JPH045790B2 - - Google Patents

Info

Publication number
JPH045790B2
JPH045790B2 JP58089825A JP8982583A JPH045790B2 JP H045790 B2 JPH045790 B2 JP H045790B2 JP 58089825 A JP58089825 A JP 58089825A JP 8982583 A JP8982583 A JP 8982583A JP H045790 B2 JPH045790 B2 JP H045790B2
Authority
JP
Japan
Prior art keywords
fine particles
fiber
radically polymerizable
polymerizable monomer
grade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58089825A
Other languages
Japanese (ja)
Other versions
JPS59216978A (en
Inventor
Takaaki Tsuji
Takao Akagi
Shinji Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP8982583A priority Critical patent/JPS59216978A/en
Publication of JPS59216978A publication Critical patent/JPS59216978A/en
Publication of JPH045790B2 publication Critical patent/JPH045790B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特殊な表面改質法により製造される高
度な機能を有する繊維およびその構造物に関する
ものである。 従来種々の合成および天然繊維が広く用いられ
てきたが多くの欠点を有しており、より優れた高
度な機能への改良が強く要望されている。 例えば、染色性、染色物の発色性、撥水性、難
燃性、制電性、吸水性等繊維製品用途によつては
重大な欠点にもかかわらず黙認して、あるいは低
レベルのまま使用しているのが現実である。 これらの難点を解決するために多くの試みが行
なわれている。そのうちでも、繊維およびその構
造物の基材表面を加工する方法は、繊維基材自身
の特徴を保持したまま、高機能、高品質を付与で
きる方法として有望である。しかるに実際には、
表面加工処理により繊維基材の特徴が失われた
り、機能が不十分であつたり、また処理コストが
高いなどの多くの問題点をかかえている。例え
ば、目的とする機能を有するポリマーを基材表面
へ塗布する方法では、繊維基材との接着性が十分
でなく、使用中に脱落し易く、また塗布厚さの制
御が困難で、繊維基材本来の機能、風合等が失わ
れるのが欠点である。一方放射線グラフト法で
は、基材とグラフト反応するため使用中での脱落
はより小となり、また膜厚を薄くすることが可能
で、本来の機能を維持し易い方法である。しかる
に放射線法では、高エネルギーのため基材が損傷
し易く、また安全面、装置面での負担が大きいの
が難点である。 これに対して近年プラズマ照射により表面加工
を行なう技術が進展を見せている。プラズマ法に
よりグラフト重合を行なうと、使用中の脱落ある
いは本来機能の維持、操作性等はかなり改善する
ことができる。しかし、目的とする機能によつて
はそのレベル、耐久性がなお不十分であり、また
処理効率が悪く、コスト的に問題があつた。 一方本発明者らはプラズマ照射により繊維の発
色性、色の深みを向上させる方法の研究を行なつ
てきた。先輩研究者等により、有機合成繊維にグ
ロー放電プラズマを照射し、繊維表面に特定の凹
凸を形成させ、この凹凸により濃色化効果を得る
技術が特開昭52−99400号として公けにされてい
る。また本発明者等は、微粒子をポリマー基材中
に含有した合成繊維を低温プラズマ処理すること
により特殊な凹凸構造を形成させ発色性を向上さ
せる技術を特願昭56−180464号として提案した。
これらの発明は従来技術に比して著しく優れた効
果を有するものであるが、製品の摩擦耐久性及び
プラズマ照射効率の点でなお不十分であつた。 そこで本発明者らは種々の検討を続けたとこ
ろ、微粒子を表面に存在させてプラズマ照射を行
なうことにより、これらの難点を大きく改良で
き、発色性の点で優れた製品が得られる見通しを
得た(特許出願中)。 さらに本発明者らは、これらの研究を深化、発
展させた結果、表面に微粒子を存在させてプラズ
マ照射した繊維は非常に特殊な構造をしており、
その特殊な表面でグラフト重合を行なうことによ
り従来のプラズマ・グラフト重合法に比して高機
能、高品質の付与が可能であり、またその耐久性
も良好であること、およびプラズマ処理効率も大
でコスト的に有利となること、さらには該グラフ
ト重合物の存在により特殊凹凸の構造が保護さ
れ、該構造に由来する発色性向上効果の耐久性も
著しく良好となることを見出した。 本発明における、表面に微粒子を存在させてプ
ラズマ照射を行なつた後の表面は、該表面に微粒
子が集合し、該集合した微粒子を核として主とし
て基材ポリマー成分が粒状構造となつて凸部を形
成している。これは、微粒子がポリマー基質より
プラズマ・エツチングに対して不活性なことが一
因と推測される。また、微粒子で被覆された部分
はエツチングされにくく微粒子で被覆されない部
分が選択的にエツチングされるため、表面の高低
差ができ易くプラズマ照射のエツチング効率がよ
いものと思われる。一般には凸部間の中心間距離
は0.01〜1ミクロンである。本発明のごとき特殊
な凹凸部であるため、次いで、グラフト重合を行
なつた場合に、グラフトが行なわれ易く、かつグ
ラフト重合体の脱落も起りにくいものと考えられ
る。 本発明におけるグラフト重合後の基材表面は、
グラフト重合体でプラズマ・エツチングにより生
じた凹凸部表層を被覆し、凸部の互いに隣接する
空隙が事実上連結されている構造である。このよ
うな構造により高機能が発揮し易く、またエツチ
ング凹凸も保護されて発色性、耐久性も良好とな
るものと思われる。 本発明の対象繊維は、ポリエステル系、ポリア
ミド系、アクリル系、ポリウレタン系等の合成繊
維、ウール、綿、麻、絹等の天然繊維、アセテー
ト等の半合成繊維およびレーヨン等の再生繊維等
がある。合成繊維は共重合ポリマー、ポリマーブ
レンド、あるいは顔料、改質剤等を含有するも
の、あるいは複合紡糸したものでもよい。 本発明の繊維構造物は、上述の繊維単独あるい
は2種以上を複合、混合して構成されたものを包
含し、トウ、フイラメント、ヤーン等の糸条物及
び織・編物、不織布等の二次元物を意味してい
る。 本発明における微粒子は、低温プラズマでポリ
マー基質に比してより不活性な無機および有機の
任意のものが用いられる。なかでも金属の酸化
物、水酸化物、炭酸塩、リン酸塩等が好適であ
り、その例としてシリカ、酸化スズ、酸化アルミ
ニウム、酸化チタン、酸化アンチモン、酸化トリ
ウム、酸化ジルコニウム、水酸化アルミニウム、
炭酸カルシウム、リン酸マグネシウム、リン酸カ
ルシウム、リン酸アルミニウム、リン酸ホウ素等
が用いられる。 微粒子の大きさは、平均一次粒子径として一般
に2ミクロン以下、好ましくは0.5ミクロン以下、
より好ましくは0.2ミクロン以下、さらに好まし
くは0.07ミクロン以下のものが用いられる。 本発明の微粒子を繊維に付与する方法は、通常
の樹脂加工方法に準じて行なうことができる。例
えば、微粒子分散液をパツデイング、スプレー等
の方法により繊維構造物に付与した後マングルな
どで適宜の付着量に調整した後乾熱あるいは湿熱
処理で繊維表面に付着させる。微粒子と共に接着
性樹脂を用いて微粒子と繊維とを強固に接着させ
てもよい。 微粒子の付着量は、繊維に対して0.001〜10重
量%、好ましくは0.01〜6%、より好ましくは
0.05〜4重量%が用いられる。付着量が0.001%
以下では効果がなく、また10%を越えると風合等
が著しく悪化する。 本発明の表面に微粒子を存在させてのプラズマ
照射条件は、対象となる繊維基材の種類、形状お
よび目的とする付与機能の内容、レベルに応じ
て、また装置のタイプ、形状、ガスの種類、流
量、真空度、出力、処理時間等を選択する必要が
ある。 低温プラズマ発生ガスとしては、エツチング効
率の点では酸素、空気が好ましく、一方エツチン
グを抑えてグラフト重合活性点を誘起する点では
アルゴン、ヘリウム、ネオン、窒素、水素等が好
ましい。本発明の目的は、これらのガスを混合使
用したり、途中でガスを切り換えたり、あるいは
他の条件を調節することにより好適に達成するこ
とができる。 またプラズマ処理は、繊維の染色等の加工、仕
上げ処理の前、後いずれでも良い。グラフト重合
物で保護されぬ場合に比べて、凹凸形状は変化し
にくいが、繊維表面に形成された凹凸の変化を特
に懸念する場合には、染色工程等の後に行なうの
がよい。 また本発明のプラズマ処理効果は、繊維構造物
の表層、内部および裏層の全域にわたつて及ぶ必
要は必ずしもない。少くとも表面が該処理効果が
発現されればよく、かえつて表層部のみが処理さ
れていた方がよい場合があり、目的によりプラズ
マ処理条件を選択して行なわれる。 本発明におけるグラフト重合は、プラズマ照射
により特殊凹凸構造発現後行われる。凹凸構造発
現時のプラズマ照射により基材ポリマーに活性点
ができるので、この状態でラジカル重合可能単量
体と接触させるのが好ましい。単量体はガス状で
もよく、あるいは単独または溶媒に溶解させた液
状でもよい。 本発明におけるラジカル重合可能な単量体とし
ては、一般に炭素−炭素二重結合を有する化合物
で、かつ連鎖機構でラジカルを生長末端として重
合していくものが用いられる。目的とする機能お
よびプラズマ照射されたポリマー基材によつて好
適な単量体は異なるが、例えばテトラフルオロエ
チレン、ヘキサフロオロプロピレン、フツ化ビニ
リデン、テトラヒドロパーフルオロヘキシルアク
リレート、1,1′,3−トリヒドロパーフルオロ
プロピルアクリレート、ビニルトリメチルシラ
ン、ビニルトリエチルシラン、アクリル酸、メタ
クリル酸、アクリル酸メチル、メタクリル酸メチ
ル、スチレン、ビニルピリジン、アクリロニトリ
ル等がある。これらの単量体は単独で用いてもよ
く、また2種以上を用いて共重合グラフトを行な
つてもよい。 本発明は、ラジカル重合可能単量体およびプラ
ズマ照射時に表面に存在させた微粒子の種類によ
り、各種の高機能性を付与することができる。例
えば染色性、染色物の発色性、撥水性、撥油性、
難燃性、制電性、吸水性、吸汗性、吸湿性、防汚
性、低摩擦性、防融性、特殊光沢、特殊風合等が
あり、そのレベル、耐久性が優れており、またこ
れらの機能のいくつかを複合的に付与することも
可能である。 本発明において例えば、ラジカル重合可能な単
量体の少くとも一部に含フツ素不飽和化合物およ
び/またはシラン化合物を使用して、そのグラフ
ト重合体の屈折率が1.5以下とし、かつ屈折率が
1.6以下の微粒子を用いることにより、色の深み
が著しく、かつ撥水機能を有する高機能表面加工
物を得ることができる。 該単量体としては、テトラフルオロエチレン、
ヘキサフルオロプロピレン、フツ化ビニリデン、
フツ化ビニル、クロロトリフルオロエチレンなど
のフツ素化合物およびビニルトリメチルシラン、
ビニルトリエチルシラン、ビニルトリメトキシシ
ラン、ビニルトリエトキシシランなどのシラン化
合物が用いられる。 また該微粒子としては、シリカが最も好適であ
る。 本発明において、ラジカル重合可能な単量体の
少くとも一部にハロゲンおよび/またはリン原子
を含むものを使用し、かつ微粒子として特定の難
燃無機粒子を用いることにより、難燃性能を有す
る高機能表面加工物を得ることができる。 該単量体としては、前述のフツソ化合物、塩化
ビニリデン、2−ヒドロキシエチルメタクル酸・
アシツドホスフエート
The present invention relates to highly functional fibers manufactured by a special surface modification method and structures thereof. Although various synthetic and natural fibers have been widely used in the past, they have many drawbacks, and there is a strong need for improvements to provide better and more advanced functionality. For example, depending on the application of textile products, such as dyeability, color development of dyed products, water repellency, flame retardance, antistatic properties, water absorption properties, etc., some textile products may be used tacitly or at low levels despite their serious drawbacks. The reality is that Many attempts have been made to solve these difficulties. Among these methods, the method of processing the surface of the base material of fibers and structures thereof is promising as a method that can impart high functionality and quality while retaining the characteristics of the fiber base material itself. However, in reality,
There are many problems such as loss of characteristics of the fiber base material due to surface treatment, insufficient functionality, and high processing cost. For example, in the method of applying a polymer with a desired function to the surface of a base material, the adhesion to the fiber base material is insufficient, it tends to fall off during use, and it is difficult to control the coating thickness. The disadvantage is that the original functions and texture of the material are lost. On the other hand, in the radiation grafting method, since a graft reaction occurs with the base material, there is less chance of shedding during use, and the film thickness can be reduced, making it easier to maintain the original function. However, the disadvantages of the radiation method are that the base material is easily damaged due to the high energy, and it also places a heavy burden on safety and equipment. On the other hand, in recent years there has been progress in surface processing technology using plasma irradiation. When graft polymerization is carried out by the plasma method, it is possible to considerably improve the prevention of shedding during use, maintenance of original functions, and operability. However, depending on the intended function, the level and durability are still insufficient, the processing efficiency is poor, and there are problems in terms of cost. On the other hand, the present inventors have been conducting research on a method for improving the color development and color depth of fibers by plasma irradiation. Senior researchers published a technique in JP-A-52-99400, in which organic synthetic fibers are irradiated with glow discharge plasma to form specific irregularities on the fiber surface, and these irregularities produce a darkening effect. ing. In addition, the present inventors proposed in Japanese Patent Application No. 56-180464 a technique for improving color development by forming a special uneven structure by subjecting synthetic fiber containing fine particles in a polymer base material to low-temperature plasma treatment.
Although these inventions have effects significantly superior to those of the prior art, they are still unsatisfactory in terms of product friction durability and plasma irradiation efficiency. Therefore, the inventors of the present invention continued various studies, and found that these difficulties could be greatly improved by making fine particles exist on the surface and performing plasma irradiation, and that it would be possible to obtain a product with excellent color development. (patent pending). Furthermore, as a result of deepening and developing these studies, the present inventors found that fibers irradiated with plasma with fine particles present on the surface have a very special structure.
By performing graft polymerization on this special surface, it is possible to provide higher functionality and quality than conventional plasma graft polymerization methods, and it also has good durability and high plasma processing efficiency. It has been found that the present invention is advantageous in terms of cost, and furthermore, the presence of the graft polymer protects the structure of the special unevenness, and the durability of the effect of improving color development derived from the structure is also significantly improved. In the present invention, after plasma irradiation is performed with fine particles present on the surface, the fine particles aggregate on the surface, and the base polymer component forms a granular structure with the aggregated fine particles as cores, forming convex portions. is formed. This is presumably due in part to the fact that the microparticles are more inert to plasma etching than the polymer matrix. In addition, the portions covered with fine particles are difficult to be etched, and the portions not covered with fine particles are selectively etched, so that differences in surface height are likely to be created and the etching efficiency of plasma irradiation is considered to be good. Generally, the center-to-center distance between the protrusions is 0.01 to 1 micron. Because of the special unevenness of the present invention, it is considered that when graft polymerization is subsequently performed, grafting is likely to be carried out and the graft polymer is less likely to fall off. The surface of the base material after graft polymerization in the present invention is
The structure is such that the surface layer of the irregularities created by plasma etching is coated with a graft polymer, and the voids adjacent to each other in the projections are virtually connected. It is believed that such a structure facilitates high performance, protects etching irregularities, and improves color development and durability. The target fibers of the present invention include synthetic fibers such as polyester, polyamide, acrylic, and polyurethane, natural fibers such as wool, cotton, hemp, and silk, semi-synthetic fibers such as acetate, and recycled fibers such as rayon. . The synthetic fibers may be copolymerized polymers, polymer blends, those containing pigments, modifiers, etc., or composite spun fibers. The fiber structures of the present invention include those composed of the above-mentioned fibers alone or in composites or mixtures of two or more types, and include yarns such as tows, filaments, yarns, and two-dimensional fibers such as woven/knitted and non-woven fabrics. means something. The fine particles used in the present invention may be any inorganic or organic particles that are more inert than the polymer matrix in low-temperature plasma. Among these, metal oxides, hydroxides, carbonates, phosphates, etc. are preferred, examples include silica, tin oxide, aluminum oxide, titanium oxide, antimony oxide, thorium oxide, zirconium oxide, aluminum hydroxide,
Calcium carbonate, magnesium phosphate, calcium phosphate, aluminum phosphate, boron phosphate, etc. are used. The size of the fine particles is generally 2 microns or less, preferably 0.5 microns or less as an average primary particle diameter.
More preferably, the diameter is 0.2 microns or less, and even more preferably 0.07 microns or less. The method for applying the fine particles of the present invention to fibers can be carried out in accordance with ordinary resin processing methods. For example, a fine particle dispersion is applied to a fiber structure by a method such as padding or spraying, adjusted to an appropriate adhesion amount using a mangle, and then adhered to the fiber surface by dry heat or wet heat treatment. An adhesive resin may be used together with the fine particles to firmly adhere the fine particles and the fibers. The amount of fine particles attached to the fiber is 0.001 to 10% by weight, preferably 0.01 to 6%, more preferably
0.05-4% by weight is used. Adhesion amount is 0.001%
If it is less than 10%, there is no effect, and if it exceeds 10%, the texture etc. will deteriorate significantly. The conditions for plasma irradiation with fine particles present on the surface of the present invention depend on the type and shape of the target fiber base material, the content and level of the intended function to be imparted, and the type and shape of the device, and the type of gas. , flow rate, degree of vacuum, output, processing time, etc. must be selected. As the low-temperature plasma generating gas, oxygen and air are preferred from the viewpoint of etching efficiency, while argon, helium, neon, nitrogen, hydrogen, etc. are preferred from the viewpoint of suppressing etching and inducing graft polymerization active sites. The object of the present invention can be suitably achieved by using a mixture of these gases, switching gases midway, or adjusting other conditions. Further, the plasma treatment may be performed either before or after processing such as dyeing the fibers or finishing treatment. The shape of the unevenness is less likely to change than when the fiber is not protected by the graft polymer, but if there is a particular concern about changes in the unevenness formed on the fiber surface, it is better to carry out the dyeing process after the dyeing process or the like. Further, the plasma treatment effect of the present invention does not necessarily need to be applied to the entire surface layer, interior layer, and back layer of the fibrous structure. It is sufficient that at least the surface exhibits the treatment effect, and in some cases it may be better to treat only the surface layer, and the plasma treatment conditions are selected depending on the purpose. Graft polymerization in the present invention is carried out after a special uneven structure is developed by plasma irradiation. Since active sites are formed in the base polymer by plasma irradiation when the uneven structure is formed, it is preferable to contact the radically polymerizable monomer in this state. The monomer may be in gaseous form or may be in liquid form alone or dissolved in a solvent. The monomer capable of radical polymerization in the present invention is generally a compound having a carbon-carbon double bond and which polymerizes in a chain mechanism with radicals as propagating terminals. Suitable monomers vary depending on the desired function and the plasma-irradiated polymer base material, but examples include tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, tetrahydroperfluorohexyl acrylate, 1,1',3 -Trihydroperfluoropropyl acrylate, vinyltrimethylsilane, vinyltriethylsilane, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, styrene, vinylpyridine, acrylonitrile, and the like. These monomers may be used alone, or two or more types may be used for copolymerization grafting. In the present invention, various types of high functionality can be imparted by using the radically polymerizable monomer and the type of fine particles present on the surface during plasma irradiation. For example, dyeability, color development of dyed products, water repellency, oil repellency,
It has flame retardancy, antistatic property, water absorption, sweat absorption, moisture absorption, stain resistance, low friction, melt resistance, special gloss, special texture, etc., and has excellent levels and durability. It is also possible to provide some of these functions in combination. In the present invention, for example, a fluorine-containing unsaturated compound and/or a silane compound is used as at least a part of the radically polymerizable monomer, and the refractive index of the graft polymer is 1.5 or less, and the refractive index is
By using fine particles with a particle size of 1.6 or less, it is possible to obtain a highly functional surface-treated product that has a remarkable depth of color and has a water-repellent function. Examples of the monomer include tetrafluoroethylene,
hexafluoropropylene, vinylidene fluoride,
Fluorine compounds such as vinyl fluoride and chlorotrifluoroethylene, and vinyltrimethylsilane,
Silane compounds such as vinyltriethylsilane, vinyltrimethoxysilane, and vinyltriethoxysilane are used. Furthermore, as the fine particles, silica is most suitable. In the present invention, by using at least a part of the radically polymerizable monomer containing a halogen and/or phosphorus atom, and by using specific flame-retardant inorganic particles as the fine particles, a high A functional surface-treated product can be obtained. Examples of the monomer include the above-mentioned futsuso compound, vinylidene chloride, 2-hydroxyethyl methacrylic acid,
Acid phosphate (

【式】:n= 1〜2)などが用いられる。また該微粒子として
は、酸化スズ、水酸化アルミ、酸化アンチモン、
リン酸アルミニウム、リン酸マグネシウム、リン
酸カルシウム、リン酸ホウ素などが用いられる。 さらに本発明において、ラジカル重合可能な単
量体の少くとも一部に、高度に架橋した不融重合
体を与えるものを使用することにより、防融機能
を有する高機能表面加工物を得ることができる。 本発明は既述の如く各種の天然ないしは合成繊
維に適用されるが、特にポリエステルの場合に
は、その効果が大であり、またその高機能性への
要求も大である。 ポリエステルとしては従来用いられてきた改質
ポリマー繊維、異形断面繊維、複合紡糸繊維、仮
撚加工糸、あるいは減量加工糸等の常とう手段を
適用した任意のものが用いられるのはもちろんで
ある。 次に実施例により、本発明を説明するが、本発
明は以下の実施例に限定されるものではない。 実施例中、色の深み効果は常法による通常の未
加工布を1級とし、それと比較して著しく深み感
のあるものを5級として、5段階に分けて官能判
定を行つた。また色の深み効果の摩擦堅牢度は、
300gの荷重をかけ布同士を300回摩擦し、ほとん
ど変化のないものを5級、低下あるいは色斑の著
しいものを1級として目視的に5段階にわけて判
定した。 撥水性はJIS L1092に従つて試験布に蒸留水を
散布し、表面に不着湿潤のないものを100点、表
面が完全に湿潤を示すものを0点として、比較見
本と比較して採点した。その洗濯耐久性は、中性
洗剤1g/を含んだ40℃の洗濯液を用い、家庭
洗濯機で5時間洗濯後の値で測定した。 実施例 1 通常のポリエチレンテレフタレートより
100dr/48fの延伸糸を作成し、常法により仮撚加
工および製織を行なつてカシドス織物を作成し
た。この織物を日本化薬社製のKayalon
Polyester Black G−SFを12%o.w.f.用いて135
℃で染色し、黒染品とした。この黒染めされた織
物に、平均一次粒径45ミリミクロン(mμ)のコ
ロイダルシリカをバツド・ドライ法で0.5重量%
付着させた。 この試料を内部電極型のプラズマ装置内(電極
面積50cm2)に入り、導入ガスとして空気を用い
0.1Torr、出力50ワツトで1分間、ついでガスを
アルゴンに切り換えて0.5Torrで2分間プラズマ
照射を行なつた。このプラズマ照射後の試料の繊
維表面を定顕型電子顕微鏡で観察すると、表面に
微粒子が集合し、その集合した微粒子を核として
基材ポリマー成分が粒状構造となつて凸部を形成
していることが認められた。 プラズマ照射した試料を直ちに微量のアクリル
酸メチルを含むテトラフルオロエチレンガスにさ
らしてグラフト重合を行なつた。電顕観察すると
グラフト重合層がプラズマ照射によつて生じた凹
凸部表層を覆い、凸部の互いに隣接する空隙は事
実上連結されていることを認めた。 このグラフト処理を行なつた試料は色の深みが
著しく、深み効果は5級であつた。また撥水性も
良好で100点であつた。またその耐久性も良好で、
色の深み効果の摩擦堅牢度は5級、撥水性の洗濯
耐久性は100点であり、ほとんど機能低下は認め
られなかつた。 比較例 1 実施例1の染色後、微粒子付着前の試料は、色
の深み効果1級、撥水性0〜50点であつた。 比較例 2 実施例1の染色後の試料を微粒子を付着させず
にプラズマ照射を行ない、グラフト重合を行なわ
なかつた試料は色の深み効果2級、その摩擦堅牢
度は1級で、摩擦により大きな色斑を生じた。ま
た撥水性は0〜50点であつた。 比較例 3 微粒子を付着させないこと以外は実施例1と同
様にして処理を行なつた試料は、色の深み効果4
級、その摩擦堅牢度3級でやや色斑を生じた。ま
た撥水性は100点であつたが、洗濯後は80点に低
下した。 実施例 2 微量のアクリル酸メチルを含むテトラフルオロ
エチレンの代りに、メタクリル酸メチルを用いる
以外は実施例1と同様に処理を行なつて得た試料
は、色の深み効果3〜4級、その摩擦堅牢度は5
級で色斑の発生はほとんどなかつた。 比較例 4 微粒子を付着させないこと以外は実施例2と同
様に処理を行なつた試料は、色の深み効果は2〜
3級、その摩擦堅牢度は3級でやや色斑を生じ
た。 実施例 3 実施例1と同様にして染色、微粒子付着を行な
つた後、導入ガスとして酸素ガスを用い、
0.05Torrで1分間、ついでガスを窒素に切り換
えて1.0Torrで2分間プラズマ照射を行なつた。
つづいてビニルトリメチルシラン ガスにさらし
てグラフト重合を行なつた。 この試料の色の深み効果は4級、その摩擦堅牢
度は5級、撥水性は洗濯前、後共100点であつた。 比較例 5 微粒子を付着させないこと以外は実施例3と同
様に処理を行なつた試料は、色の深み効果3級、
その摩擦堅牢度3級、撥水性100点、洗濯後は80
点であつた。 実施例 4 ビニルトリメチルシランの代りにアクリル酸を
用いる以外は実施例3と同様にして処理を行なつ
て得た試料は、色の深み効果3級、その摩擦堅牢
度は4級であり、また水滴をたらすと瞬間的に拡
散し、親水性が良好であつた。 比較例 6 微粒子を付着させないこと以外は実施例3と同
様に処理を行なつた試料は、色の深み効果2級、
その摩擦堅牢度3級であり、また水滴をたらすと
拡散にやや時間がかかつた。 実施例 5 実施例1の染色後の試料に粒径約0.15μの酸化
スズを3重量%付着させ、酸素10モル%、アルゴ
ン90モル%の混合ガスを用い0.5Torrで3分間プ
ラズマ照射した後、2−ヒドロキシエチルメタク
リ酸・アシツドホスフエート液に浸漬してグラフ
ト重合を行なつた。この試料は焔を接近させると
照射の通常織物がすぐに焔が拡がるのに対し、す
ぐには燃えず、難燃化されていた。 実施例 6 実施例1の染色後の試料に粒径約0.15μのリン
酸アルミを3重量%付着させ、実施例1と同様に
してプラズマ照射を行なつた後、塩化ビニリデン
と少量のアクリル酸メチルを含む混合物にさらし
てグラフト重合を行なつた。この試料は焔を接近
させてもすぐには燃えなかつた。 実施例 7 実施例1の染色後の試料に粒径約0.15μの水酸
化アルミニウムを4重量%付着させ、実施例6と
同様にしてプラズマ照射した後テトラヒドロパー
フルオロヘキシルアクリレートにさらした。この
試料は焔を接近させてもすぐには燃えなかつた。 実施例 8 実施例1の染色後の試料に平均粒径30mμの酸
化チタンを0.5重量%付着させ、実施例1と同様
にしてプラズマ照射を行なつた後、1,1′3−ト
リヒドロパーフルオロプロピルアクリレート・ガ
スにさらした。この試料は洗濯前、後共撥水性は
100点であつた。 実施例 9 実施例1の染色後の試料に平均粒径20mμの酸
化アルミニウムを0.3重量%付着させ、実施例1
と同様にしてプラズマ照射を行なつた後、テトラ
ヒドロパーフルオロヘキシルアクリレートのガス
にさらした。この試料の撥水性は洗濯前、後共
100点であつた。 実施例 9 6−ナイロンのトリコツト編物染色物に平均粒
径15mμのシリカを0.3重量%付着させ、実施例
1と同様にしてプラズマ照射及びグラフト反応を
行なつた。 この試料は色の深み効果が著しく、またその摩
擦堅牢度は5級であつた。また撥水性は洗濯前、
後共100点であつた。 比較例 7 微粒子を付着させないこと以外は実施例9と同
様にして処理を行なつた試料は、色の深み効果は
実施例9よりやや劣つており、またその摩擦堅牢
度は3級であつた。また撥水性は洗濯前100点、
洗濯後80点であつた。 実施例 10 ウールのチリメンジヨーゼツト織物染色物に実
施例1と同様にして微粒子付着およびプラズマ処
理を行ない、ついでテトラヒドロパーフルオロヘ
キシルアクリレートのガスにさらした。この試料
は色の深みが非常に優れており、またその摩擦堅
牢度も5級であつた。 比較例 8 微粒子を付着させないこと以外は実施例10と同
様にして処理を行なつた試料は、色の深みが実施
例10よりやや劣つており、また摩擦堅牢度は4級
であつた。 実施例 11 レーヨンのチリメンジヨーゼツト織物染色物に
実施例10と同様にして処理を行なつた試料は、色
の深みが非常に優れており、またその摩擦堅牢度
は5級であつた。また撥水性は洗濯前、後共100
点であつた。 比較例 9 微粒子を付着させないこと以外は実施例11と同
様にして処理を行なつた試料は、色の深みが実施
例11よりやや劣つており、またその摩擦堅牢度は
4級であつた。また撥水性は洗濯前は100点、洗
濯後は70点であつた。
[Formula]:n=1-2) etc. are used. In addition, the fine particles include tin oxide, aluminum hydroxide, antimony oxide,
Aluminum phosphate, magnesium phosphate, calcium phosphate, boron phosphate, etc. are used. Furthermore, in the present invention, by using at least a part of the radically polymerizable monomers that give a highly crosslinked infusible polymer, it is possible to obtain a highly functional surface-treated product having a melt-proofing function. can. As mentioned above, the present invention is applicable to various natural or synthetic fibers, but the effect is particularly great in the case of polyester, and there is also a great demand for its high functionality. Of course, the polyester may be any conventionally used polyester such as modified polymer fibers, irregular cross-section fibers, composite spun fibers, false twisted yarns, or reduced weight yarns. Next, the present invention will be explained with reference to examples, but the present invention is not limited to the following examples. In the examples, the color depth effect was evaluated in 5 levels, with ordinary unprocessed fabric made by a conventional method being rated as 1st grade, and fabrics with a significantly deeper feeling compared to that being rated as 5th grade. In addition, the color fastness to friction of the color depth effect is
The cloths were rubbed against each other 300 times under a load of 300 g, and visually judged in 5 grades: 5th grade was when there was almost no change, and 1st grade was when there was significant deterioration or color spots. Water repellency was determined by spraying distilled water on a test cloth according to JIS L1092, and scoring 100 points for a cloth with no moisture on the surface, and 0 points for a cloth with completely wet surface, and comparing it with a comparison sample. The washing durability was measured after washing for 5 hours in a home washing machine using a 40°C washing liquid containing 1 g of neutral detergent. Example 1 From ordinary polyethylene terephthalate
A drawn yarn of 100 dr/48 f was prepared, and subjected to false twisting and weaving in a conventional manner to prepare a Kasidos fabric. This fabric is Kayalon manufactured by Nippon Kayaku Co., Ltd.
135 using Polyester Black G-SF with 12% owf
It was dyed at ℃ to obtain a black dyed product. 0.5% by weight of colloidal silica with an average primary particle size of 45 millimicrons (mμ) was added to this black-dyed fabric using a butt-dry method.
Attached. This sample was placed in an internal electrode type plasma device (electrode area 50 cm 2 ), and air was used as the introduced gas.
Plasma irradiation was performed for 1 minute at 0.1 Torr and an output of 50 watts, and then the gas was switched to argon and plasma irradiation was performed for 2 minutes at 0.5 Torr. When the fiber surface of the sample after plasma irradiation is observed using a stereoscopic electron microscope, fine particles are aggregated on the surface, and the base polymer component forms a granular structure with the aggregated fine particles as the core, forming convex parts. This was recognized. The plasma-irradiated sample was immediately exposed to tetrafluoroethylene gas containing a trace amount of methyl acrylate to perform graft polymerization. When observed under an electron microscope, it was confirmed that the graft polymer layer covered the surface layer of the irregularities caused by plasma irradiation, and that the voids adjacent to each other in the convexities were virtually connected. The sample subjected to this grafting treatment had a remarkable depth of color, and the depth effect was grade 5. Water repellency was also good, scoring 100 points. It also has good durability,
The abrasion fastness for color depth effect was grade 5, and the washing durability for water repellency was 100 points, with almost no functional deterioration observed. Comparative Example 1 The sample of Example 1 after dyeing but before fine particles were attached had a first grade color depth effect and a water repellency score of 0 to 50 points. Comparative Example 2 The dyed sample of Example 1 was subjected to plasma irradiation without adhering fine particles, and the sample without graft polymerization had a color depth effect of grade 2, its abrasion fastness was grade 1, and it had a large effect due to friction. Color spots occurred. Moreover, the water repellency was 0 to 50 points. Comparative Example 3 A sample treated in the same manner as in Example 1 except that fine particles were not attached had a color depth effect of 4.
The color fastness to rubbing was grade 3, and some color unevenness occurred. Water repellency was 100 points, but it dropped to 80 points after washing. Example 2 A sample obtained by processing in the same manner as in Example 1 except that methyl methacrylate was used instead of tetrafluoroethylene containing a trace amount of methyl acrylate had a color depth effect of grade 3 to grade 4, and Rubbing fastness is 5
There was almost no occurrence of color spots in the grade. Comparative Example 4 Samples treated in the same manner as in Example 2 except that fine particles were not attached had a color depth effect of 2 to 2.
Grade 3: Its color fastness to rubbing was grade 3, with slight color spots. Example 3 After dyeing and fine particle adhesion in the same manner as in Example 1, using oxygen gas as the introduced gas,
Plasma irradiation was performed at 0.05 Torr for 1 minute, then the gas was changed to nitrogen and plasma irradiation was performed at 1.0 Torr for 2 minutes.
Subsequently, graft polymerization was carried out by exposing it to vinyltrimethylsilane gas. The color depth effect of this sample was 4th grade, its abrasion fastness was 5th grade, and the water repellency was 100 points both before and after washing. Comparative Example 5 A sample treated in the same manner as in Example 3 except that fine particles were not attached had a color depth effect of grade 3,
Its abrasion fastness is grade 3, water repellency is 100 points, and after washing it is 80 points.
It was a hot spot. Example 4 A sample obtained by processing in the same manner as in Example 3 except that acrylic acid was used in place of vinyltrimethylsilane had a color depth effect of grade 3, a rub fastness of grade 4, and When water droplets were dropped, they instantly dispersed, indicating good hydrophilicity. Comparative Example 6 A sample treated in the same manner as in Example 3 except that fine particles were not attached had a color depth effect of grade 2,
Its abrasion fastness was grade 3, and it took some time for water droplets to diffuse. Example 5 3% by weight of tin oxide with a particle size of approximately 0.15μ was attached to the dyed sample of Example 1, and after plasma irradiation was performed at 0.5 Torr for 3 minutes using a mixed gas of 10 mol% oxygen and 90 mol% argon. , 2-hydroxyethyl methacrylic acid/acid phosphate solution to carry out graft polymerization. This sample did not burn immediately, and was made flame retardant, unlike irradiated ordinary fabrics where the flame spreads quickly when a flame is brought close to the fabric. Example 6 3% by weight of aluminum phosphate with a particle size of approximately 0.15μ was attached to the dyed sample of Example 1, and after plasma irradiation was performed in the same manner as in Example 1, vinylidene chloride and a small amount of acrylic acid were applied. Graft polymerization was carried out by exposure to a mixture containing methyl. This sample did not burn immediately even when a flame was brought close to it. Example 7 4% by weight of aluminum hydroxide having a particle size of approximately 0.15 μm was attached to the dyed sample of Example 1, and after plasma irradiation was performed in the same manner as in Example 6, it was exposed to tetrahydroperfluorohexyl acrylate. This sample did not burn immediately even when a flame was brought close to it. Example 8 0.5% by weight of titanium oxide with an average particle size of 30 mμ was attached to the dyed sample of Example 1, and after plasma irradiation was performed in the same manner as in Example 1, 1,1'3-trihydroper was applied. Exposure to fluoropropyl acrylate gas. This sample has water repellency before and after washing.
It was 100 points. Example 9 0.3% by weight of aluminum oxide with an average particle size of 20 mμ was attached to the dyed sample of Example 1.
After plasma irradiation was performed in the same manner as above, the sample was exposed to tetrahydroperfluorohexyl acrylate gas. The water repellency of this sample is both before and after washing.
It was 100 points. Example 9 0.3% by weight of silica having an average particle size of 15 mμ was adhered to a dyed 6-nylon tricot knitted fabric, and plasma irradiation and grafting reaction were performed in the same manner as in Example 1. This sample had a remarkable color depth effect and its rub fastness was grade 5. In addition, water repellency is determined before washing.
Both players scored 100 points. Comparative Example 7 A sample treated in the same manner as Example 9 except that fine particles were not attached had a color depth effect slightly inferior to that of Example 9, and its abrasion fastness was grade 3. . Water repellency is 100 points before washing.
It was 80 points after washing. Example 10 A dyed wool chilimendiose fabric was subjected to particle deposition and plasma treatment as in Example 1 and then exposed to tetrahydroperfluorohexyl acrylate gas. This sample had excellent color depth and its rub fastness was grade 5. Comparative Example 8 A sample treated in the same manner as in Example 10 except that fine particles were not attached had a color depth slightly inferior to that of Example 10, and its abrasion fastness was grade 4. Example 11 A sample of a dyed rayon chilimenzioset fabric treated in the same manner as in Example 10 had excellent depth of color and a rub fastness of grade 5. Also, the water repellency is 100% before and after washing.
It was a hot spot. Comparative Example 9 A sample treated in the same manner as in Example 11 except that fine particles were not attached had slightly inferior color depth to Example 11, and its abrasion fastness was grade 4. Water repellency was 100 points before washing and 70 points after washing.

Claims (1)

【特許請求の範囲】 1 繊維表面が微粒子を含有する凸部で形成さ
れ、該凸部が集合して繊維表面上に凹凸を形成し
てなる粗面化繊維からなる繊維構造物であつて、
該凹凸部表層がラジカル重合可能な単量体よりの
グラフト重合体で被覆され、凸部の互いに隣接す
る空隙が事実上連結されていることを特徴とする
高機能表面加工物。 2 ラジカル重合可能な単量体の少くとも一部が
含フツ素不飽和化合物および/またはシラン化合
物であり、そのグラフト重合体の屈折率が1.5以
下であり、かつ微粒子の屈折率が1.6以下である
ことを特徴とする色の深みが著しくかつ撥水機能
を有する特許請求の範囲第1項記載の高機能表面
加工物。 3 ラジカル重合可能な単量体の少くとも一部が
ハロゲンおよび/またはリン原子を含んでおり、
かつ微粒子が酸化スズ、水酸化アルミ、酸化アン
チモン、リン酸アルミニウム、リン酸マグネシウ
ム、リン酸カルシウム、リン酸ホウ素から呼ばれ
た1種または2種以上の難燃無機粒子であること
を特徴とする難燃性能を有する特許請求の範囲第
1項記載の高機能表面加工物。 4 繊維構造物の表面に微粒子を存在させてプラ
ズマ照射を行ない、繊維表面上に微粒子を含有す
る凸部からなる凹凸を形成し、ついて該繊維基材
ポリマーが活性の状態で、ラジカル重合可能単量
体に接触させてグラフト重合を行なうことを特徴
とする高機能表面加工物の製造法。
[Scope of Claims] 1. A fiber structure made of roughened fibers, the fiber surface of which is formed of convex portions containing fine particles, and the convex portions aggregate to form unevenness on the fiber surface,
A highly functional surface-treated product characterized in that the surface layer of the uneven portion is coated with a graft polymer made of a radically polymerizable monomer, and voids adjacent to each other in the raised portion are virtually connected. 2 At least a part of the radically polymerizable monomer is a fluorine-containing unsaturated compound and/or a silane compound, the graft polymer thereof has a refractive index of 1.5 or less, and the fine particles have a refractive index of 1.6 or less. 2. A highly functional surface-treated product according to claim 1, which is characterized by a remarkable depth of color and a water-repellent function. 3 at least a part of the radically polymerizable monomer contains a halogen and/or phosphorus atom,
and the fine particles are one or more flame-retardant inorganic particles selected from tin oxide, aluminum hydroxide, antimony oxide, aluminum phosphate, magnesium phosphate, calcium phosphate, and boron phosphate. The highly functional surface-treated product according to claim 1, which has the following properties. 4 Plasma irradiation is performed with fine particles present on the surface of the fiber structure to form unevenness consisting of convex portions containing fine particles on the fiber surface, and then, while the fiber base polymer is in an active state, a radically polymerizable monomer is formed. A method for producing a highly functional surface-treated product, characterized by carrying out graft polymerization in contact with a polymer.
JP8982583A 1983-05-20 1983-05-20 High functional surface processed article and production thereof Granted JPS59216978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8982583A JPS59216978A (en) 1983-05-20 1983-05-20 High functional surface processed article and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8982583A JPS59216978A (en) 1983-05-20 1983-05-20 High functional surface processed article and production thereof

Publications (2)

Publication Number Publication Date
JPS59216978A JPS59216978A (en) 1984-12-07
JPH045790B2 true JPH045790B2 (en) 1992-02-03

Family

ID=13981528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8982583A Granted JPS59216978A (en) 1983-05-20 1983-05-20 High functional surface processed article and production thereof

Country Status (1)

Country Link
JP (1) JPS59216978A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073032B2 (en) * 1987-09-29 1995-01-18 株式会社クラレ Fiber structure and manufacturing method thereof
JPH06102871B2 (en) * 1987-10-22 1994-12-14 株式会社クラレ Fiber structure and manufacturing method thereof
JPH01207475A (en) * 1988-02-10 1989-08-21 Kuraray Co Ltd Production of polyester cloth
JP2008106389A (en) * 2006-10-25 2008-05-08 Toray Ind Inc Fiber structure and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111192A (en) * 1977-03-07 1978-09-28 Toray Industries Fiber structure with improved deep color
JPS584808A (en) * 1981-06-24 1983-01-12 Toray Ind Inc Coated fiber
JPS5881610A (en) * 1981-11-09 1983-05-17 Kuraray Co Ltd Synthetic fiber having roughened surface and its preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111192A (en) * 1977-03-07 1978-09-28 Toray Industries Fiber structure with improved deep color
JPS584808A (en) * 1981-06-24 1983-01-12 Toray Ind Inc Coated fiber
JPS5881610A (en) * 1981-11-09 1983-05-17 Kuraray Co Ltd Synthetic fiber having roughened surface and its preparation

Also Published As

Publication number Publication date
JPS59216978A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
US4522873A (en) Fibrous structure having roughened surface
US4678681A (en) Process for preparation of water-proof sheets
EP0080099B1 (en) Synthetic fibers provided with an irregular surface and a process for their production
US4696830A (en) Process for preparation of water-proof sheets
JPH045790B2 (en)
US4997519A (en) Deep-colored fibers and a process for manufacturing the same
JP6063135B2 (en) Method for producing fiber structure having water and oil repellency
JPH0345138B2 (en)
JP2912488B2 (en) Coated fabric with excellent seam shift prevention
JPH0559669A (en) Production of stain-proofing water-repellent fabric
JP3973435B2 (en) Deep color water-absorbing polyester fabric
JP3391065B2 (en) Flame retardant polyester fiber product and method for producing the same
JPH0681271A (en) Production of water-and oil-repellent cloth
JPH08284065A (en) Aramid cloth for protective clothing
Benisek et al. Machine-washable, water-and oil-repellent, flame-retardant wool
JPS5915568A (en) Fiber structure excellent in color developablity and durability
JPH11302980A (en) Antistatic, water-repellent polyester microfiber fabric
JPS58197378A (en) Production of fabric having water repellency and water absorbability
JP7234472B2 (en) curtain fabric
JP2566885B2 (en) Deep-colored fiber structure and manufacturing method thereof
JPS6112976A (en) Modification of synthetic fiber
JPS63175175A (en) Fire retardant raised fabric reduced in change of gloss
JP2906656B2 (en) Processing method of fiber structure
JP3130145B2 (en) Dyeing method for modified ethylene-vinyl alcohol copolymer fiber, yarn or fiber product
JPH09111656A (en) Fabric for protective clothes