JPH0456887A - Volume multiplexed hologram element - Google Patents

Volume multiplexed hologram element

Info

Publication number
JPH0456887A
JPH0456887A JP16519390A JP16519390A JPH0456887A JP H0456887 A JPH0456887 A JP H0456887A JP 16519390 A JP16519390 A JP 16519390A JP 16519390 A JP16519390 A JP 16519390A JP H0456887 A JPH0456887 A JP H0456887A
Authority
JP
Japan
Prior art keywords
crystal
hologram element
diffraction efficiency
photorefractive
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16519390A
Other languages
Japanese (ja)
Inventor
Ikutake Yagi
生剛 八木
Yasuyuki Sugiyama
泰之 杉山
Iwao Hatakeyama
畠山 巌
Akira Morinaka
森中 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16519390A priority Critical patent/JPH0456887A/en
Publication of JPH0456887A publication Critical patent/JPH0456887A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a volume multiplexed hologram element having high diffraction efficiency by using photorefractive crystal whose refractive index is changed by light irradiation as a recording material and applying stress from the external to the crystal to distort its crystal grating. CONSTITUTION:The photorefractive crystal for changing the refractive index by light irradiation is used as the recording material and constituted so that the crystal grating is distorted by applying stress from the external to the crystal. When a prism 24 is cut out from Sr0.6BA0.4Nb2O6(0.05% Cedope) monocrystal e.g. used as the photorefractive crystal material, two C faces on the surfaces of the prism are held between copper blocks 23, 23 and pressure is applied in the C axis direction, the diffraction efficiency is improved. Consequently, an electro-optical effect is increased by applying pressure to the prism and high diffraction efficiency can be obtained in the volume multiplexed hologram element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フォトリフラクティブ結晶を用いて、同一素
子中に複数のホログラムを記録、再生する体積多重ホロ
グラム素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a volumetric multiplexing hologram element that uses a photorefractive crystal to record and reproduce a plurality of holograms in the same element.

〔従来の技術とその課題〕[Conventional technology and its issues]

レーザー等の光源を用い、物体による散乱光(物体光)
と同し光源からの非散乱光(参照先)とを干渉させ、そ
の干渉縞(ホログラム)を光記録可能な写真乾板等の記
録媒体に記録し、また、再生時には、記録された干渉縞
に参照先のみを照射し、物体による散乱光を再現する技
術をホログラフィ−と呼ぶ。
Scattered light by an object (object light) using a light source such as a laser
Interferes with unscattered light (reference target) from the same light source, records the interference fringes (hologram) on a recording medium such as an optically recordable photographic plate, and when reproducing, the recorded interference fringes are Holography is a technique that reproduces the light scattered by an object by irradiating only the reference target.

また、奥行きをもつ記録媒体の場合、物体光及び参照先
の入射方向を変えることによって、同一媒体内に複数の
ホログラムを記録することか可能である。この技術を体
積多重ホログラフィ−と呼ぶ。
Furthermore, in the case of a recording medium with depth, it is possible to record a plurality of holograms in the same medium by changing the incident directions of the object beam and the reference destination. This technique is called volumetric multiplex holography.

体積ホログラム記録媒体として、光照射に依って屈折率
を変えるフォトリフラクティブ結晶(LiN bo 3
. B aT io 3.  S rxB al−xN
 bos、Bt、tst○、。、B1゜Ge0to等)
が検討されている。
As a volume hologram recording medium, a photorefractive crystal (LiN bo 3
.. B aT io 3. S rxB al-xN
bos, Bt, tst○,. , B1゜Ge0to, etc.)
is being considered.

しかし、これらの材料単体では光感度や屈折率変化量は
小さく回折効果が低い為に、ホログラム記録媒体として
の実用に適さない。フォトリフラクティブ現象は、結晶
中に点在する不純物原子や色中心から伝導帯に光励起さ
れた電子が、拡散、1−リフト、あるいは光起電力効果
によって空間的に移動し、光強度分布に応した電場分布
を結晶中に形成し、その電場か電気光学効果に1衣って
屈折率の空間変化を起こすことに由来する。
However, these materials alone are not suitable for practical use as hologram recording media because their photosensitivity and refractive index change are small and their diffraction effects are low. The photorefractive phenomenon is a phenomenon in which electrons that are photo-excited from impurity atoms or color centers scattered in a crystal to the conduction band move spatially due to diffusion, 1-lift, or photovoltaic effect, and respond to the light intensity distribution. It originates from the fact that an electric field distribution is formed in the crystal, and the electric field causes a spatial change in the refractive index due to the electro-optic effect.

従って、光感度を増し、回折効率を上げるために、不純
物原子の濃度や種類を調整し、かつ外部電場をかけてド
リフト量を増やすという工夫が行われている。しかし、
これで幾らでも感度や回折効率をあげられる訳ではない
。例えば、不純物原子濃度を上げすぎると、媒体の透明
度が悪くなって体積多重できな(なることや、外部電場
を強くすると絶縁破壊に依って結晶か破壊されてしまう
という欠点か残っている。
Therefore, in order to increase photosensitivity and diffraction efficiency, efforts have been made to adjust the concentration and type of impurity atoms and to increase the amount of drift by applying an external electric field. but,
This does not mean that sensitivity or diffraction efficiency can be increased no matter how much. For example, if the concentration of impurity atoms is increased too much, the transparency of the medium deteriorates, making it impossible to perform volume multiplexing, and if the external electric field is strengthened, the crystals may be destroyed due to dielectric breakdown.

また、記録媒体をファイバ状(直径〉〉波長;多モート
ファイバ)にして、媒体と光の相互作用距離を長くし、
小さい屈折率変化で高い回折効率をあげる方法か提案さ
れ検討されている。しかし、平面波を入射したとしても
、側面で反射された光の波数ベクトルは側面の曲率に応
じて逆字間で広がり、記録されるホログラフのグレーテ
ィングの波数ベクトルも逆空間内で広がってしまう。1
ノ肯って、あまりファイバを長くする事は、反射回数を
増し、角度3重記録する際の画像間のクロストークを増
す事から望ましくない。
In addition, the recording medium is made into a fiber (diameter〉〉wavelength; multi-mode fiber) to increase the interaction distance between the medium and light.
A method of increasing diffraction efficiency with a small change in refractive index has been proposed and studied. However, even if a plane wave is incident, the wave number vector of the light reflected from the side surface will spread between the inverted characters depending on the curvature of the side surface, and the wave number vector of the holographic grating to be recorded will also spread in the inverted space. 1
On the other hand, it is not desirable to make the fiber too long because it increases the number of reflections and increases the crosstalk between images during triple angle recording.

本発明は、前述の体積ホログラム用フォトリフラクティ
ブ媒体の欠点に鑑みてなされたもので、高い回折効率を
持つ体積多重ホログラム素子を提供する事を目的とする
。ここでは、電気光学効果を増大させ、回折効率を大き
くさせる。
The present invention was made in view of the above-described drawbacks of the photorefractive medium for volume holograms, and an object of the present invention is to provide a volume multiplex hologram element with high diffraction efficiency. Here, the electro-optic effect is increased and the diffraction efficiency is increased.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、光ビームの干
渉によって形成される干渉縞を同一素子体積中に複数個
記録する多重ホログラム素子において、前記多重ホログ
ラム素子は光照射に依って屈折率を変えるフォトリフラ
クティブ結晶を記録材料とし、外部から応力を加えて結
晶格子を歪ませることによって、電気光学効果を増大さ
せることを特徴としている。
In order to achieve the above object, the present invention provides a multiplex hologram element in which a plurality of interference fringes formed by interference of light beams are recorded in the same element volume, wherein the multiplex hologram element changes its refractive index by light irradiation. It is characterized by using a photorefractive crystal as a recording material and increasing the electro-optic effect by applying external stress to distort the crystal lattice.

以下に、本発明の構成について述べる。The configuration of the present invention will be described below.

まず、結晶格子が歪んだ時に、その結晶の電気光学定数
に及ばず影響について説明する。
First, we will explain how the crystal lattice, when distorted, affects the electro-optic constant of the crystal.

ここでは、例としてS rxB a、−1h bo 3
 (正方品タングステンブロンズ構造)をとりあげ、表
1に、ストロンチウムとノ<リウムの組成比を変えたと
きの格子定数と電気光学定数を示す。
Here, as an example, S rxB a, -1h bo 3
(square tungsten bronze structure), Table 1 shows the lattice constant and electro-optical constant when the composition ratio of strontium and norium is changed.

ストロンチウムを増せば増すほど単位格子の大きさ(a
、c)は小さく、逆にa / cは大きくなり、それに
つれて電気光学定数は大きくなる様子がわかる。一方、
この結晶系の場合、バレンスパントは主に酸素の2p軌
道、コンダクションパンは主にニオブの4d軌道からつ
くられており、可視光領域における光学的性質はこの二
つのバンドに依って決定されている。従って、電気光学
定数の変化は、直接的には格子定数の変化に由来するも
のであって、ストロンチウム/バリウム比は格子定数を
変える効果をもたらすものと解釈できる。そこで、組成
比を変える以外に、圧力を加えるなどの方法で格子定数
を小さくすれば、電気光学を大きくすることが可能とな
る。
As the amount of strontium increases, the size of the unit cell (a
, c) are small, and conversely, a/c becomes large, and it can be seen that the electro-optic constant becomes large accordingly. on the other hand,
In the case of this crystal system, the valence pant is mainly made of the 2p orbital of oxygen, and the conduction pant is mainly made of the 4d orbital of niobium, and the optical properties in the visible light region are determined by these two bands. There is. Therefore, the change in the electro-optic constant is directly derived from the change in the lattice constant, and it can be interpreted that the strontium/barium ratio brings about the effect of changing the lattice constant. Therefore, in addition to changing the composition ratio, by reducing the lattice constant by applying pressure or other methods, it is possible to increase electro-optics.

(表−1) 組成比 電気光学定数   格子定数 Sr/Ba  rzp(XIO−12m/V)  a(
A)  c(A)  a/c75/25   1400
   12.440 3.924 3.17060/4
0   420   12.467 3.937 3.
16750150   180   12.475 3
.952 3.157次に、外部から圧力を加えた体積
多重ホログラム素子の構成について述べる。第1図(a
)〜第1図(e)は本発明による圧力付加の例を示した
ものであって、第1図(a)はフォトリフラクティブ結
晶1をブロック2・2により上面下面から挟んで機械的
に1方向の圧縮力を加えたものである。
(Table-1) Composition ratio Electro-optical constant Lattice constant Sr/Bar rzp(XIO-12m/V) a(
A) c(A) a/c75/25 1400
12.440 3.924 3.17060/4
0 420 12.467 3.937 3.
16750150 180 12.475 3
.. 952 3.157 Next, the configuration of a volumetric multiplex hologram element to which pressure is applied from the outside will be described. Figure 1 (a
) to FIG. 1(e) show examples of applying pressure according to the present invention, and FIG. 1(a) shows a photorefractive crystal 1 which is mechanically sandwiched between blocks 2 and 2 from the upper and lower surfaces. This is the addition of compressive force in the direction.

第1図(b)〜第1図(e)は、フォトリフラクティブ
結晶(コア)3〜8のまわりを透明な材料(クラッド)
9〜12でそれぞれ覆う構造をなしおり、クラッドはコ
ア材料よりも大きな熱膨張係数を持つ材料を選ぶ。
Figures 1(b) to 1(e) show a transparent material (cladding) surrounding the photorefractive crystals (core) 3 to 8.
9 to 12, each having a covering structure, and the cladding is made of a material having a larger coefficient of thermal expansion than the core material.

この場合、本素子を作製する温度(コア材料もしくはク
ラッド材料の融点)から室温まで冷却される過程で、コ
ア3〜8はクラッド9〜12によってそれぞれ圧縮され
ることになる。圧縮は必ずしも等方的である必要はなく
、用いるフォトリフラクティブ結晶の性質に応して変化
させるのかよく、一般的には、結晶の対象性を低下させ
る方向に歪ませるのかよい。
In this case, cores 3 to 8 are compressed by claddings 9 to 12, respectively, during the process of cooling from the temperature at which the device is manufactured (the melting point of the core material or cladding material) to room temperature. Compression does not necessarily have to be isotropic, and may be changed depending on the properties of the photorefractive crystal used, and generally it may be strained in a direction that reduces the symmetry of the crystal.

従って、第1図(b)〜第1図(e)の様なバリエーシ
ョンか考えられる。第1図(b)はコア3に静水圧をか
けるタイプ、第1図(C)は側面側に中空部13を有し
て、コア4に1方向にのみ圧縮力を加えるタイプ、第1
図(d)はコア5に2方向の圧縮力を加えるタイプ、第
1図(e)はコア6〜8に2方向の異なる大きさ圧縮力
を加えるタイプである。
Therefore, variations such as those shown in FIG. 1(b) to FIG. 1(e) are possible. 1(b) is a type that applies hydrostatic pressure to the core 3, and FIG. 1(C) is a type that has a hollow part 13 on the side surface and applies compressive force to the core 4 only in one direction.
Fig. 1(d) shows a type in which compressive forces are applied to the core 5 in two directions, and Fig. 1(e) shows a type in which compressive forces of different magnitudes are applied in two directions to the cores 6 to 8.

〔実施例〕〔Example〕

第2図に本発明の実施例を示す。 FIG. 2 shows an embodiment of the present invention.

フォトリフラクティブ結晶材料として、SrO,llB
 a o、4N bto e(o 、05%Cedop
e)単結晶から5[mm)X 3 [mm+〕x 1 
、6 [mm)の角柱24を切り出し、角柱表面の二つ
の0面を銅ブロック23・23で挟み、前述の第1図(
a)の方法でC軸方向に対して圧力を加えた。電気光学
定数の変1ヒを1測定する方法として、ここでは、干渉
縞による回折効率を測定した。光源として、アルフンイ
オンレーザ−(波長514.5[nrr+)) 21を
用い、ハーフミラ−22を用いて等しい強度の2光束2
5・26に分けた後、結晶24中に2光束の角度にして
20度にて入射させ、露光量10 [mW/m m ’
]にて2 [m5ec)露光した。その後、第2のビー
ム26をシャッター27に依って切り、第1のビーム2
5のみを照射し、回折効率を測定した。この時、入射光
の電場ベクトルはC軸方向を向くように、半波長板28
を調整した。圧力をかけないときては、回折効率は10
%なのに対し、20CN]の力を加えながら同し測定を
おこなった場合には、回折効率は25%まで向上した。
As a photorefractive crystal material, SrO, llB
ao, 4N bto e(o, 05%Cedop
e) 5 [mm) x 3 [mm+] x 1 from single crystal
, 6 mm) was cut out, and the two 0 faces of the prism surfaces were sandwiched between copper blocks 23, 23, and the shape shown in FIG.
Pressure was applied in the C-axis direction using method a). Here, as a method for measuring changes in electro-optic constants, diffraction efficiency using interference fringes was measured. As a light source, an Alfon ion laser (wavelength 514.5 [nrr+)) 21 is used, and a half mirror 22 is used to generate two light beams 2 of equal intensity.
After dividing into 5 and 26 beams, the two beams were made to enter the crystal 24 at an angle of 20 degrees, and the exposure amount was 10 [mW/m m '
] for 2 [m5ec). After that, the second beam 26 is cut by the shutter 27, and the first beam 26 is cut off by the shutter 27.
5 was irradiated and the diffraction efficiency was measured. At this time, the half-wave plate 28 is set so that the electric field vector of the incident light points in the C-axis direction.
adjusted. When no pressure is applied, the diffraction efficiency is 10
%, whereas when the same measurement was performed while applying a force of 20 CN, the diffraction efficiency improved to 25%.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、圧力をか
けることに依って電気光学効果か増大し、体積多重ホロ
グラム素子において高い回折効率を得ることができる。
As described above in detail, according to the present invention, the electro-optic effect is increased by applying pressure, and high diffraction efficiency can be obtained in the volume multiplexed hologram element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による体積多重ホログラフ素子における
、圧力付加の方法の例を示す図、第2図は本発明の一実
施例を示し、SBN結晶を用いて、圧力付加か回折効率
を増すために有効であることを示すための実験例を示す
図である。 1・3〜8・・・・・・フォトリフラクティブ結晶第2
FIG. 1 is a diagram showing an example of a method for applying pressure in a volume multiplexed holographic element according to the present invention, and FIG. 2 is a diagram showing an embodiment of the present invention, in which an SBN crystal is used to apply pressure or increase diffraction efficiency. FIG. 2 is a diagram illustrating an experimental example to demonstrate that the method is effective. 1.3-8...Photorefractive crystal 2nd
figure

Claims (1)

【特許請求の範囲】  光ビームの干渉によって形成される干渉縞を同一素子
体積中に複数個記録する多重ホログラム素子において、 前記多重ホログラム素子は光照射に依って屈折率を変え
るフォトリフラクティブ結晶を記録材料とし、外部から
応力が加えられて結晶格子が歪ませられていることを特
徴とする体積多重ホログラム素子。
[Claims] A multiple hologram element that records a plurality of interference fringes formed by interference of light beams in the same element volume, wherein the multiple hologram element records a photorefractive crystal whose refractive index changes depending on light irradiation. A volumetric multiplex hologram element characterized by having a material whose crystal lattice is distorted by applying stress from the outside.
JP16519390A 1990-06-22 1990-06-22 Volume multiplexed hologram element Pending JPH0456887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16519390A JPH0456887A (en) 1990-06-22 1990-06-22 Volume multiplexed hologram element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16519390A JPH0456887A (en) 1990-06-22 1990-06-22 Volume multiplexed hologram element

Publications (1)

Publication Number Publication Date
JPH0456887A true JPH0456887A (en) 1992-02-24

Family

ID=15807607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16519390A Pending JPH0456887A (en) 1990-06-22 1990-06-22 Volume multiplexed hologram element

Country Status (1)

Country Link
JP (1) JPH0456887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518351A (en) * 2008-04-21 2011-06-23 ブンデスドルッケライ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Electrical stimulation volume hologram
JP2013534327A (en) * 2010-07-30 2013-09-02 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Complex holograms, how to make and use complex holograms

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518351A (en) * 2008-04-21 2011-06-23 ブンデスドルッケライ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Electrical stimulation volume hologram
JP2013534327A (en) * 2010-07-30 2013-09-02 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Complex holograms, how to make and use complex holograms

Similar Documents

Publication Publication Date Title
US6673497B2 (en) High efficiency volume diffractive elements in photo-thermo-refractive glass
US3703328A (en) Devices utilizing improved linbo' holographic medium
Eichler et al. High-density disk storage by multiplexed microholograms
US4927220A (en) System and method for photorefractive holographic recording and signal processing
US6322932B1 (en) Holographic process and media therefor
US20080254372A1 (en) PDR and PBR glasses for holographic data storage and/or computer generated holograms
JPH11282331A (en) Regenerating device for volume holographic memory light information record
US4576434A (en) Device for recording a coherent image in a multimode optical cavity
DE102014119627B4 (en) Method for generating a holographic-optical beam-shaping element, arrangement, holographic-optical beam-shaping element and display device
US20080254373A1 (en) Method of making PDR and PBR glasses for holographic data storage and/or computer generated holograms
EP0518449B1 (en) Optical interconnection apparatus
JPH0456887A (en) Volume multiplexed hologram element
Petrov et al. Electric field selectivity and multiplexing of volume holograms in LiNbO3
US4461533A (en) Forming and reading holograms
US4662711A (en) Holographic light guide
JP2895598B2 (en) Optical memory device and method of manufacturing the same
JP2831731B2 (en) Multi-volume hologram element
EP0824217B1 (en) Optical materials
JP2898912B2 (en) Hologram recording / reproducing device
JP2905433B2 (en) Hologram recording / reproducing device
JP3029791B2 (en) Hologram recording / reproduction method, hologram recording / reproduction device, and hologram reproduction light irradiation device
JPH05142978A (en) Wavelength multiplex volume holography device
JPH03107829A (en) Liquid crystal phase conjugated wave device
JP3142048B2 (en) Hologram element, hologram recording / reproducing apparatus, and method of manufacturing hologram element
KR100281766B1 (en) Hologram recording device