JPH0456811B2 - - Google Patents

Info

Publication number
JPH0456811B2
JPH0456811B2 JP59147320A JP14732084A JPH0456811B2 JP H0456811 B2 JPH0456811 B2 JP H0456811B2 JP 59147320 A JP59147320 A JP 59147320A JP 14732084 A JP14732084 A JP 14732084A JP H0456811 B2 JPH0456811 B2 JP H0456811B2
Authority
JP
Japan
Prior art keywords
tmbq
hydrogen reduction
tmhq
trimethyl
raney
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59147320A
Other languages
Japanese (ja)
Other versions
JPS6127936A (en
Inventor
Taku Abe
Yoshiharu Ayabe
Haruo Kasamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Priority to JP59147320A priority Critical patent/JPS6127936A/en
Publication of JPS6127936A publication Critical patent/JPS6127936A/en
Publication of JPH0456811B2 publication Critical patent/JPH0456811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は2,3,5−トリメチル−ハイドロキ
ノン(以下、TMHQと略称)を製造する方法の
改良に関するものであつて、さらに詳しくは
TMHQの前駆体である2,3,5−トリメチル
−パラ−ベンゾキノン(以下、TMBQと略称)
を、まず接触水素還元が容易な状態に精製し、し
かる後これを安価なラネ−ニツケル触媒の存在下
に水素還元に供して、高品位のTMHQを製造す
る方法に係る。 ビタミンEの需要増に伴い、その原料の一つで
あるTMHQの重要性が増大して来ている関係で、
高品位なTMHQを安価に製造できる方法の開発
が強く要望されている。TMHQはTMBQを還元
することで製造することができるが、その還元方
法としては、ハイドロサルフアイト、酸性亜硫酸
ソーダなどの還元剤を用いる方法と、白金、パラ
ジウムなどの貴金属触媒を用いて接触的に水素還
元する方法が知られている。このうち、水素還元
法に着目すると、この方法では使用溶媒が、そし
てまた反応器の材質までもが、還元の難易、触媒
の寿命及び目的生成物たるTMHQの品質などに、
影響を及ぼすため、これを考慮して従来技術は水
素還元法で使用する溶媒に関し、数多くの提案を
行なつている。 例えば、ドイツ公開特許第1940386号では、白
金触媒又はパラジウム触媒を使用し、C3〜5の分枝
状脂肪族アルコールを溶媒とする方法が提案さ
れ、特公昭51−26425号にはパラジウム触媒を使
用し、溶媒として低級脂肪酸低級アルキルエステ
ルを用いる方法が、さらに特公昭54−42964号に
は溶媒として脂肪族ケトンを用いる方法が、それ
ぞれ提案されている。また、反応器の材質につい
て言えば、前記のドイツ公開特許第194086号は、
エタノール又はメタノールを溶媒とし、鉄及びニ
ツケル又はクロムを含有する鋼製反応器内で
TMBQを接触水素還元すると、反応器材の一部
が溶出し、その溶出物の強い酸化触媒作用によつ
てキンヒドロンが副生されるため、目的生成物が
暗色になる不都合を指摘している。 上記のように貴金属触媒を使用するTMBQの
水素還元法に於て、様々な反応溶媒が提案されて
いることは、TMBQの還元が単純な反応である
にもかかわらず、結晶の白度、純度、融点、安定
性などの各点で、ビタミンEの原料として満足で
きるTMHQを得ることが決して容易でないこと
を示している。 水素還元法の別法としては、貴金属触媒に代え
て安価なラネ−ニツケル触媒を使用する方法が、
特開昭48−49732号、特公昭51−26424号、同51−
26425号、同57−20285号などで紹介されている。
しかし、この方法は貴金属触媒を用いる方法に比
較してラネ−ニツケルを多量に用いなければなら
ず、例えば特公昭57−20285号では、ラネ−ニツ
ケルをTMBQに対し約10重量%も使用する必要
があることを教えている。さらにまた、特開昭48
−49732号の実施例が教示する方法では、ラネ−
ニツケルの使用量がTMBQの20重量%にも及ん
でいる。しかもこの実施例の方法は、水素還元
後、仕込みTMBQに対し40重量%ものハイドロ
サルフアイトを含む水溶液で、補助還元を行なう
ものであるため、真の意味でラネ−ニツケルによ
る接触水素還元とは言い難い。こうした公知事実
から、TMBQのラネ−ニツケルによる接触水素
還元によつて、高品位のTMHQを得ることは、
現実にはかなり難しいことが推察されよう。 こうした実情に鑑みて、従来よりも少量のラネ
−ニツケルを用いて容易にTMBQを高品位の
TMHQに水素還元することができ、しかも貴金
属触媒を使用する従来法の如く、使用溶媒や反応
器の材質などの影響を受けることのない接触水素
還元法を開発すべく研究を重ねた結果、そうした
接触水素還元法の成否は、専ら原料TMBQの品
質に左右される事実を本発明者らは究明した。 この点をさらに詳述すると、先に出願人が提案
した特公昭58−23858号公報記載のTMBQの製
法、すなわち、2,3,6−トリメチルフエノー
ル(以下、TMPと略称)を硝酸と塩酸の混酸で
酸化する方法によれば、純度99%以上のTMBQ
を得ることができるが、このTMBQは高純度で
あるにもかかわなず、ラネ−ニツケル触媒を用い
た水素還元では、反応の進行が遅く、比較的多量
の触媒を必要とするうえ、得られるTMHQの品
質も不充分である。このことから、前記特公昭58
−23858号公報の方法で得られるTMBQには、何
か還元反応を阻害する物質が含まれているのと推
察し、その性状を詳しく検討した。そして前記の
TMBQは見掛け上中性に近いが、これを加熱す
ると徐徐に酸性物質が放出されること、この酸性
物質が如何なる形でTMBQに存在するかは不明
なるも、TMBQの水素還元はこの酸性物質によ
つて明らかに妨げられること、従つてTMBQの
水素還元に先立つて、これに潜在する酸性物質を
予め除去しておけば、高価な貴金属触媒を用いな
くても、また使用溶媒や反応器の材質などを限定
しなくても、ラネ−ニツケル触媒を用いた水素還
元法によつて、白度の優れた高品質のTMHQが
容易に得られるとの知見を得た。 そしてまた、水素還元を阻害する酸性物質の存
在は、特公昭58−23858号公報の方法で得られる
TMBQに固有なものはなく、類似の方法、例え
ばTMPを塩素化後、硝酸あるいは過酸化水素で
酸化するドイツ公開公報第2332704号、同2460361
号の方法で得られるTMBQにも同様に認められ
ることを確認した。 而して本発明に係る高品質TMHQの製造方法
は、TMBQを接触水素還元に供するに先立つて、
TMBQを炭素又は重炭素酸のアルカリ金属塩水
溶液と混合し、この混合物を60℃以下の温度に加
温しながら撹拌してそのPHを8〜11の範囲内で安
定化させ、しかる後この混合物から分離回収され
るTMBQを、有機溶媒中でラネ−ニツケル触媒
の存在下に水素環元することを特徴とする。 本発明に於て、TMBQにに含まれる酸性物質
の除去は、TMBQを中和する方法で行なわれる。
この場合、中和条件を苛酷にして潜在酸性物質を
除くことは容易であるが、TMBQは熱及びアル
カリに対し、とりわけアルカリに対しては極めて
不安定であるので、単純に中和条件を強めること
は、TMBQを著しく損う不利がある。しかしな
がら、本発明で使用する炭酸又は重炭酸のアルカ
リ金属塩、典型的にはナトリウム塩又はカリウム
塩は、これを過剰に用いてもTMBQがひどく損
われることがない。尚、ナトリウム又はカリウム
の水酸化物を過剰に用いた場合は、TMBQの殆
どがタール化してしまう不都合がある。 炭酸又は重炭酸のアルカリ金属塩水溶液の濃度
は、1〜10重量%が適当であるが、容積効率、水
層への溶解によるTMBQ損失などを考慮すると、
5〜6重量%程度が特に好ましい。処理温度は時
間さえ充分に与えれば、室温であつても差支えな
く、要は潜在酸性物質を含有する粗TMBQを、
上記した炭酸塩又は重炭酸塩の水溶液と混合し、
この混合物のPHを8〜11の範囲内で安定させるこ
とにあり、これによつて粗TMBQを接触水素還
元の容易なTMBQに精製することができるので
ある。
The present invention relates to an improvement in a method for producing 2,3,5-trimethyl-hydroquinone (hereinafter abbreviated as TMHQ), and more specifically,
2,3,5-trimethyl-para-benzoquinone (hereinafter abbreviated as TMBQ), a precursor of TMHQ
The present invention relates to a method for producing high-quality TMHQ by first refining TMHQ to a state that facilitates catalytic hydrogen reduction, and then subjecting it to hydrogen reduction in the presence of an inexpensive Raney-Nickel catalyst. As the demand for vitamin E increases, the importance of TMHQ, one of its raw materials, is increasing.
There is a strong demand for the development of a method that can produce high-quality TMHQ at low cost. TMHQ can be produced by reducing TMBQ, but the reduction methods include methods using reducing agents such as hydrosulfite and acidic sodium sulfite, and catalytic methods using noble metal catalysts such as platinum and palladium. A method of hydrogen reduction is known. Of these, focusing on the hydrogen reduction method, this method depends on the solvent used and even the material of the reactor, such as the difficulty of reduction, the life of the catalyst, and the quality of the desired product TMHQ.
In consideration of this, the prior art has made numerous proposals regarding the solvent used in the hydrogen reduction method. For example, German Published Patent No. 1940386 proposes a method using a platinum catalyst or palladium catalyst and a C3-5 branched aliphatic alcohol as a solvent, and Japanese Patent Publication No. 51-26425 proposes a method using a palladium catalyst. In Japanese Patent Publication No. 54-42964, a method using an aliphatic ketone as a solvent has been proposed. Regarding the material of the reactor, the above-mentioned German published patent No. 194086
In a steel reactor containing iron and nickel or chromium, using ethanol or methanol as a solvent.
It has been pointed out that when TMBQ is reduced with catalytic hydrogen, part of the reaction equipment is eluted, and quinhydrone is produced as a by-product due to the strong oxidation catalytic action of the eluted material, resulting in the inconvenience that the desired product becomes dark in color. As mentioned above, various reaction solvents have been proposed for the hydrogen reduction method of TMBQ using a noble metal catalyst. This shows that it is by no means easy to obtain TMHQ that is satisfactory as a raw material for vitamin E in terms of , melting point, stability, etc. Another method of hydrogen reduction is to use an inexpensive Raney-nickel catalyst instead of a precious metal catalyst.
JP-A No. 48-49732, JP-A No. 51-26424, JP-A No. 51-
It has been introduced in issues such as No. 26425 and No. 57-20285.
However, this method requires the use of a large amount of Raney-nickel compared to the method using a precious metal catalyst. For example, in Japanese Patent Publication No. 57-20285, it is necessary to use approximately 10% by weight of Raney-nickel based on TMBQ. It teaches that there is. Furthermore, JP-A-48
In the method taught by the embodiments of No. 49732,
The amount of nickel used is as much as 20% by weight of TMBQ. Moreover, in the method of this example, after hydrogen reduction, auxiliary reduction is performed with an aqueous solution containing 40% by weight of hydrosulfite based on the charged TMBQ, so in the true sense it is not catalytic hydrogen reduction by Raney-nickel. It's hard to say. From these known facts, it is possible to obtain high-grade TMHQ by catalytic hydrogen reduction of TMBQ with Raney-nickel.
In reality, this is likely to be quite difficult. In view of these circumstances, it is easier to produce high-quality TMBQ using a smaller amount of Raney nickel than before.
As a result of repeated research to develop a catalytic hydrogen reduction method that can reduce hydrogen to TMHQ and is not affected by the solvent used or the material of the reactor, unlike conventional methods that use precious metal catalysts, The present inventors have discovered that the success or failure of the catalytic hydrogen reduction method depends solely on the quality of the raw material TMBQ. To explain this point in more detail, the method for producing TMBQ described in Japanese Patent Publication No. 58-23858 previously proposed by the applicant is that 2,3,6-trimethylphenol (hereinafter abbreviated as TMP) is mixed with nitric acid and hydrochloric acid. According to the method of oxidation with mixed acid, TMBQ with a purity of 99% or more
However, despite the high purity of this TMBQ, hydrogen reduction using a Raney-nickel catalyst slows down the reaction, requires a relatively large amount of catalyst, and is difficult to obtain. The quality of TMHQ is also inadequate. From this, the above-mentioned special public service
We surmised that TMBQ obtained by the method disclosed in Publication No. 23858 contained some substance that inhibited the reduction reaction, and we investigated its properties in detail. and the above
TMBQ is apparently nearly neutral, but when it is heated, acidic substances are gradually released. Although it is unknown in what form this acidic substance exists in TMBQ, hydrogen reduction of TMBQ is Therefore, prior to the hydrogen reduction of TMBQ, it is possible to remove latent acidic substances without using expensive precious metal catalysts, and with the use of solvents and reactor materials. It has been found that high-quality TMHQ with excellent whiteness can be easily obtained by a hydrogen reduction method using a Raney-nickel catalyst without any limitations. Furthermore, the presence of acidic substances that inhibit hydrogen reduction can be obtained by the method disclosed in Japanese Patent Publication No. 58-23858.
There is nothing specific to TMBQ, but similar methods are used, for example, chlorinating TMP and then oxidizing it with nitric acid or hydrogen peroxide.
It was confirmed that the same effect was observed in TMBQ obtained by the method of No. Therefore, in the method for producing high-quality TMHQ according to the present invention, before subjecting TMBQ to catalytic hydrogen reduction,
TMBQ is mixed with an aqueous solution of an alkali metal salt of carbon or heavy carbon acid, the mixture is stirred while being heated to a temperature below 60°C, and its pH is stabilized within the range of 8 to 11, and then this mixture is The method is characterized in that TMBQ separated and recovered from is subjected to hydrogen ring formation in an organic solvent in the presence of a Raney-Nickel catalyst. In the present invention, acidic substances contained in TMBQ are removed by neutralizing TMBQ.
In this case, it is easy to remove latent acidic substances by harshening the neutralization conditions, but since TMBQ is extremely unstable to heat and alkali, especially to alkalis, simply strengthen the neutralization conditions. This has the disadvantage of significantly impairing TMBQ. However, the alkali metal carbonate or bicarbonate salts used in the present invention, typically sodium or potassium salts, can be used in excess without seriously impairing TMBQ. Incidentally, when sodium or potassium hydroxide is used in excess, there is a disadvantage that most of TMBQ turns into tar. The appropriate concentration of the aqueous alkali metal salt solution of carbonic acid or bicarbonate is 1 to 10% by weight, but considering volumetric efficiency, TMBQ loss due to dissolution in the aqueous layer, etc.
Particularly preferred is about 5 to 6% by weight. The treatment temperature can be room temperature as long as sufficient time is given; in short, crude TMBQ containing latent acidic substances can be treated at
mixed with an aqueous solution of the carbonate or bicarbonate described above;
The purpose is to stabilize the pH of this mixture within the range of 8 to 11, thereby making it possible to refine crude TMBQ to TMBQ that can be easily subjected to catalytic hydrogen reduction.

【表】 表−1は粗TMBQを炭酸ナトリウム水溶液で
処理して精製し、得られた精TMBQをラネ−ニ
ツケル触媒の存在下に水素還元した場合の実験結
果を示すものであるが、これから明らかな通り、
温度30℃では粗TMBQの処理に長時間を要し、
余り実用的でない。処理温度が高くなるにつれて
酸性物質の消滅は速くなるが、TMBQのタール
化も増すので、処理温度は50〜60℃が適当であ
る。 TMBQを炭酸塩又は重炭酸塩の水溶液で処理
するに際しては、TMPの酸化によつて得られる
TMBQを酸化反応混合物から単離し、これを炭
酸塩又は重炭酸塩の水溶液に混合することができ
るが、TMBQが例えばベンゼン溶液として取得
される場合には、そのベンゼン溶液を炭酸塩又は
重炭酸塩の水溶液に混合することで、本発明の処
理を行なうことができる。ちなみに、先に紹介し
た特公昭58−23858号の方法によれば、TMBQが
ベンゼン溶液として得られるが、このベンゼン溶
液をそのまま本発明の方法によつて処理すること
により、これに含まれる粗TMBQを精製するこ
とができるのである。 いずれにしても粗TMBQに炭酸塩又は重炭酸
塩の水溶液を混合し、その混合液のPHを8〜11の
範囲内で安定化させた後は、TMBQが熱及びア
ルカリに不安定であることを考慮して、好ましく
は混合物のPHを中性に戻し、この混合物にベンゼ
ンが共存している場合はこれを留去後、静置分液
して油層を採取し、得られた油層成分を蒸留に付
すことにより精TMBQを回収することができる。 既述した通り、従来技術ではTMBQの接触水
素還元は厄介であるが、本発明の方法で精製され
たTMBQを原料とする場合は極めて容易であつ
て、白金、パラジウムなどの貴金属触媒を用いる
場合は勿論のこと、TMBQに対し僅か2重量%
のラネ−ニツケル(展開前の量)を用いるだけで
水素還元反応は短時間で完結する。しかも2回目
からは新たに1重量%(対TMBQ)のラネ−ニ
ツケルを追加すると、触媒の繰返し利用が永続的
に可能となり、実質的にはTMBQに対し1重量
%のラネ−ニツケルでTMBQを還元することが
できる。 接触水素還元に使用する反応器の材質について
言えば、ステンレス製(SUS 304)及び鉄製
(SB 42)の各オートクレーブを用いて比較した
が、本発明の方法で精製されたTMBQを原料と
する限り、還元速度や得られるTMBQの品質に
おいて全く差違を認めなかつた。また、溶媒につ
いては、エタノール、t−ブタノール、メチル−
イソブチル−カルビノール、ジオキサン、t−ブ
チルエーテル、メチル−t−ブチルエーテル、酢
酸n−ブチル、テトラハイドロフランなどがいず
れも本発明で使用可能である。このうち、エタノ
ール、ジオキサン、テトラハイドロフランは従来
着色大なるTMHQを与える溶媒として不適当で
あるとされて来たものであるが、本発明の方法に
よる精TMBQを原料とすれば、これら溶媒を用
いた場合でも、白度の高いTMHQを得ることが
できる。 本発明の接触水素還元反での反応圧、反応温度
には、従来同種の反応で採用される圧力及び温度
をそのまま採用することができる。そして還元反
応後は反応液を冷却して触媒を濾別し、濾液に水
を加えて溶媒を留去した後、残液を冷却して濾過
し、得られた濾滓を水洗することによつて白色の
TMHQ結晶が取得されるのである。 以下実施例をもつて更に具体的に説明を加え
る。 実施例 1−a TMP 70g(純度97.3%、0.5モル)を同量の
ベンゼンに溶解し、30℃を保つて撹拌しながら、
これにHNO330、HCl10、H2O60%なる組成の混
酸を滴下した。滴下開始と同時にNOxの発生が
始まる。以後NOxの発生が止む迄30℃を保ち混
酸を滴下した。混酸所要量は13.4g(HNO3とし
て0.64モル)。反応液は30℃で静置分液し、酸化
油層(上層)142.5gを得た。この油層に対し、
5%炭酸ナトリウム水溶液71.5gを加え、50℃で
4時間撹拌してPHを8〜11の範囲に安定化させ
た。次いで硫酸で中和してPHを7に戻しベンゼン
を留去した。残液は静置分液し、油層を蒸留して
精TMBQ65gを得た。純度99.6%、理論収率86
%(対仕込TMP)。 実施例 1−b 実施例1−aで得られた精TMBQ50g、メチ
ル−t−ブチルエーテル(MTBE)500g、展開
ラネ−ニツケル(日揮N152D)1g(展開前の
合金換算)をSUS304製オートクレーブに仕込
み、窒素置換後、温度100〜120℃、圧力10〜16
Kg/cm2で水素還元した。所要時間30分。還元液は
冷却後触媒を濾別し、濾液に水150gを加えて
MTBEを加熱留去した。MTBE留去後の残液
(TMHQのスラリー液)は冷却し、30℃で濾過、
水洗して白色のTMHQ結晶を得た。乾燥後の重
量48.6g、理論収率96%(対仕込TMBQ)、アセ
トン溶液(TMHQ1g/アセトン10ml)の
APHA30、UVT39090%、UVT45094%、融点172
〜173℃、純度99.77%。 比較例 1−a 実施例1−aと全く同じ方法、同じ仕込みで酸
化反応を行つて得られた酸化油層に半量の水を加
え、激しく撹拌しながら5%炭酸ナトリウム水溶
液で単にPH7に中和する。中和液は静置後直ちに
分液して油層を蒸留し、ベンゼン留分に引続い
て、TMBQ留分66.9gを得た。純度99%、理論
収率88.5%。 比較例 1−b 比較例1−aで得られたTMBQを実施例1−
bと全く同じ方法、同じ仕込みで水素還元を試み
たが、水素の吸収は殆んどなく、触媒ラネ−ニツ
ケルを追加した。触媒量を実施例1−bの4倍迄
増した時、始めて水素吸収が円滑となり、30分で
水素吸収が終つた。以後実施例1−bと同じ後処
理して得られたTMHQ48.1gは淡褐色であつた。
理論収率95%、アセトン溶液(TMHQ1g/アセ
トン10ml)のAPHA450、融点171.8〜172.5℃、
純度99.2%。 実施例 2 実施例1−bにおいてG−4硝子フイルターで
濾別した触媒は少量のMTBEで素速くオートク
レーブへ洗い戻した。次いでこのオートクレーブ
に実施例1−bと同じく、精TMBQ(実施例1−
a)及びTMBEを仕込み、更に実施例1−bの
1/2量の展開ラネ−ニツケル(対TMBQ1%)を
追加し、以下実施例1−bと同じ要領で反応から
後処理を行なつた。反応所要時間は40分で水素吸
収は速かであつた。又得られたTMHQ結晶は高
い白度を有し、理論収率96%、アセトン溶液
(TMHQ1g/アセトン10ml)のAPHA、
UVT390、UVT450は実施例1−bと同じであつ
た。 実施例 3 実施例2の要領で触媒の繰返利用を更に4回行
なつたが、水素吸収速度の純化及び得られる
TMHQの品位低下は全く認められず、本発明の
精製処理を施したTMBQは実質的に1%対
TMBQのラネ−ニツケルで環元可能なことが確
認された。 実施例 4〜10 実施例1−bの要領で溶媒のみ代えて水素還元
を行なつた結果を表−2に示す。
[Table] Table 1 shows the experimental results when crude TMBQ was purified by treating it with an aqueous sodium carbonate solution, and the resulting refined TMBQ was reduced with hydrogen in the presence of a Raney-nickel catalyst. As expected,
At a temperature of 30℃, it takes a long time to process crude TMBQ.
Not very practical. The higher the treatment temperature, the faster the disappearance of acidic substances, but the more tar formation of TMBQ will occur, so a treatment temperature of 50 to 60°C is appropriate. When TMBQ is treated with an aqueous solution of carbonate or bicarbonate, the
TMBQ can be isolated from the oxidation reaction mixture and mixed with an aqueous solution of carbonate or bicarbonate; however, if TMBQ is obtained, for example, as a solution in benzene, the benzene solution can be The treatment of the present invention can be carried out by mixing it with an aqueous solution. Incidentally, according to the method of Japanese Patent Publication No. 58-23858 introduced earlier, TMBQ is obtained as a benzene solution, but by treating this benzene solution as it is by the method of the present invention, the crude TMBQ contained in it can be obtained. can be purified. In any case, after mixing crude TMBQ with an aqueous solution of carbonate or bicarbonate and stabilizing the pH of the mixture within the range of 8 to 11, TMBQ is unstable to heat and alkali. Taking this into consideration, it is preferable to return the PH of the mixture to neutral, and if benzene coexists in this mixture, distill it off, then statically separate the oil layer, collect the oil layer, and collect the obtained oil layer components. Purified TMBQ can be recovered by subjecting it to distillation. As mentioned above, catalytic hydrogen reduction of TMBQ is troublesome in conventional techniques, but it is extremely easy when TMBQ purified by the method of the present invention is used as a raw material, and when a precious metal catalyst such as platinum or palladium is used. Of course, only 2% by weight compared to TMBQ
The hydrogen reduction reaction can be completed in a short period of time by using only Raney-nickel (the amount before development). Furthermore, from the second time onwards, if 1% by weight (relative to TMBQ) of Raney-nickel is newly added, the catalyst can be used repeatedly, and in effect, TMBQ can be made by adding 1% by weight of Raney-nickel to TMBQ. It can be returned. Regarding the material of the reactor used for catalytic hydrogen reduction, we compared stainless steel (SUS 304) and iron (SB 42) autoclaves, but as long as TMBQ purified by the method of the present invention is used as a raw material, No difference was observed in the reduction rate or the quality of TMBQ obtained. Regarding solvents, ethanol, t-butanol, methyl-
Isobutyl-carbinol, dioxane, t-butyl ether, methyl-t-butyl ether, n-butyl acetate, tetrahydrofuran, and the like can all be used in the present invention. Among these, ethanol, dioxane, and tetrahydrofuran have conventionally been considered unsuitable as solvents for producing highly colored TMHQ, but if refined TMBQ produced by the method of the present invention is used as a raw material, these solvents can be used as raw materials. Even when using this method, TMHQ with high whiteness can be obtained. For the reaction pressure and reaction temperature in the catalytic hydrogen reduction reaction of the present invention, pressures and temperatures conventionally used in similar reactions can be used as they are. After the reduction reaction, the reaction solution is cooled, the catalyst is filtered off, water is added to the filtrate, the solvent is distilled off, the remaining solution is cooled and filtered, and the resulting filter cake is washed with water. shiny white
TMHQ crystals are obtained. A more specific explanation will be given below using examples. Example 1-a 70g of TMP (purity 97.3%, 0.5 mol) was dissolved in the same amount of benzene, and while stirring while maintaining the temperature at 30°C,
A mixed acid having a composition of 30% HNO 3 , 10% HCl, and 60% H 2 O was added dropwise to this. NOx generation begins at the same time as the dripping starts. Thereafter, the mixed acid was added dropwise while maintaining the temperature at 30°C until the generation of NOx stopped. The required amount of mixed acid is 13.4g (0.64 mol as HNO3 ). The reaction solution was allowed to stand still at 30° C. for liquid separation to obtain 142.5 g of an oxidized oil layer (upper layer). For this oil layer,
71.5 g of 5% aqueous sodium carbonate solution was added, and the mixture was stirred at 50°C for 4 hours to stabilize the pH in the range of 8 to 11. Next, the pH was returned to 7 by neutralization with sulfuric acid, and benzene was distilled off. The residual liquid was separated by standing, and the oil layer was distilled to obtain 65 g of purified TMBQ. Purity 99.6%, theoretical yield 86
% (vs. TMP). Example 1-b 50 g of refined TMBQ obtained in Example 1-a, 500 g of methyl t-butyl ether (MTBE), and 1 g of developed Raney nickel (JGC N152D) (in terms of alloy before development) were placed in a SUS304 autoclave. After nitrogen substitution, temperature 100-120℃, pressure 10-16
Hydrogen reduction was performed at Kg/cm 2 . It takes 30 minutes. After cooling the reducing solution, filter out the catalyst, add 150 g of water to the filtrate, and
MTBE was distilled off by heating. The residual liquid after MTBE distillation (TMHQ slurry liquid) is cooled, filtered at 30℃,
White TMHQ crystals were obtained by washing with water. Weight after drying: 48.6g, theoretical yield: 96% (to charged TMBQ), acetone solution (TMHQ1g/acetone 10ml)
APHA30, UVT 390 90%, UVT 450 94%, melting point 172
~173℃, purity 99.77%. Comparative Example 1-a Half the amount of water was added to the oxidized oil layer obtained by performing the oxidation reaction using the same method and the same preparation as in Example 1-a, and the pH was simply neutralized to 7 with 5% sodium carbonate aqueous solution while stirring vigorously. do. Immediately after the neutralized solution was allowed to stand still, it was separated and the oil layer was distilled to obtain 66.9 g of a TMBQ fraction following a benzene fraction. Purity 99%, theoretical yield 88.5%. Comparative Example 1-b The TMBQ obtained in Comparative Example 1-a was used in Example 1-
Hydrogen reduction was attempted using the same method and preparation as in b, but almost no hydrogen was absorbed, so a Raney-nickel catalyst was added. Hydrogen absorption became smooth for the first time when the amount of catalyst was increased to four times that of Example 1-b, and hydrogen absorption was completed in 30 minutes. Thereafter, 48.1 g of TMHQ obtained by the same post-treatment as in Example 1-b was light brown in color.
Theoretical yield 95%, APHA450 in acetone solution (TMHQ1g/acetone 10ml), melting point 171.8-172.5℃,
Purity 99.2%. Example 2 The catalyst filtered through a G-4 glass filter in Example 1-b was quickly washed back into the autoclave with a small amount of MTBE. Next, purified TMBQ (Example 1-b) was added to this autoclave in the same manner as in Example 1-b.
a) and TMBE were added, and 1/2 the amount of developed Raney nickel (1% of TMBQ) of Example 1-b was added, and the reaction and post-treatment were carried out in the same manner as in Example 1-b. . The reaction time was 40 minutes, and hydrogen absorption was rapid. The obtained TMHQ crystals have high whiteness, the theoretical yield is 96%, and APHA in acetone solution (TMHQ1g/acetone 10ml),
UVT 390 and UVT 450 were the same as in Example 1-b. Example 3 The catalyst was repeated four more times in the same manner as in Example 2, but the hydrogen absorption rate was improved and the obtained
No deterioration in the quality of TMHQ was observed, and TMBQ subjected to the purification treatment of the present invention had a substantially 1%
It was confirmed that TMBQ's Raney-nickel ring element is possible. Examples 4 to 10 Table 2 shows the results of hydrogen reduction performed in the same manner as in Example 1-b, except for the solvent.

【表】 上表中*印溶媒は着色大なるTMHQを与え、
TMBQの接触水素還元には不適とされている溶
媒であるが、何等不都合はなく、白度良好な
TMHQを与えた。 実施例 11 鉄製オートクレーブ(SB42)を用いた他は、
実施例1−−bと全く同じに反応及び後処理を行
なつた。還元速度並びに得られたTMHQの品質
は実施例1−bと全く変らず、反応器材質の影響
を認めなかつた。
[Table] Solvents marked with * in the above table give a large coloring TMHQ,
Although this solvent is considered unsuitable for catalytic hydrogen reduction of TMBQ, there is no problem and it has good whiteness.
Gave TMHQ. Example 11 Except for using an iron autoclave (SB42),
The reaction and work-up were carried out exactly as in Examples 1--b. The reduction rate and the quality of the obtained TMHQ were completely unchanged from Example 1-b, and no influence of the reactor material was observed.

Claims (1)

【特許請求の範囲】 1 2,3,6−トリメチル−フエノールを酸化
して得られる2,3,5−トリメチル−パラ−ベ
ンゾキノンを接触水素還元して2,3,5−トリ
メチル−ハイドロキノンを製造する方法に於て、
接触水素還元に先立ち、2,3,5−トリメチル
−パラ−ベンゾキノンを、炭酸又は重炭酸のアル
カリ金属塩水溶液と混合し、この混合物を60℃以
下の温度に加温しながら撹拌してそのPHを8〜11
の範囲内で安定させ、この混合物から分離回収さ
れる2,3,5−トリメチル−パラ−ベンゾキノ
ンを、有機溶媒中でラネ−ニツケル触媒の存在下
に水素還元することを特徴とする2,3,5−ト
リメチル−ハイドロキノンの製造方法。 2 炭酸又は重炭酸のアルカリ金属塩が、ナトリ
ウム塩又はカリウム塩である特許請求の範囲第1
項記載の方法。
[Claims] 1. Production of 2,3,5-trimethyl-hydroquinone by catalytic hydrogen reduction of 2,3,5-trimethyl-para-benzoquinone obtained by oxidizing 2,3,6-trimethyl-phenol. In the method of
Prior to catalytic hydrogen reduction, 2,3,5-trimethyl-para-benzoquinone is mixed with an aqueous alkali metal salt solution of carbonate or bicarbonate, and the mixture is stirred while being heated to a temperature below 60°C to reduce its pH. 8-11
2,3,5-Trimethyl-para-benzoquinone separated and recovered from this mixture is hydrogen-reduced in the presence of a Raney-nickel catalyst in an organic solvent. , 5-trimethyl-hydroquinone manufacturing method. 2 Claim 1 in which the alkali metal salt of carbonic acid or bicarbonate is a sodium salt or a potassium salt
The method described in section.
JP59147320A 1984-07-16 1984-07-16 Production of 2,3,5-trimethylhydroquinone Granted JPS6127936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59147320A JPS6127936A (en) 1984-07-16 1984-07-16 Production of 2,3,5-trimethylhydroquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59147320A JPS6127936A (en) 1984-07-16 1984-07-16 Production of 2,3,5-trimethylhydroquinone

Publications (2)

Publication Number Publication Date
JPS6127936A JPS6127936A (en) 1986-02-07
JPH0456811B2 true JPH0456811B2 (en) 1992-09-09

Family

ID=15427515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59147320A Granted JPS6127936A (en) 1984-07-16 1984-07-16 Production of 2,3,5-trimethylhydroquinone

Country Status (1)

Country Link
JP (1) JPS6127936A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815565B2 (en) * 2003-04-04 2004-11-09 General Electric Company Method for preparing hydroquinones and dihydroxybiphenyl compounds from mixtures of bromophenols and benzoquinones
CN107185571B (en) * 2017-05-18 2019-12-24 南京工业大学 Cobalt catalyst, preparation method thereof and application thereof in catalytic synthesis of 2,3, 5-trimethylbenzoquinone

Also Published As

Publication number Publication date
JPS6127936A (en) 1986-02-07

Similar Documents

Publication Publication Date Title
US4912267A (en) Catalytic conversion of tertiary butyl hydroperoxide to tertiary butyl alcohol
EP0092909B1 (en) Process for producing aminophenyl-beta-hydroxyethylsulfone
JPH0456811B2 (en)
JP2507510B2 (en) Method for purifying dihydroxydiphenyl sulfone
JPH0470310B2 (en)
JPS60123461A (en) Production of m-aminophenyl-beta-hydroxyethyl sulfone
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
JP4182282B2 (en) Process for producing α, ω-dicarboxylic acids and catalyst thereof
JPS6056157B2 (en) Production method of high purity halogen naphthalic anhydride
EP0004257A1 (en) Benzonitrile derivative, process for its preparation and its application
JPS58189133A (en) Manufacture of 2,3,5-trimethyl-p-benzoquinone
JP3485921B2 (en) Method for producing cresols
FR2522652A1 (en) PROCESS FOR THE MANUFACTURE OF PRACTICALLY PURE ORTHO- OR PARA-NITROPHENETOLE
JP3831021B2 (en) 2-Production method of indanones
JP2769179B2 (en) Method for producing 2-phenylbenzotriazoles
JP3159522B2 (en) Method for producing high-purity m-phenylenediamine
US4782190A (en) Process for the preparation of 4-nitrophenetol
FR2466464A1 (en) PROCESS FOR THE PREPARATION OF 2-OXO-DIHYDROBENZO (D) (1,3) OXAZINES
JPS6270339A (en) Production of high-purity 2,6-diacetoxynaphthalene
CH314008A (en) Process for preparing threo-1-p-nitrophenyl-2-acylamidopropane-1,3-diols
SU1081156A1 (en) Process for preparing benzanthrone
JPS63303958A (en) Production of 2-amino-4,6-dichloro-5-alkylphenol
JPH0761953A (en) 4,6-dichloro-2-nitroresorcin
JPH0470290B2 (en)
JPH0455183B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term