JPH0457400B2 - - Google Patents

Info

Publication number
JPH0457400B2
JPH0457400B2 JP21204185A JP21204185A JPH0457400B2 JP H0457400 B2 JPH0457400 B2 JP H0457400B2 JP 21204185 A JP21204185 A JP 21204185A JP 21204185 A JP21204185 A JP 21204185A JP H0457400 B2 JPH0457400 B2 JP H0457400B2
Authority
JP
Japan
Prior art keywords
fluidized bed
wastewater
nitrogen
salts
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21204185A
Other languages
Japanese (ja)
Other versions
JPS6274496A (en
Inventor
Reizo Fukushima
Yasushi Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYORITSU JUKI KOGYO KENKYUSHO KK
Original Assignee
KYORITSU JUKI KOGYO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYORITSU JUKI KOGYO KENKYUSHO KK filed Critical KYORITSU JUKI KOGYO KENKYUSHO KK
Priority to JP60212041A priority Critical patent/JPS6274496A/en
Publication of JPS6274496A publication Critical patent/JPS6274496A/en
Publication of JPH0457400B2 publication Critical patent/JPH0457400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、例えば、嫌気性流動床を用いて、
廃水中の硝酸態及び亜硝酸態窒素を生物学的に除
去すると同時に同じ廃水中の溶解性を燐を不溶化
して流動床表面に固定して除去することを特徴と
する廃水の処理方法に関する。 〔従来の技術〕 廃水中の窒素及び燐の除去に対しては、従来か
ら、脱窒素と脱燐とは別々の処理工程において処
理を行うという処理方法について様々な方法が開
示されており、実用に供されてきた。窒素の除去
即ち脱窒素については、有機態窒素及びアンモニ
ア態窒素を好気性条件下で、硝化菌(アンモニア
酸化菌、亜硝酸酸化菌等)によつて、硝酸態及び
亜硝酸態窒素に酸化し、次いで、これら硝酸態及
び亜硝酸態窒素を嫌気性条件下で脱窒素菌の作用
で窒素にまで分解して廃水の処理を行うのが一般
的であつた。また、嫌気性流動床式生物処理によ
つて、高い窒素負荷のもとで、高い窒素除去効果
が得られることが知られている。これは粒径の小
さな微生物担体を、嫌気性下に流動状態に保ちな
がら、廃水を接触されるここによつて、個々の粒
子表面に微生物膜が形成され、この微生物膜中の
脱窒素菌の作用によつて廃水中の窒素処理が行わ
れる。この方法によれば、浸漬濾床や回転円板式
の生物処理に比べてA/V値(単位容積当たりの
微生物膜面積)が約5〜約20倍と高く取ることが
できるため流動床式生物処理ではこれらの生物処
理に比して、窒素負荷を数倍乃至十数倍と高く取
ることができる。 また、燐の除去即ち脱燐については、廃水中に
鉄塩、アルミニウム塩、カルシウム塩等の金属塩
を添加して廃水中の燐酸と反応させて水に不溶性
の燐酸塩を形成させ、次いで凝集沈澱又は凝集浮
上処理によつて燐の除去を行う方法や、廃水にカ
ルシウム塩を添加して、それを燐酸カルシウムの
結晶であるヒドロキシアパタイトと接触させるこ
とによつて、この結晶上に廃水中の燐酸カルシウ
ムを析出させて除去する晶析による方法が採用さ
れている。 〔発明が解決しようとする問題点〕 しかしながら、このような従来の廃水の脱窒素
及び脱燐の処理においては、脱窒素処理を行つた
後で、その処理水について脱燐処理を行う方法を
採らざるを得ず、廃水処理工程が脱窒素と脱燐と
の二段階処理工程となつて繁雑であるばかりでな
く、各別の処理のためにそれぞれ設備を設けなけ
ればならず、それらの建設費も膨大となつてしま
うという問題点があつた。 この発明の目的は、上記した問題点を解決する
ために開示されたもので、脱窒素と脱燐の処理
を、例えば、単一の処理装置で同時に行い得るよ
うに構成したもので、同一の処理槽内で生物学的
に脱窒素を行うと同時に脱燐を行うことができる
廃水の処理方法を提供するものである。この発明
はこの目的を達成するための着眼点として、脱窒
素を行うための嫌気性流動床による微生物処理に
おいて、流動床に用いる生物担体粒子の種類を
様々に検討した結果、炭酸カルシウムを主成分と
する粒子を用いると、窒素の除去と同時に燐の除
去を行えることを見出し、この点に焦点を合わせ
て目的を達成せんとしたものである。 〔問題点を解決するための手段〕 上記のような問題点を解決するために、この発
明は、例えば、上向流により脱窒素菌を表面に着
成した生物担体粒子が流動状態に維持された流動
床を形成して嫌気性条件下で有機性廃水を処理す
る流動床式生物処理方法において、生物担体粒子
の主成分を炭酸カルシウムとし、原水又は流動床
に鉄塩又はアルミニウム塩から選ばれる一種以上
の金属塩を添加し、更に流動床のPHを8.5〜9.5に
維持して有機性廃水中の窒素及び燐を同時に除去
して廃水を処理することを特徴とする廃水の処理
方法に関するものである。原水又は流動床内への
鉄塩又はアルミニウム塩の添加は、燐が粒子表面
へ燐酸カルシウムとして固定されることによる燐
の除去効率を高めるに行われるものであつて、鉄
塩としては、例えば、塩化第二鉄、硫酸第一鉄、
硫酸第二鉄等を、またアルミニウム塩としては、
例えば、硫酸アルミニウム、ポリ塩化アルミニウ
ム、アルミン酸ナトリウム等を用いることができ
る。流動床のPHは8.5〜9.5の範囲内に維持する理
由は、脱窒素及び脱燐にはPHは高い値程好ましい
が、PHが9.5以上では脱窒素の増殖速度が低下す
るため、あるいは菌が死滅してしまうために好ま
しくないものである。また、より好ましいPHは
9.0〜9.5の範囲であることも実験の結果より分か
つた。。炭酸カルシウムを主成分とする流動床の
微生物担体としては、具体的には、大理石、珊瑚
化石、貝殻等を粉砕して約2mm〜約20mmに調整し
たものが有効である。特に珊瑚化石は空孔率が約
30%〜約40%と大きく、脱窒素及び脱燐に優れた
効果を発揮することができる。 〔作用〕 このような構成を有するこの発明の廃水の処理
方法によれば、廃水中の亜硝酸態窒素及び硝酸態
窒素は流動床の生物担体粒子表面に着成された脱
窒素菌の作用により窒素ガスにまで分解される。
又、廃水中の燐酸の形で溶解している燐は、生物
担体として用いられる炭酸カルシウムを主成分と
する粒子表面で燐酸カルシウム塩を形成し、その
表面に固定されるが鉄塩又はアルミニウム塩が添
加されているので、鉄イオン及びアルミニウムイ
オンが燐酸イオンと結合して難溶性の燐酸鉄及び
燐酸アルミニウムを形成し、更に、それが流動床
の生物担体表面でカルシウムとの複合塩を形成し
て担体表面に固定される。担体表面に固定された
不溶性リン酸化合物の一部は、担体表面に生息す
る微生物に利用されて、微生物体内に取り込まれ
るが、担体表面に固定された不溶性燐酸化合物は
流動床中で担体同志の衝突による摩擦従つて磨耗
によつてその表面から分離され、同時に担体表面
より剥離する微生物膜と共に流動床害に流出さ
れ、それらは後続の処理工程である沈降槽、浮上
槽等による固液分離工程で除去されることにな
る。 〔実施例〕 この発明による廃水の処理方法を実施する流動
床を含む廃水処理装置の一例を第1図に示す。流
動床1の下部にガス吹込口3と原水供給口4を設
け、流動床1の上部には担体を流出させないため
の静水部6と処理水越流堰7が設けてある。流動
床1の微生物担体2を流動状態に維持するのに必
要な上向流速を確保するために、処理水の一部を
流動床1槽内にリサイクルするためのポンプ5
と、該ポンプ5と流動床1とを連絡するための配
管系とが設けられている。流動床1の下部にはガ
ス吹込口3が設けられており、そのガス吹込口3
から空気又は酸素を含まないガスを吹込んで閉塞
した汚泥を洗浄することができる。嫌気性流動床
1より流出した不溶性燐酸化合物や微生物を含む
担体表面からの剥離片を含む処理水は、曝気槽8
で、処理水中に残存する溶解性BOD成分の好気
性菌による分解が行われ、沈降槽10で汚泥フロ
ツクの沈降分離即ち固液分離が行われる。図中、
9は曝気槽8の下部に設けられた空気吹込口及び
11は沈降槽10上部から固体分を除去済みの処
理水を放流する放流路である。 実施例 1 上部内径200mm、下部内径60mm、高さ100mmの円
錐部と高さ1000mmの直胴部を有する流動床1の下
部の越流堰7より流出する処理水の一部を下部原
水供給口4より供給できる構造を有する嫌気性流
動床1を用いる。流動床1内に約2メツシユ〜約
8メツシユの粒径を有する珊瑚化石を破碎したも
のを2.5充填する。第1表に示す合成廃水を2
/時間及び流動床越流水を4/時間の割合で
流動床1下部の原水供給口4より供給する。流動
床1のPHが9〜9.5に維持されるように原水に苛
性ソーダを添加する。脱窒素菌の水素供与体とし
てメチルアルコールを硝酸態窒素の2.2倍を原水
に添加する。流動床1より流出した処理水は、曝
気槽8(容積8)に導入して空気曝気を行つた
後、沈降槽10により流入させて、その上澄水に
ついて、水質の分析を行つた。 処理水の窒素が5ppm以下になつたのを確認し
てから、原水に塩化第二鉄を鉄として10mg/、
20mg/、50mg/、100mg/を添加して、処
理水の水質を測定し、その結果を第2表に示す。
[Industrial Application Field] This invention uses, for example, an anaerobic fluidized bed,
The present invention relates to a method for treating wastewater, which is characterized in that nitrate and nitrite nitrogen in wastewater are removed biologically, and at the same time, phosphorus in the wastewater is removed by insolubilizing phosphorus and fixing it on the surface of a fluidized bed. [Prior Art] Various methods have been disclosed for the removal of nitrogen and phosphorus from wastewater, in which denitrification and dephosphorization are performed in separate treatment steps, and none of them have been put to practical use. It has been served to Regarding nitrogen removal, or denitrification, organic nitrogen and ammonia nitrogen are oxidized to nitrate and nitrite nitrogen by nitrifying bacteria (ammonia oxidizing bacteria, nitrite oxidizing bacteria, etc.) under aerobic conditions. Next, it has been common practice to treat wastewater by decomposing these nitrate and nitrite nitrogen into nitrogen under anaerobic conditions by the action of denitrifying bacteria. Furthermore, it is known that anaerobic fluidized bed biological treatment can provide a high nitrogen removal effect under high nitrogen loads. In this process, microbial carriers with small particle diameters are kept in a fluid state under anaerobic conditions and brought into contact with wastewater, thereby forming a microbial film on the surface of each particle, and denitrifying bacteria in this microbial film. Nitrogen treatment in wastewater is carried out by this action. According to this method, the A/V value (microbial membrane area per unit volume) can be about 5 to 20 times higher than that of submerged filter bed or rotating disk type biological treatment. Compared to these biological treatments, the nitrogen load can be several to ten times higher. Regarding the removal of phosphorus, that is, dephosphorization, metal salts such as iron salts, aluminum salts, and calcium salts are added to wastewater and reacted with phosphoric acid in the wastewater to form water-insoluble phosphates, which are then coagulated. Phosphorus is removed by precipitation or coagulation flotation, or by adding calcium salts to wastewater and bringing them into contact with hydroxyapatite, which is calcium phosphate crystals, to remove phosphorus from the wastewater. A crystallization method is used in which calcium phosphate is precipitated and removed. [Problems to be solved by the invention] However, in such conventional denitrification and dephosphorization treatment of wastewater, a method is adopted in which the treated water is dephosphorized after denitrification treatment. Unavoidably, the wastewater treatment process is not only complicated as it is a two-step treatment process of denitrification and dephosphorization, but also requires the installation of separate facilities for each separate treatment, which increases the construction cost. The problem was that the amount of data would become enormous. The object of the present invention was disclosed in order to solve the above-mentioned problems, and it is configured such that denitrification and dephosphorization treatments can be performed at the same time, for example, in a single treatment device, and the same treatment device is used. The present invention provides a wastewater treatment method that can biologically denitrify and dephosphorize simultaneously in a treatment tank. This invention aims to achieve this objective by examining various types of biological carrier particles used in the fluidized bed in microbial treatment using an anaerobic fluidized bed for denitrification. They discovered that by using particles of this type, phosphorus can be removed at the same time as nitrogen, and they aimed to achieve this goal by focusing on this point. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a method in which, for example, biological carrier particles on which denitrifying bacteria are deposited on the surface are maintained in a fluid state by upward flow. In a fluidized bed biological treatment method in which organic wastewater is treated under anaerobic conditions by forming a fluidized bed, the main component of the biological carrier particles is calcium carbonate, and raw water or the fluidized bed is treated with iron salts or aluminum salts. A wastewater treatment method characterized by adding one or more metal salts and further maintaining the pH of the fluidized bed at 8.5 to 9.5 to simultaneously remove nitrogen and phosphorus from organic wastewater. It is. The addition of iron salts or aluminum salts into raw water or the fluidized bed is carried out to improve the removal efficiency of phosphorus by fixing phosphorus on the particle surface as calcium phosphate. Examples of iron salts include: ferric chloride, ferrous sulfate,
Ferric sulfate, etc., and as aluminum salt,
For example, aluminum sulfate, polyaluminum chloride, sodium aluminate, etc. can be used. The reason why the pH of the fluidized bed is maintained within the range of 8.5 to 9.5 is that a higher pH value is preferable for denitrification and dephosphorization, but if the pH is higher than 9.5, the growth rate of denitrification will decrease, or bacteria will It is undesirable because it will die. Also, the more preferable PH is
The experimental results also showed that it was in the range of 9.0 to 9.5. . Specifically, as a microbial carrier for a fluidized bed containing calcium carbonate as a main component, it is effective to use marble, coral fossil, shells, etc., which have been pulverized and adjusted to a size of about 2 mm to about 20 mm. In particular, coral fossils have a porosity of approximately
It is as large as 30% to about 40%, and can exhibit excellent denitrification and dephosphorization effects. [Operation] According to the wastewater treatment method of the present invention having such a configuration, nitrite nitrogen and nitrate nitrogen in wastewater are removed by the action of denitrifying bacteria deposited on the surface of biological carrier particles in the fluidized bed. Decomposed into nitrogen gas.
In addition, phosphorus dissolved in the form of phosphoric acid in wastewater forms calcium phosphate salts on the surfaces of particles mainly composed of calcium carbonate used as biological carriers, and is fixed on the surfaces of particles such as iron salts or aluminum salts. is added, iron and aluminum ions combine with phosphate ions to form poorly soluble iron and aluminum phosphates, which further form complex salts with calcium on the surface of the biological carrier in the fluidized bed. and fixed on the surface of the carrier. A part of the insoluble phosphoric acid compound fixed on the carrier surface is utilized by microorganisms living on the carrier surface and taken into the microorganism body, but the insoluble phosphoric acid compound fixed on the carrier surface is mixed with other carriers in a fluidized bed. They are separated from the surface by the friction and abrasion caused by the collision, and at the same time, they are flowed out into the fluidized bed along with the microbial film that peels off from the carrier surface, and they are transferred to the subsequent treatment process, which is a solid-liquid separation process using settling tanks, flotation tanks, etc. will be removed. [Example] FIG. 1 shows an example of a wastewater treatment apparatus including a fluidized bed for carrying out the wastewater treatment method according to the present invention. A gas blowing port 3 and a raw water supply port 4 are provided at the bottom of the fluidized bed 1, and a still water section 6 and a treated water overflow weir 7 are provided at the top of the fluidized bed 1 to prevent the carrier from flowing out. A pump 5 for recycling a portion of the treated water into the fluidized bed 1 tank in order to ensure the upward flow rate necessary to maintain the microbial carriers 2 in the fluidized bed 1 in a fluidized state.
and a piping system for communicating the pump 5 and the fluidized bed 1. A gas inlet 3 is provided at the bottom of the fluidized bed 1;
Blocked sludge can be cleaned by blowing air or oxygen-free gas through the tank. The treated water containing peeled pieces from the carrier surface containing insoluble phosphoric acid compounds and microorganisms flowing out from the anaerobic fluidized bed 1 is transferred to the aeration tank 8.
The soluble BOD components remaining in the treated water are decomposed by aerobic bacteria, and the sludge flocs are subjected to sedimentation separation, that is, solid-liquid separation, in the sedimentation tank 10. In the diagram,
Reference numeral 9 indicates an air inlet provided at the lower part of the aeration tank 8, and 11 indicates a discharge channel through which treated water from which solids have been removed is discharged from the upper part of the settling tank 10. Example 1 A portion of the treated water flowing out from the overflow weir 7 at the bottom of the fluidized bed 1, which has an upper inner diameter of 200 mm, a lower inner diameter of 60 mm, a conical part with a height of 100 mm, and a straight body part with a height of 1000 mm, is transferred to the lower raw water supply port. An anaerobic fluidized bed 1 having a structure that allows supply from 4 is used. A fluidized bed 1 is filled with 2.5 pieces of crushed coral fossil having a particle size of about 2 meshes to about 8 meshes. 2. Synthetic wastewater shown in Table 1
/hour and fluidized bed overflow water is supplied from the raw water supply port 4 at the bottom of the fluidized bed 1 at a rate of 4/hour. Add caustic soda to the raw water so that the pH of fluidized bed 1 is maintained at 9-9.5. Methyl alcohol is added to raw water in an amount 2.2 times the amount of nitrate nitrogen as a hydrogen donor for denitrifying bacteria. The treated water flowing out of the fluidized bed 1 was introduced into an aeration tank 8 (volume 8) for air aeration, and then flowed into a settling tank 10, and the supernatant water was analyzed for water quality. After confirming that the nitrogen content in the treated water is below 5ppm, add 10mg/ferric chloride as iron to the raw water.
The quality of the treated water was measured by adding 20 mg/, 50 mg/, and 100 mg/, and the results are shown in Table 2.

【表】 実施例 2 実施例1と同様の装置を用いて、同様の処理工
程で鉄20mg/を添加して、流動床内のPHを変化
させた結果を第3表に示す。
[Table] Example 2 Table 3 shows the results of changing the PH in the fluidized bed by adding 20 mg of iron in the same treatment process using the same equipment as in Example 1.

【表】 実施例 3 流動床槽内にカキ殻を粉砕して2メツシユ−8
メツシユの粒径にしたものを2.5充填する以外
は、実施例1と同様な装置を用い、同様な処理
[Table] Example 3 Crush oyster shells into a fluidized bed tank and make 2 meshes.
The same equipment as in Example 1 was used, except that 2.5 times the particle size of mesh was filled, and the same treatment was carried out.

【表】 工程を行い、塩化第二鉄で鉄20mg/を添加して
処理を行つた。処理槽内のPHは苛性ソーダにてPH
9〜9.5に調整する。その処理結果を第4表に示
す。 比較例 1 流動床槽内にアンスラサイトの約2メツシユ〜
約8メツシユの粒径のものを2.5充填する以外
[Table] The process was carried out and treatment was carried out by adding 20 mg of iron/ferric chloride. The pH in the treatment tank is adjusted using caustic soda.
Adjust to 9-9.5. The processing results are shown in Table 4. Comparative Example 1 Approximately 2 meshes of anthracite in a fluidized bed tank
Other than filling 2.5 particles with a particle size of about 8 mesh.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、この発明によ
れば、嫌気性流動床式の有機性廃水の生物処理方
法において、生物担体粒子の主成分を炭酸カルシ
ウムとし、原水又は流動床内に鉄塩又はアルミニ
ウム塩から選ばれる一種以上の金属塩を添加し、
さらに流動床のPHを8.5〜9.5に維持して有機性廃
水の処理を行うこととしたので、廃水中の窒素分
を脱窒素菌で生物処理すると同時に廃水中の燐分
を担体である炭酸カルシウムの表面に化学的に固
定することができ、廃水処理工程を同一の流動床
槽内で同時に行うことができるので、処理設備も
単一の槽の建設費だけで済み、廃水処理工程を簡
単化することができるという極めて有効な効果が
得られる。
As is clear from the above description, according to the present invention, in the anaerobic fluidized bed biological treatment method for organic wastewater, the main component of the biological carrier particles is calcium carbonate, and iron salts or Adding one or more metal salts selected from aluminum salts,
Furthermore, since we decided to treat organic wastewater by maintaining the pH of the fluidized bed at 8.5 to 9.5, we could biologically treat the nitrogen content in the wastewater using denitrifying bacteria, and at the same time remove the phosphorus content from the wastewater using calcium carbonate, which is a carrier. The wastewater treatment process can be carried out simultaneously in the same fluidized bed tank, which simplifies the wastewater treatment process by requiring only the construction cost of a single tank. The extremely effective effect of being able to do this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明による廃水の処理方法を実
施するための流動床を含む廃水の処理装置の概略
図である。 1……流動床、2……微生物担体、3……ガス
吹込口、4……原水供給口、5……処理水リサイ
クル用ポンプ、6……静水部、7……越流堰、8
……曝気槽、9……空気吹込口、10……沈降
槽、11……放流路。
FIG. 1 is a schematic diagram of a wastewater treatment apparatus including a fluidized bed for carrying out the wastewater treatment method according to the present invention. 1...Fluidized bed, 2...Microbial carrier, 3...Gas inlet, 4...Raw water supply port, 5...Pump for recycling treated water, 6...Static water section, 7...Overflow weir, 8
... Aeration tank, 9 ... Air inlet, 10 ... Sedimentation tank, 11 ... Outlet channel.

Claims (1)

【特許請求の範囲】 1 上向流により生物担体粒子が流動状態に維持
された流動床を形成して、嫌気性条件下で有機性
廃水を処理する流動床式生物処理方法において、 生物担体粒子の主成分を炭酸カルシウムとし、
原水又は流動床に鉄塩又はアルミニウム塩から選
ばれる一種以上の金属塩を添加し、更に、流動床
のPHを8.5〜9.5に維持し、有機性廃水中の窒素及
び燐を同時に除去して廃水を処理することを特徴
とする廃水の処理方法。
[Claims] 1. A fluidized bed biological treatment method for treating organic wastewater under anaerobic conditions by forming a fluidized bed in which biological carrier particles are maintained in a fluidized state by upward flow, comprising: The main component is calcium carbonate,
One or more metal salts selected from iron salts or aluminum salts are added to raw water or a fluidized bed, and the pH of the fluidized bed is maintained at 8.5 to 9.5, and nitrogen and phosphorus in organic wastewater are simultaneously removed to produce wastewater. A wastewater treatment method characterized by treating.
JP60212041A 1985-09-27 1985-09-27 Method for treating waste water Granted JPS6274496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212041A JPS6274496A (en) 1985-09-27 1985-09-27 Method for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212041A JPS6274496A (en) 1985-09-27 1985-09-27 Method for treating waste water

Publications (2)

Publication Number Publication Date
JPS6274496A JPS6274496A (en) 1987-04-06
JPH0457400B2 true JPH0457400B2 (en) 1992-09-11

Family

ID=16615887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212041A Granted JPS6274496A (en) 1985-09-27 1985-09-27 Method for treating waste water

Country Status (1)

Country Link
JP (1) JPS6274496A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655974B1 (en) * 1989-12-15 1992-07-17 Atochem NITRIFIING BIOMASS SUPPORT, REACTOR AND BIOLOGICAL PROCESS FOR AEROBIC NITRIFICATION OF EFFLUENTS USING SUCH A SUPPORT PROCESS FOR THE REMOVAL OF NITROGEN COMPOUNDS.
JP5636236B2 (en) * 2010-09-21 2014-12-03 Dowaテクノロジー株式会社 Nitric acid-containing water treatment method and nitric acid-containing water treatment apparatus
JP6156821B2 (en) * 2013-08-29 2017-07-05 国立研究開発法人農業・食品産業技術総合研究機構 Manufacturing method of inorganic fertilizer
JP6173205B2 (en) * 2013-12-18 2017-08-02 オルガノ株式会社 Biological treatment apparatus and biological treatment method

Also Published As

Publication number Publication date
JPS6274496A (en) 1987-04-06

Similar Documents

Publication Publication Date Title
US3462360A (en) Waste treatment
US3709364A (en) Method and apparatus for denitrification of treated sewage
JP4104845B2 (en) Method and apparatus for treatment of water containing phosphorus / ammonia
JP3122654B2 (en) Method and apparatus for treating highly concentrated wastewater
JP3473328B2 (en) Biological dephosphorization equipment
CA1151323A (en) Process for the chemical removal of phosphorus compounds from waste water and process for the purification of waste water
JP2003266095A (en) Method for forming nitrification granules
JPH0457400B2 (en)
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
JP3449862B2 (en) Advanced purification method for organic wastewater
JP3794736B2 (en) Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JP3268385B2 (en) Phosphorus-containing organic wastewater treatment equipment
JP5077334B2 (en) Nitrogen removal treatment apparatus and nitrogen removal treatment method
JPH08318292A (en) Waste water treatment method and apparatus
JP2018176131A (en) Denitrification treatment apparatus for ammonia nitrogen-containing drainage and method for denitrification treatment
KR20010007939A (en) Advanced Treatment Process of Domestic Wastewater by Biological and Chemical
JP2000107797A (en) Purification method and apparatus
JPH02122891A (en) Aerobic waste water treatment equipment
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
JPS59206092A (en) Treating process of waste water
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
CN109867410A (en) A kind of method of sewage denitrification and dephosphorization
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus
JP2000061473A (en) Method of removing phosphorus in sewage water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees