JPH0456943B2 - - Google Patents

Info

Publication number
JPH0456943B2
JPH0456943B2 JP59263985A JP26398584A JPH0456943B2 JP H0456943 B2 JPH0456943 B2 JP H0456943B2 JP 59263985 A JP59263985 A JP 59263985A JP 26398584 A JP26398584 A JP 26398584A JP H0456943 B2 JPH0456943 B2 JP H0456943B2
Authority
JP
Japan
Prior art keywords
sample
tube
electrode
specific
tube bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59263985A
Other languages
Japanese (ja)
Other versions
JPS61140851A (en
Inventor
Tameo Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP59263985A priority Critical patent/JPS61140851A/en
Publication of JPS61140851A publication Critical patent/JPS61140851A/en
Publication of JPH0456943B2 publication Critical patent/JPH0456943B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気化学的検出を利用した分析装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an analysis device that uses electrochemical detection.

[従来の技術] 電気化学的検出を利用した分析装置として、例
えば、第2図に示すようなものがある。図中1は
生体液2が収容された容器で、該容器の中に、生
体液中の特定イオン丈を取込む事が出来る感応膜
3が設けられた特定電極4と、生体液と電気的に
通じている液絡部5を有する参照電極6が配置さ
れている。該特定電極4と参照電極6の内部には
電解液7,7′が収容されていると同時に銀・塩
化銀電極8,8′が配置されている。各銀・塩化
銀電極には他端に電圧計9が接続されたリード線
10,10′が接続されている。しかして、生体
液中の特定イオンが前記特定電極4の感応膜3に
取込まれる事によつて、該感応膜と電極8の間に
おいて電気的交換が行なわれ、該電極と前記参照
電極6との間に電位差が生じ、該電位差が前記電
圧計9によつて測定される。該電位差は特定成分
の濃度に対応している。
[Prior Art] As an example of an analyzer using electrochemical detection, there is one shown in FIG. 2, for example. In the figure, reference numeral 1 denotes a container containing a biological fluid 2. Inside the container, there is a specific electrode 4 provided with a sensitive membrane 3 capable of absorbing a specific ion length in the biological fluid, and a specific electrode 4 that is electrically connected to the biological fluid. A reference electrode 6 is arranged which has a liquid junction 5 communicating with the . Inside the specific electrode 4 and the reference electrode 6, an electrolytic solution 7, 7' is housed, and at the same time, silver/silver chloride electrodes 8, 8' are arranged. Each silver/silver chloride electrode is connected to a lead wire 10, 10', the other end of which is connected to a voltmeter 9. As the specific ions in the biological fluid are taken into the sensitive membrane 3 of the specific electrode 4, electrical exchange occurs between the sensitive membrane and the electrode 8. A potential difference is generated between the two, and the potential difference is measured by the voltmeter 9. The potential difference corresponds to the concentration of the specific component.

[発明が解決しようとする問題点] さて、前記の様に、生体液の収容された容器の
中に参照電極と特定電極を配置して、特定成分を
分析する構成の装置では、比較的大きな容器が必
要になり、サンプルも多量に必要になる。前記例
では一つの特定成分を検出する場合を示したが、
複数の成分を同時に検出する場合には検出成分数
に応じて特定電極数を増やさねばならず、この傾
向は大となる。
[Problems to be Solved by the Invention] As described above, an apparatus configured to analyze a specific component by arranging a reference electrode and a specific electrode in a container containing a biological fluid requires a relatively large size. Containers are required, and a large amount of sample is also required. The above example shows the case of detecting one specific component, but
When detecting a plurality of components simultaneously, the number of specific electrodes must be increased in accordance with the number of detected components, and this tendency becomes more pronounced.

又、容器中のサンプルの動きが無いので、静電
的に、物理的に、そして化学的に検出すべき成分
以外の物質(異物)が特定電極の感応膜に付着し
てしまい、特定イオンの取込みが妨害される。
In addition, since there is no movement of the sample in the container, substances other than the components to be detected electrostatically, physically, and chemically (foreign objects) may adhere to the sensitive membrane of the specific electrode, resulting in the detection of specific ions. Uptake is blocked.

本発明はこの様な問題を解決する事を目的とし
たものである。
The present invention is aimed at solving such problems.

[問題点を解決するための手段] 本発明の分析装置は、側壁に多数の超微小孔を
有する高分子性チユーブと、該チユーブ外周の長
手方向に沿つて互いに電気絶縁された状態で順次
配置され、かつ任意な空間を保つて囲繞するよう
に形成された参照電極及び検出すべき成分に感応
する特定イオン電極と、前記チユーブの一端に気
密を保つて接続されたサンプル供給手段と、前記
参照電極と特定イオン電極との間の電位差を検出
するための手段とを備え、前記サンプル供給手段
によりチユーブの中空部にサンプルを流すことに
よつてこのチユーブと前記各電極との間の空間に
サンプルを滲み出させ、前記参照電極と特定イオ
ン電極との空間に生じたサンプル中の特定イオン
濃度に応じた電位差を検出するように構成したこ
とを特徴とするものである。
[Means for Solving the Problems] The analysis device of the present invention includes a polymeric tube having a large number of ultra-micropores on its side wall, and a polymeric tube that is electrically insulated from each other along the longitudinal direction of the outer circumference of the tube. a reference electrode and a specific ion electrode sensitive to the component to be detected, which are arranged and formed to surround the tube while maintaining an arbitrary space; a sample supply means connected to one end of the tube in an airtight manner; means for detecting a potential difference between a reference electrode and a specific ion electrode, and by flowing a sample into the hollow part of the tube by the sample supply means, the sample is supplied to the space between the tube and each of the electrodes. The present invention is characterized in that the sample is oozed out and a potential difference generated in a space between the reference electrode and the specific ion electrode according to the specific ion concentration in the sample is detected.

[実施例] 第1図は本発明に基づく分析装置の一実施例で
ある。
[Example] FIG. 1 shows an example of an analysis device based on the present invention.

図中11は側壁に多数の超微小孔(0.01μm〜
1μm)を有する内径500μm程度の高分子性チユ
ーブが複数本束ねられたチユーブ束体である。該
チユーブ束体の側面長手方向には該チユーブ束体
の外径より少し大きい内径を有する環状の特定電
極12、絶縁体13、特定電極14、絶縁体1
5、参照電極16が互に隙間無く設けられてい
る。特定電極12,14夫々の内面には特定成分
A、Bのイオン丈に感じる感応物質12A,14
Bが膜状に塗布されている。該特定電極12,1
4と参照電極16夫々の間には電圧計17,18
が設けられている。19,20は環状のチユーブ
束体支持体である。該支持体19はチユーブ束体
の上端部側面との間及び前記特定電極12との間
に隙間が生じる事が無いように、図の如く配置さ
れる。又、該支持体20はチユーブ束体の下部側
面との間及び前記参照電極との間に隙間が生じる
事が無いように、図の如く配置される。又、前記
支持体19には一端が外部に繋がり、他端が前記
特定電極12とチユーブ束体11との隙間Hに繋
がる貫通孔21が設けられている。前記支持体2
0には一端が外部と繋がり、他端が前記参照電極
16とチユーブ束体11との隙間Hに繋がる貫通
孔22が設けられている。23は注射器の如き液
体注入器で、先端部が前記支持体19の孔に挿入
される。24は前記チユーブ束体11の下端部の
近傍に配置された廃液槽である。
11 in the figure is a large number of ultra-micro holes (0.01 μm ~
It is a tube bundle made up of a plurality of polymeric tubes with an inner diameter of about 500 μm and a diameter of about 500 μm. In the longitudinal direction of the side surface of the tube bundle, there are an annular specific electrode 12 having an inner diameter slightly larger than the outer diameter of the tube bundle, an insulator 13, a specific electrode 14, and an insulator 1.
5. The reference electrodes 16 are provided without any gaps between them. On the inner surface of each of the specific electrodes 12 and 14 are sensitive substances 12A and 14 that are sensitive to the ions of specific components A and B.
B is applied in a film form. The specific electrode 12,1
Voltmeters 17 and 18 are connected between the reference electrode 16 and the reference electrode 16, respectively.
is provided. 19 and 20 are annular tube bundle supports. The support body 19 is arranged as shown in the figure so that there is no gap between it and the side surface of the upper end of the tube bundle and between it and the specific electrode 12. Further, the support body 20 is arranged as shown in the figure so that there is no gap between it and the lower side surface of the tube bundle and between it and the reference electrode. Further, the support body 19 is provided with a through hole 21 whose one end is connected to the outside and the other end is connected to the gap H between the specific electrode 12 and the tube bundle 11. The support body 2
0 is provided with a through hole 22 whose one end is connected to the outside and the other end is connected to the gap H between the reference electrode 16 and the tube bundle 11. 23 is a liquid injector such as a syringe, the tip of which is inserted into the hole of the support 19. Reference numeral 24 denotes a waste liquid tank disposed near the lower end of the tube bundle 11.

斯くの如き装置において、先端部がチユーブ束
体11の上端面に当るように液体注入器23を支
持体の孔に挿入し、サンプルを注入する前に、電
解液(例えばNaCl液)をチユープ束体11に注
入する。該電解液の注入により、電解液がチユー
ブ束体内を流れる。この時、該チユーブ束体内外
の圧力の違いにより、電解液が該チユーブ束体の
側壁の超微小孔から滲み出し、各電極と該チユー
ブ束体との隙間Hを非常に緩慢に流れる。該電解
液の注入により、特定電極12,14夫々と参照
電極16との間の電位差は特定の値になる。この
状態から、前記液体注入器23からサンプルをチ
ユープ束体11に注入する。該サンプルの注入に
より、サンプルがチユーブ束体内を流れる。この
時、該チユーブ束体内外の圧力の違いにより、サ
ンプルが該チユーブ束体の側壁の超微小孔から滲
み出し、各電極と該チユーブ束体との隙間Hを非
常に緩慢に流れる。該隙間においては、サンプル
が非常に緩慢に移動しており、参照電極16とチ
ユーブ束体の隙間に達したサンプルは貫通孔22
から外部へ出て行く。尚、サンプル中に混入して
いる比較的径の大きい異物はチユーブの超微小孔
を通過出来ないので、実際に該隙間Hに入り込む
のは径の大きい異物が取除かれたものである。そ
して、該サンプル中の特定成分Aのイオンは特定
電極12の感応物質12Aに取込まれ、特定成分
Bは特定電極14の感応物質14Bに夫々取込ま
れる。該夫々の取込みにより、該各感応膜と各特
定電極間で電気的交換が行なわれ、該各特定電極
14,15夫々と参照電極16との間にはサンプ
ル中の特定成分A、Bのイオン濃度に対応した電
位差が生じ、該夫々の電位差は電圧計17,18
に表示される。尚、該電圧計の示す電位差は初め
漸次上昇し、或る時間後飽和する。特定成分の濃
度はこの飽和値に対応したものである。尚、別の
サンプルを分析する場合には、貫通孔21から洗
浄液として生理食塩水を流し込み、各電極とチユ
ーブ束体との隙間に残つているサンプルを貫通孔
22から外部へ排出する。そして、充分に洗浄を
行なつた後、前記貫通孔22に適宜な抵抗を与え
てやれば、生理食塩水はチユーブ束体11の側壁
の超微小孔からチユーブ束体内に流れ込み、該チ
ユーブ束体内に残つているサンプルが廃液槽24
へ排出される。そして、前記の工程を行なう。
In such a device, the liquid injector 23 is inserted into the hole of the support so that the tip touches the upper end surface of the tube bundle 11, and before injecting the sample, an electrolytic solution (for example, NaCl solution) is added to the tube bundle. Inject into body 11. The injection of the electrolyte causes the electrolyte to flow inside the tube bundle. At this time, due to the difference in pressure between the inside and outside of the tube bundle, the electrolytic solution oozes out from the ultra-fine holes in the side wall of the tube bundle and flows very slowly through the gap H between each electrode and the tube bundle. By injecting the electrolyte, the potential difference between the specific electrodes 12, 14 and the reference electrode 16 becomes a specific value. From this state, a sample is injected into the tube bundle 11 from the liquid injector 23. The sample injection causes the sample to flow within the tube bundle. At this time, due to the difference in pressure between the inside and outside of the tube bundle, the sample oozes out from the microscopic holes in the side wall of the tube bundle and flows very slowly through the gap H between each electrode and the tube bundle. The sample moves very slowly in the gap, and the sample that reaches the gap between the reference electrode 16 and the tube bundle moves through the through hole 22.
to go outside. It should be noted that since relatively large-diameter foreign objects mixed in the sample cannot pass through the ultra-fine pores of the tube, what actually enters the gap H is the removed large-diameter foreign objects. The ions of the specific component A in the sample are taken into the sensitive material 12A of the specific electrode 12, and the specific component B is taken into the sensitive material 14B of the specific electrode 14, respectively. Due to the respective uptake, electrical exchange is performed between each of the sensitive membranes and each of the specific electrodes, and ions of specific components A and B in the sample are present between each of the specific electrodes 14 and 15 and the reference electrode 16. A potential difference corresponding to the concentration is generated, and the respective potential differences are measured by voltmeters 17 and 18.
will be displayed. Note that the potential difference indicated by the voltmeter initially increases gradually and saturates after a certain period of time. The concentration of the specific component corresponds to this saturation value. In addition, when analyzing another sample, physiological saline is poured as a cleaning liquid through the through hole 21, and the sample remaining in the gap between each electrode and the tube bundle is discharged to the outside through the through hole 22. After thorough cleaning, if appropriate resistance is applied to the through holes 22, the physiological saline will flow into the tube bundle through the ultra-fine holes in the side wall of the tube bundle. Samples remaining in the body are stored in the waste liquid tank 24.
is discharged to. Then, the above steps are performed.

尚、前記実施例では二つの特定成分を分析する
例を示したが、分析する特定成分数を増やす場合
は、内面にその特定成分丈を検知するような感応
物質を膜状に塗布した特定電極を第1図の如き特
定電極の上に絶縁体を介して配置し、参照電極と
の間に新な電圧計を設ければよい。又、チユーブ
束体の代りに1本の高分子性チユーブを使用して
もよい。但し、この場合、支持体としては、サン
プル注入器の先端が挿入可能な形状にする必要が
ある。
In the above example, an example was shown in which two specific components were analyzed, but if the number of specific components to be analyzed is increased, a specific electrode whose inner surface is coated with a film of sensitive material that can detect the length of the specific component is used. may be placed on the specific electrode as shown in FIG. 1 via an insulator, and a new voltmeter may be provided between it and the reference electrode. Also, a single polymeric tube may be used instead of the tube bundle. However, in this case, the support needs to have a shape into which the tip of the sample injector can be inserted.

[発明の効果] 本発明によれば、高分子製のチユーブの側面長
手方向に参照電極と分析成分数に応じた数の特定
電極を配置する丈の構成なので、サンプルが微量
で済み、又、従来の装置のようにサンプルを収容
する為の大きな容器が不要となるので装置全体が
コンパクト化する。
[Effects of the Invention] According to the present invention, since the length of the reference electrode and the number of specific electrodes corresponding to the number of components to be analyzed are arranged in the longitudinal direction of the side surface of the polymer tube, only a small amount of sample is required. Unlike conventional devices, there is no need for a large container to accommodate the sample, making the entire device more compact.

又、サンプルに混入している径の大きい異物は
電極に達する事は無く、又、サンプルを高分子製
のチユーブ内を貫通させ、常にサンプルを移動さ
せているので、径の小さい異物といえども特定電
極に異物が付着しにくい。
In addition, foreign particles with a large diameter mixed in the sample will not reach the electrode, and since the sample is passed through a polymer tube and the sample is constantly moved, even if the particle is small in diameter, it will not reach the electrode. Foreign matter is less likely to adhere to specific electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した分析装置の
概略図、第2図は従来の分析装置の一例図であ
る。 11:チユーブ束体、12,14:特定電極、
13:,15:絶縁体、16:参照電極、17,
18:電圧計、19,20:支持体、21,2
2:貫通孔、23:液体注入器、24:廃液槽。
FIG. 1 is a schematic diagram of an analyzer showing an embodiment of the present invention, and FIG. 2 is an example diagram of a conventional analyzer. 11: tube bundle, 12, 14: specific electrode,
13:, 15: Insulator, 16: Reference electrode, 17,
18: Voltmeter, 19, 20: Support, 21, 2
2: Through hole, 23: Liquid injector, 24: Waste liquid tank.

Claims (1)

【特許請求の範囲】[Claims] 1 側壁に多数の超微小孔を有する高分子性チユ
ーブと、該チユーブ外周の長手方向に沿つて互い
に電気絶縁された状態で順次配置され、かつ任意
な空間を保つて囲繞するように形成された参照電
極及び検出すべき成分に感応する特定イオン電極
と、前記チユーブの一端に気密を保つて接続され
たサンプル供給手段と、前記参照電極と特定イオ
ン電極との間の電位差を検出するための手段とを
備え、前記サンプル供給手段によりチユーブの中
空部にサンプルを流すことによつてこのチユーブ
と前記各電極との間の空間にサンプルを滲み出さ
せ、前記参照電極と特定イオン電極との空間に生
じたサンプル中の特定イオン濃度に応じた電位差
を検出するように構成したことを特徴とする分析
装置。
1 A polymeric tube having a large number of ultra-micropores on its side wall, and a polymeric tube that is arranged in sequence along the longitudinal direction of the outer periphery of the tube while being electrically insulated from each other, and is formed so as to surround the tube while maintaining an arbitrary space. a reference electrode and a specific ion electrode sensitive to the component to be detected; a sample supply means airtightly connected to one end of the tube; and a sample supply means for detecting a potential difference between the reference electrode and the specific ion electrode. means, by causing the sample to flow into the hollow part of the tube by the sample supply means, the sample oozes out into the space between the tube and each of the electrodes, and the sample flows into the space between the reference electrode and the specific ion electrode. 1. An analysis device configured to detect a potential difference according to a specific ion concentration in a sample that occurs in a sample.
JP59263985A 1984-12-14 1984-12-14 Analyzing instrument Granted JPS61140851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263985A JPS61140851A (en) 1984-12-14 1984-12-14 Analyzing instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263985A JPS61140851A (en) 1984-12-14 1984-12-14 Analyzing instrument

Publications (2)

Publication Number Publication Date
JPS61140851A JPS61140851A (en) 1986-06-27
JPH0456943B2 true JPH0456943B2 (en) 1992-09-10

Family

ID=17396938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263985A Granted JPS61140851A (en) 1984-12-14 1984-12-14 Analyzing instrument

Country Status (1)

Country Link
JP (1) JPS61140851A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811097B2 (en) * 2017-01-13 2021-01-13 東京エレクトロン株式会社 Board processing equipment

Also Published As

Publication number Publication date
JPS61140851A (en) 1986-06-27

Similar Documents

Publication Publication Date Title
Forster Microelectrodes: new dimensions in electrochemistry
Chow et al. Electrochemical detection of secretion from single cells
US3098813A (en) Electrode
CN102507696B (en) Ion-selective electrode based on graphene electrode and preparation method thereof
US3498899A (en) Electrochemical electrode assembly
Štulík et al. Electrochemical detection techniques in high-performance liquid chromatography
JP3011914B2 (en) On-column conductivity detector for electrokinetic separation by microcolumn
Štulík et al. Continuous voltammetric measurements with solid electrodes: Part I. A flow-through cell with tubular electrodes employing pulse polarization of the electrode system
Dong et al. Monitoring diclofenac sodium in single human erythrocytes introduced by electroporation using capillary zone electrophoresis with electrochemical detection
US3438886A (en) Organic liquid ion-exchanger electrode
Tur'yan Microcells for voltammetry and stripping voltammetry
DE10112384A1 (en) Ultra-micro electrode, for use as a probe for topographical and chemical analysis, has a cylindrical body with a center electrode fiber, and parallel outer electrode fibers insulated against the center fiber
JPH0456943B2 (en)
Dasgupta et al. Electromigration injection from a small loop in capillary electrophoresis
KR101622779B1 (en) Apparatus and method for monitoring nano particles
US11913904B2 (en) Reusable cartridge for capillary electrophoresis
JP6795245B1 (en) Endotoxin detector and endotoxin detection method
Opekar et al. Characterization of various geometric arrangements of “air‐assisted” flow gating interfaces for capillary electrophoresis
Lassen et al. Use of microelectrodes for measurement of membrane potentials
Fernandez et al. Simple and reliable fabrication of carbon fiber ultramicroelectrodes
US4258316A (en) Use of fluid retarding ion conducting material
US3493485A (en) Apparatus for determining dissolved oxygen concentration of biological fluids
JP6495439B2 (en) Microfluidic analyzer and microfluidic analysis method
Jin et al. Study of uptake kinetics of vincristine for human erythrocytes by capillary zone electrophoresis with electrochemical detection
Yavich A new technique for measuring the temporal characteristics of the carbon fibre microelectrodes in in vivo voltammetry at millisecond time intervals