施したものが挙げられる
。Examples of the pitch-based carbon material include pitch-based carbon fibers, which are carbonized at 700° C. or higher.
前記ピッチ系以外の炭素前駆体繊維としては硬化処理フ
ェノール系耐炎化繊維やアクリル系耐炎化処理繊維等、
炭化可能な繊維が挙げられる。この混入する炭素前駆体
繊維は、ピッチ系炭素材からなる繊維状集合体と該炭素
前駆体繊維の重量比が9/1〜6/4の範囲、好ましく
は872〜6/4の範囲となるように混入する。Examples of carbon precursor fibers other than pitch-based fibers include hardened phenolic flame-resistant fibers, acrylic flame-resistant fibers, etc.
Carbonizable fibers may be mentioned. The carbon precursor fibers to be mixed have a weight ratio of the fibrous aggregate made of pitch-based carbon material to the carbon precursor fibers in the range of 9/1 to 6/4, preferably in the range of 872 to 6/4. mix it up like this.
また炭素前駆体繊維の径はピッチ系炭素材からなる繊維
状集合体とほぼ同一で繊維長も同一か又はそれ以下の方
が混合が容易となり好ましい、従って混入する炭素前駆
体繊維は30〜200■好ましくは50〜150−にし
ておく必要がある。また破断伸度は5%以上好ましくは
10%以上のものを採用し、曲げに対して容易に折損し
にくい様にするのが好ましい。In addition, it is preferable that the diameter of the carbon precursor fibers is approximately the same as that of the fibrous aggregate made of pitch-based carbon material, and the fiber length is also the same or less because mixing becomes easier. Therefore, the number of carbon precursor fibers to be mixed is 30 to 200 (2) Preferably, it is necessary to set it to 50-150-. Further, it is preferable to use a breaking elongation of 5% or more, preferably 10% or more, so that it does not easily break when bent.
尚本発明におけるピッチ系炭素材からなる繊維状集合体
と炭素前駆体繊維との混合には一般的に良く知られたエ
アーブローで開繊させながら混合し、第2図に示す如き
カード機の原料供給装置であるオートフィーダー11に
引き続きカード機にて製条処理を施してカードウェブを
得る。このカードウェブは繊維の配列が進行方向に整列
するのでランピング装置12により交差積層し合わせて
目付量や厚さを調整しニードルパンチ装置13を通して
フェルトを得ることが出来る。こAで得られたフェルト
はこの状態で断熱材や活性炭素繊維用の原料フェルトと
して供給可能であり、更には炭素前駆体繊維の特性に合
わせて炭化処理を施すことにより、ピッチ系CFを主成
分とした、100%CFで構成されるフェルトを得るこ
とも出来る。In addition, in the present invention, the fibrous aggregate made of pitch-based carbon material and the carbon precursor fiber are mixed while being opened by a generally well-known air blow, and are mixed using a card machine as shown in Fig. 2. Following the auto feeder 11, which is a raw material supply device, a carding machine performs a strip-forming process to obtain a carded web. Since the fibers of this carded web are aligned in the direction of travel, it is possible to cross-laminate them using a ramping device 12, adjust the basis weight and thickness, and then pass them through a needle punching device 13 to obtain felt. The felt obtained in this step A can be supplied in this state as a raw material felt for heat insulating materials or activated carbon fibers.Furthermore, by performing a carbonization treatment to match the characteristics of the carbon precursor fiber, it can be used as a raw material for pitch-based CF. It is also possible to obtain a felt composed of 100% CF as a component.
尚、ニードルパンチ操作の替りに、ステッチボンド法に
よって処理することもできる。Incidentally, instead of the needle punch operation, a stitch bond method can also be used.
本発明のポイントは、ピッチ系以外の炭素前駆体からな
る繊維を、炭化又は予備炭化後のピッチ系炭素材からな
る繊維状集合体に混入させ、単繊維同志の移動に対する
抵抗を弱めることにより製条工程(カード処理時)での
繊維折損を防止したところにあるが、これはピッチ系C
Fと他の炭素前駆体繊維との摩擦抵抗がピッチCF相互
間のそれより低い事に着目した点にある。The key point of the present invention is to mix fibers made of a carbon precursor other than pitch-based into a fibrous aggregate made of pitch-based carbon material after carbonization or pre-carbonization to weaken the resistance to movement of single fibers. The purpose is to prevent fiber breakage during the stripping process (during card processing), but this is due to the pitch type C
The point is that the frictional resistance between F and other carbon precursor fibers is lower than that between pitch CF.
ピッチ系炭素材からなる繊維状集合体に前記炭素前駆体
繊維を所定量混入することにより製条工程は元より、ニ
ードルパンチ工程での短繊維化も抑制されて均質で強度
の優れたフェルトを製造することが出来る。By mixing a predetermined amount of the carbon precursor fibers into a fibrous aggregate made of pitch-based carbon material, it is possible to suppress shortening of fibers not only in the fabrication process but also in the needle punching process, resulting in a felt that is homogeneous and has excellent strength. It can be manufactured.
今、混合ウェブが炭素前駆体繊維を6対4の範囲、即ち
40重量%を趨えて混入している場合には、製造コスト
が高くなるだけでなくこの樟な原料から製造したフェル
トを炭化した場合炭素前駆体繊維の収縮によりフェルト
の厚み・目付等に不均一部分が生じ、所望フェルトの収
率は低下する。Now, if the mixed web contains carbon precursor fibers in a 6:4 ratio, or 40% by weight, it not only increases the production cost but also reduces the carbonization of the felt made from this camphor raw material. In this case, shrinkage of the carbon precursor fibers causes unevenness in the thickness, basis weight, etc. of the felt, and the yield of the desired felt decreases.
方、炭素前駆体繊維の混入量が9対1の範囲、即ち10
重量%未滴の場合には製条工程で安定したカードウェブ
が得られず、本発明の目的を達成することは不可能であ
る。従って本発明においては炭素前駆体繊維の混入量を
、ピッチ系炭素材からなる繊維集合体と炭素前駆体繊維
の重量比が9対1乃至6対4の範囲内に限定する。On the other hand, when the amount of carbon precursor fibers mixed is in the range of 9:1, that is, 10
In the case of no droplets by weight, a stable carded web cannot be obtained in the strip-forming process, making it impossible to achieve the object of the present invention. Therefore, in the present invention, the amount of carbon precursor fibers mixed is limited to a range in which the weight ratio of the fiber aggregate made of pitch-based carbon material to the carbon precursor fibers is in the range of 9:1 to 6:4.
以下に本発明を実施例及び比較例によりさらに詳細に説
明する。The present invention will be explained in more detail below using Examples and Comparative Examples.
〈実施例〉
実施例1
繊維形成性ピッチを遠心紡糸し、不融化・炭化して得ら
れたピッチ系CF(平均径18μ、平均引張強度60k
g/m’ 、平均引張弾性率3 ton / sw ”
)を予め開繊し平均繊維長60舖の単糸塊を得た。<Example> Example 1 Pitch-based CF obtained by centrifugally spinning fiber-forming pitch, making it infusible and carbonizing it (average diameter 18μ, average tensile strength 60k)
g/m', average tensile modulus 3 ton/sw"
) was pre-opened to obtain a single yarn mass with an average fiber length of 60 threads.
これにカイノールファイバー(日本カイノール社販売フ
ェノール系繊維の商品名、平均径14μ、平均引張強度
20kg/am”、伸度約30%、平均繊維長51閣)
を重量にして85対15の割合でエアーブロー法により
混合し、第2図に示すカード機にてウェブを製造し、引
き続き積層・ニードルパンチを施してフェルトを得た。Kynor fiber (trade name of phenolic fiber sold by Japan Kynor Co., Ltd., average diameter 14 μ, average tensile strength 20 kg/am”, elongation approximately 30%, average fiber length 51 kaku)
were mixed by air blowing in a ratio of 85:15 by weight, and a web was produced using a carding machine shown in FIG. 2, followed by lamination and needle punching to obtain felt.
ウェブの収率は約80%であった。また、目付量は約5
00g/rdで厚さ、密度共均−であった。Web yield was approximately 80%. In addition, the basis weight is approximately 5
The thickness and density were uniform at 00 g/rd.
実施例2
繊維形成性ピッチを遠心紡糸し、不融化・炭化して得ら
れたピッチ系CF(平均径18μ、平均引張強度60k
g/m” 、平均引張弾性率3ton/m”)を予め開
繊し平均繊維長60鴫の単糸塊を得た。Example 2 Pitch-based CF obtained by centrifugally spinning fiber-forming pitch, infusible and carbonized (average diameter 18μ, average tensile strength 60k)
g/m'', average tensile modulus of elasticity 3 ton/m'') was pre-opened to obtain a single yarn mass with an average fiber length of 60 ton/m.
これにカイノールファイバー(日本カイノール社販売フ
ェノール系繊維の商品名、平均径14μ、平均引張強度
20kg/−2.伸度約30%、平均繊維長51m)を
重量にして85対15の割合でエアーブロー法で混合し
第2図に示すカード機にて処理し引き続き積層・ニード
ルパンチを施し、ついで最高温度900℃で炭化してフ
ェルトを得た。ウェブの収率は約80%であった。また
、このフェルトは目付量が約500g/lrrで厚さ、
密度共均−であった。To this, Kynol fiber (trade name of phenolic fiber sold by Nippon Kynol Co., Ltd., average diameter 14 μ, average tensile strength 20 kg/-2, elongation approximately 30%, average fiber length 51 m) was added in a ratio of 85:15 by weight. The materials were mixed by an air blow method, processed using a card machine shown in FIG. 2, laminated and needle punched, and then carbonized at a maximum temperature of 900° C. to obtain felt. Web yield was approximately 80%. In addition, this felt has a basis weight of approximately 500g/lrr and a thickness of
The density co-average was -.
実施例3
次に実施例1と同様のピッチ系CFと前述カイノールフ
ァイバーを60対40の割合で混合し実施例2と同様の
処理を施してフェルトを得たが、このフェルトも厚さ、
密度共均−であった。ウェブの収率は85%であった。Example 3 Next, the same pitch-based CF as in Example 1 and the aforementioned Kynol fiber were mixed in a ratio of 60:40 and treated in the same manner as in Example 2 to obtain felt, but this felt also had different thicknesses and
The density co-average was -. The web yield was 85%.
実施例4
繊維形成性ピッチを遠心紡糸し、不融化・炭化して得ら
れたピッチ系CF(平均径18μ、平均引張強度60k
g/w” 、平均引張弾性率3 ton 7wm”)を
予め開繊し平均繊維長60+*の単糸塊を得た。Example 4 Pitch-based CF obtained by centrifugally spinning fiber-forming pitch, infusible and carbonized (average diameter 18μ, average tensile strength 60k)
g/w", average tensile elastic modulus 3 ton 7wm") was opened in advance to obtain a single yarn mass with an average fiber length of 60+*.
これにアクリル系耐炎化系パイロメックス(東邦レーヨ
ン社販売アクリル繊維を原料とする耐炎化糸の商品名、
平均径14μ、平均引張強度17kg/s*を伸度的2
0%、平均繊維長75舗)を重量にして80対20の割
合でエアーブロー法で混合し、第2図に示すカード機に
てウェブを製造し、引続き積層・ニードルパンチを施し
てフェルトを得た。ウェブの収率は約80%であった。This is combined with acrylic flame-resistant Pyromex (trade name of flame-resistant yarn made from acrylic fiber sold by Toho Rayon Co., Ltd.).
The average diameter is 14 μ, the average tensile strength is 17 kg/s*, and the elongation is 2.
0%, average fiber length 75) were mixed by air blowing at a ratio of 80:20 by weight, a web was produced using a carding machine as shown in Figure 2, and then laminated and needle punched to make felt. Obtained. Web yield was approximately 80%.
また得られたフェルトの目付量は約500g/nfで厚
さ、密度共均−であった。The weight of the obtained felt was approximately 500 g/nf, and the thickness and density were uniform.
実施例5
繊維形成性ピッチを遠心紡糸し、不融化・炭化して得ら
れたピッチ系CF(平均径18μ、平均引張強度60k
g/am” 、平均引張弾性率3ton/sm’)を予
め開繊し平均繊維長60閣の単糸塊を得た。Example 5 Pitch-based CF obtained by centrifugally spinning fiber-forming pitch, infusible and carbonized (average diameter 18μ, average tensile strength 60k)
g/am'', average tensile modulus of elasticity 3 ton/sm'), and was pre-opened to obtain a single yarn mass with an average fiber length of 60 mm.
これにアクリル系耐炎化系パイロメックス(東邦レーヨ
ン社販売アクリル繊維を原料とする耐炎化糸の商品名、
平均径14μ、平均引張強度17 kg / wr ”
。This is combined with acrylic flame-resistant Pyromex (trade name of flame-resistant yarn made from acrylic fiber sold by Toho Rayon Co., Ltd.).
Average diameter 14μ, average tensile strength 17 kg/wr”
.
伸度的20%、平均繊維長75−)を重量にして80対
20の割合でエアーブロー法で混合し、第2図に示ずカ
ード機にてウェブを製造し、引続き積層・ニードルパン
チを施し、ついで最高温度900°Cで炭化してフェル
トを得た。ウェブの収率は約80%であった。またこの
フェルトの目付量は約500g/rdで厚さ、密度共均
−であった。20% elongation and 75% average fiber length) were mixed by air blowing at a ratio of 80:20 by weight, and a web was produced using a carding machine (not shown in Figure 2), followed by lamination and needle punching. The felt was then carbonized at a maximum temperature of 900°C. Web yield was approximately 80%. The weight of this felt was approximately 500 g/rd, and the thickness and density were uniform.
比較例1
実施例2で用いたピッチ系CFに同じく前述カイノール
ファイバーを重量比95対5の割合で混入し第2図のカ
ード機にかけてカードウェブを得ようとした。然しテー
カインローラ−3及びドツファ−8の下部床上に短繊維
化したCFが一部落下してしまい、ウェブの収率はせい
ぜい60%程度にしかならなかった。また、ウェブ自身
もそれを構成する繊維が短くなっているため、自重で破
断する程の強度しかなかった。Comparative Example 1 The pitch-based CF used in Example 2 was mixed with the aforementioned Kynol fiber at a weight ratio of 95:5, and the mixture was run through the carding machine shown in FIG. 2 to obtain a carded web. However, some of the shortened CF fell onto the lower floor of the take-in roller 3 and the dosing roller 8, and the yield of the web was only about 60% at most. Furthermore, since the fibers constituting the web itself were short, the web itself had only enough strength to break under its own weight.
比較例2
次に実施例2で用いたピッチ系CFに同じく前述カイノ
ールファイバーを重量比55対45の割合で混入し第2
図のカード機にかけてカードウェブを得、引き続き積層
・ニードルパンチを施し最高温度900°Cで炭化して
フェルトを得た。ウェブの収率は85%であった。然し
、このフェルトはカイノール繊維が収縮したため変形し
、均一な厚みとならず目付量にも大きなバラツキを生じ
著るしく成形性を損ねた。Comparative Example 2 Next, the pitch-based CF used in Example 2 was mixed with the aforementioned Kynol fiber at a weight ratio of 55:45.
A carded web was obtained using the carding machine shown in the figure, followed by lamination, needle punching, and carbonization at a maximum temperature of 900°C to obtain felt. The web yield was 85%. However, this felt was deformed due to the shrinkage of the Kynol fibers, and did not have a uniform thickness, resulting in large variations in area weight and significantly impairing moldability.
以上、実施例・比較例を表−1に示す。The Examples and Comparative Examples are shown in Table 1.
〈発明の効果〉
以上説明した様に本発明の炭素繊維フェルトの製造方法
においては紡糸に続く不融化、予gI炭化後に得られる
種々の形態のピッチ系炭素材からなる繊維状集合体に、
これ以外の炭素前駆体繊維を所定!混入することにより
断熱材・C/C材・活性炭素繊維等種々の炭素繊維製品
の原料となるピンチ系炭素繊維を主成分とする均一なフ
ェルトを安定的に製造できるという効果が得られる。<Effects of the Invention> As explained above, in the method for producing carbon fiber felt of the present invention, fibrous aggregates made of pitch-based carbon materials in various forms obtained after spinning, infusibility, and pre-gI carbonization,
Specify other carbon precursor fibers! By mixing it, it is possible to stably produce a uniform felt whose main component is pinch type carbon fiber, which is a raw material for various carbon fiber products such as heat insulating materials, C/C materials, and activated carbon fibers.
第1図は本発明に使用することのできるカード機械の概
略図、第2図は本発明に使用することのできるフェルト
製造装置の概略図である。
l・・・コンベヤー 2・・・フィードローラー
3・・・テーカインローラ−14・・・ローラーカード
、5・・・ストリッパー 6・・・シリンダー7・
・・メタリックワイヤー、8・・・ドツファ−9・・・
コーマ−10・・・カレンダーローラー11・・・オー
トフィーダー、12・・・ラッピング装置、13・・・
ニードルバンチ装置、
14・・・原料炭素繊維(混合繊維)、15・・・カー
ドウェブ、 16・・・炭素繊維フェルト。
特許出願人 川崎製鉄株式会社FIG. 1 is a schematic diagram of a card machine that can be used in the present invention, and FIG. 2 is a schematic diagram of a felt manufacturing apparatus that can be used in the present invention. l... Conveyor 2... Feed roller 3... Take-in roller 14... Roller card, 5... Stripper 6... Cylinder 7.
...Metallic wire, 8...Dotsfa-9...
Comber 10... Calendar roller 11... Auto feeder, 12... Wrapping device, 13...
Needle bunch device, 14... Raw carbon fiber (mixed fiber), 15... Card web, 16... Carbon fiber felt. Patent applicant: Kawasaki Steel Corporation
Claims (3)
の炭素前駆体からなる繊維を重量比で9対1乃至6対4
の範囲で混入させピッチ系炭素繊維間の摩擦抵抗を減少
させ、ついで該混合ウェブを積層した後、物理的または
機械的な作用で結合させる処理を施すことを特徴とする
ピッチ系炭素繊維を主成分とする混紡フェルトの製造方
法。1. The weight ratio of fibers made of a carbon precursor other than pitch to a fiber aggregate made of a pitch-based carbon material is 9:1 to 6:4.
Pitch-based carbon fibers are mixed into the pitch-based carbon fibers to reduce the frictional resistance between the pitch-based carbon fibers, and then the mixed webs are laminated and bonded by physical or mechanical action. A method for producing blended felt as a component.
エノール系耐炎化糸又はポリアクリルニトリル系耐炎化
糸を用いることを特徴とする請求項1記載のピッチ系炭
素繊維を主成分とする混紡フェルトの製造方法。2. The production of a blended felt mainly composed of pitch-based carbon fibers according to claim 1, characterized in that a phenol-based flame-resistant yarn or a polyacrylonitrile-based flame-resistant yarn is used as the fiber made of a carbon precursor other than pitch-based fibers. Method.
する請求項1又は2記載のピッチ系炭素繊維を主成分と
する混紡フェルトの製造方法。3. 3. The method for producing a blended felt containing pitch-based carbon fiber as a main component according to claim 1 or 2, further comprising subjecting the blended felt to a carbonization treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2164198A JPH0457949A (en) | 1990-06-25 | 1990-06-25 | Production of blended felt consisting essentially of pitch-based carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2164198A JPH0457949A (en) | 1990-06-25 | 1990-06-25 | Production of blended felt consisting essentially of pitch-based carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0457949A true JPH0457949A (en) | 1992-02-25 |
Family
ID=15788542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2164198A Pending JPH0457949A (en) | 1990-06-25 | 1990-06-25 | Production of blended felt consisting essentially of pitch-based carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0457949A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572992U (en) * | 1992-03-09 | 1993-10-05 | 大阪瓦斯株式会社 | Conductive carpet |
JPH08209513A (en) * | 1994-08-05 | 1996-08-13 | Amoco Corp | Fiber-reinforced carbon and graphite article |
EP1696057A1 (en) * | 2003-12-17 | 2006-08-30 | Kureha Corporation | Method for producing pitch-based carbon fiber sliver and spun yarn |
WO2023136141A1 (en) * | 2022-01-17 | 2023-07-20 | 東洋紡エムシー株式会社 | Flame-resistant nonwoven fabric containing flame-resistant polyphenylene ether fiber and reinforcing fiber, flame-resistant molded body containing flame-resistant polyphenylene ether and reinforcing fiber, and methods for manufacturing same |
WO2023190351A1 (en) * | 2022-03-31 | 2023-10-05 | 大阪ガスケミカル株式会社 | Nonwoven fabric and manufacturing method thereof, organic solvent recovery method using same, and organic solvent recovery apparatus |
-
1990
- 1990-06-25 JP JP2164198A patent/JPH0457949A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572992U (en) * | 1992-03-09 | 1993-10-05 | 大阪瓦斯株式会社 | Conductive carpet |
JPH08209513A (en) * | 1994-08-05 | 1996-08-13 | Amoco Corp | Fiber-reinforced carbon and graphite article |
EP1696057A1 (en) * | 2003-12-17 | 2006-08-30 | Kureha Corporation | Method for producing pitch-based carbon fiber sliver and spun yarn |
EP1696057A4 (en) * | 2003-12-17 | 2009-12-02 | Kureha Corp | Method for producing pitch-based carbon fiber sliver and spun yarn |
WO2023136141A1 (en) * | 2022-01-17 | 2023-07-20 | 東洋紡エムシー株式会社 | Flame-resistant nonwoven fabric containing flame-resistant polyphenylene ether fiber and reinforcing fiber, flame-resistant molded body containing flame-resistant polyphenylene ether and reinforcing fiber, and methods for manufacturing same |
WO2023190351A1 (en) * | 2022-03-31 | 2023-10-05 | 大阪ガスケミカル株式会社 | Nonwoven fabric and manufacturing method thereof, organic solvent recovery method using same, and organic solvent recovery apparatus |
JP2023149828A (en) * | 2022-03-31 | 2023-10-16 | 大阪ガスケミカル株式会社 | Nonwoven fabric and manufacturing method thereof, organic solvent recovery method using the same, and organic solvent recovery device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3079571B2 (en) | Polytetrafluoroethylene fiber, cotton-like material containing the same, and method for producing the same | |
US5230960A (en) | Activated carbon fiber structure and process for producing the same | |
CN101324012B (en) | Manufacturing method of bast fiber nonwoven fabric | |
US7634840B2 (en) | Method for producing pitch-based carbon fiber silver and spun yarn | |
TW201009146A (en) | Nonwoven fabric, felt and manufacturing method thereof | |
EP1606106A2 (en) | Structurally stable flame-retardant nonwoven fabric | |
EP0861342A1 (en) | Process for lofty battings | |
US2528091A (en) | Resilient glass fiber mat | |
JP2678513B2 (en) | Carbon fiber structure, carbon-carbon composite material, and methods for producing the same | |
AU2003265320B2 (en) | Pitch based graphite fabrics and needled punched felts for fuel cell gas diffusion layer substrates and high thermal conductivity reinforced composites | |
CN112695454A (en) | Preparation process of primary and regenerated carbon fiber felt | |
JPH01221557A (en) | Production of carbon fiber nonwoven cloth | |
JPH0457949A (en) | Production of blended felt consisting essentially of pitch-based carbon fiber | |
CN112430901A (en) | Preparation process of bullet train decorative needling composite material | |
KR200498146Y1 (en) | Machine and method for preparing fibrous web, fibrillar fiber aggregate or nonwoven fabric, and fibrous web, fibrillar fiber aggregate or nonwoven fabric prepared thereby | |
US4987664A (en) | Process for forming an interlocked batting of carbonaceous fibers | |
US4519201A (en) | Process for blending fibers and textiles obtained from the fiber blends | |
JP3113124B2 (en) | Method for manufacturing ultrafine fiber web | |
CN114836898A (en) | Needled carbon fiber net felt and preparation method and application thereof | |
EP0336464B1 (en) | Densified carbonaceous fiber structures | |
CN210561077U (en) | Device for producing a fibrous web, a mass of filaments or a nonwoven | |
JPH01148813A (en) | Production of carbon fiber sliver | |
JPH03213545A (en) | Conductive carbon fiber mat and its production | |
JPS58115121A (en) | Acrylic carbon fiber | |
WO2001038619A1 (en) | Sliver comprising extra fine fibers |