JPH0456565A - Picture processor - Google Patents

Picture processor

Info

Publication number
JPH0456565A
JPH0456565A JP2167717A JP16771790A JPH0456565A JP H0456565 A JPH0456565 A JP H0456565A JP 2167717 A JP2167717 A JP 2167717A JP 16771790 A JP16771790 A JP 16771790A JP H0456565 A JPH0456565 A JP H0456565A
Authority
JP
Japan
Prior art keywords
error
pixel
peripheral
interest
picture element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2167717A
Other languages
Japanese (ja)
Other versions
JP2574519B2 (en
Inventor
Shinichi Sato
真一 佐藤
Takenobu Ikeuchi
建展 池内
Takashi Katsuge
孝志 勝毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Original Assignee
Matsushita Graphic Communication Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP2167717A priority Critical patent/JP2574519B2/en
Publication of JPH0456565A publication Critical patent/JPH0456565A/en
Application granted granted Critical
Publication of JP2574519B2 publication Critical patent/JP2574519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress increase in data quantity even in the case of coding through the use of MH, MR codes by integrating error data of a position of a picture element apart from a noted picture element or a picture element close to the noted picture element in response to a state of a change in a binary level of a binarized picture in a prescribed block. CONSTITUTION:The unit is provided with a change point number detection means 18 comparing an input picture data of one block with a predetermined slice level and obtaining a change point number of a binary level and a surrounding error selection means 19 selecting one set of surrounding picture element position corresponding to a noted picture element in an error storage means 17 depending on number of change points and reading one set of surrounding error from the picture element position, and the error data of one set of picture element position adjacent to or apart from the noted picture element is subject to weighting addition as a surrounding error data in response to the state of an input multi-value picture within a prescribed picture element including the noted picture element, the input level is corrected by the accumulated error to execute the error diffusion processing. Thus, while keeping the picture quality characteristic of the error diffusion processing, the increase in the data quantity is suppressed even in the case of coding while using MH, MR codes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は画像処理装置、特にファクシミリ、複写機、D
TP装置、ワークステーション等に用いられ誤差拡散法
により中間調処理を行なう装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to image processing devices, particularly facsimiles, copying machines, D
The present invention relates to a device that is used in a TP device, a workstation, etc., and performs halftone processing using an error diffusion method.

従来の技術 従来この種の画像処理装置としては、例えば特開昭62
−69773号公報に示すもの或いは第8図に示すもの
がある。
2. Description of the Related Art Conventionally, this type of image processing apparatus is known as, for example, Japanese Patent Laid-Open No. 62
There is the one shown in Japanese Patent No.-69773 and the one shown in FIG.

第8図に示す画像処理装置は、多値の画信号を入力する
入力端子1と、周辺画素位置の集積誤差を加算し補正レ
ベルを出力する入力補正手段2と、前記補正レベルを予
め定められたスライスレベル3と比較し注目画素の2値
化レベルを決定する2値化手段4と、前記2値化レベル
を出力する2値化画像出力部5と、前記補正レベルと2
値化レベルの差分により2値化誤差を求める差分演算手
段6と、前記2値化誤差を注目画素位置に対応させて記
憶する誤差記憶手段7と、注目画素の周辺画素の誤差を
誤差記憶手段から読み出し、予め定められた係数により
重み付け加算し集積誤差を求める重み付け加算手段8と
により構成される。かかる従来の画像処理装置において
、多値画像レベルを誤差拡散処理によ、!l)2値化レ
ベルに変換してぃた。
The image processing device shown in FIG. 8 includes an input terminal 1 for inputting a multivalued image signal, an input correction means 2 for adding up integration errors at peripheral pixel positions and outputting a correction level, and a predetermined correction level for the correction level. a binarization means 4 that determines the binarization level of the pixel of interest by comparing it with the slice level 3 obtained by the process; a binarization image output unit 5 that outputs the binarization level;
Difference calculation means 6 for calculating a binarization error based on a difference in digitization levels, error storage means 7 for storing the binarization error in correspondence with the position of the pixel of interest, and error storage means for storing errors of surrounding pixels of the pixel of interest. A weighted addition means 8 reads out the information from the input data, performs weighted addition according to a predetermined coefficient, and obtains an integration error. In such a conventional image processing device, the multilevel image level is processed by error diffusion processing! l) Converted to binary level.

発明が解決しようとする課題 しかしなから、このような従来の画像処理装置にあって
は、誤差拡散処理により得られる2値化画像は1デイザ
処理による2値画像に比べ階調特性と解像特性の両面で
優れ、またモアレの抑圧効果も大きいという特長がある
反面、2値画像出力データをMH,MRにより符号化し
た場合、データの圧縮率が上からず、符号化前よシデー
タ量が多くなってしまい、通信時間が異常に長くなって
しまうという不具合があった。
Problems to be Solved by the Invention However, in such conventional image processing devices, the binary image obtained by error diffusion processing has poor gradation characteristics and resolution compared to the binary image obtained by one dither processing. Although it has excellent characteristics in terms of both characteristics and has a large moiré suppression effect, when binary image output data is encoded by MH and MR, the data compression rate does not improve and the amount of data is smaller than before encoding. There was a problem that the communication time became abnormally long.

本発明は前記問題点に鑑みてなされたもので、その目的
は、誤差拡散処理の画質特性を保持しつつ、MH,MR
により符号化した場合でも、データ量の増加を抑え通信
時間が異常に長くなることを防止することのできる画像
処理装置を提供することである。
The present invention has been made in view of the above-mentioned problems, and its purpose is to maintain the image quality characteristics of error diffusion processing while
An object of the present invention is to provide an image processing device capable of suppressing an increase in the amount of data and preventing an abnormally long communication time even when encoding is performed.

課題を解決するための手段 本発明は、前記目的を達成するために、画像処理装置に
、注目画素を含む一定画素範囲を1ブロツクとしての入
力多値画像を2値化し、その2値化レベルの変化状態に
応じて、注目画素に隣接した一組または注目画素から離
れた一組の画素位置の誤差データを周辺誤差データとし
て重み付け加算し集積誤差を求め、その集積誤差により
入力レベルを補正し、誤差拡散処理を実行するようにし
た事を要旨とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention binarizes an input multilevel image in which a certain pixel range including the pixel of interest is treated as one block, and determines the level of the binarization. According to the state of change, the error data of a set of pixel positions adjacent to the pixel of interest or a set of pixel positions far from the pixel of interest are weighted and added as peripheral error data to obtain an integrated error, and the input level is corrected using the integrated error. , the gist is to execute error diffusion processing.

作用 前記構成により、一定ブロック内の2値化画像の非文字
部分では注目画素から離れた画素位置の誤差データを集
積するため、その集積誤差により入力レベルを補正する
誤差拡散処理では、注目画素と誤差データの画素位置の
距離に対応し2画素以上の黒又は白のランレングスが出
現する確率が高くなシ、圧縮率を改善することができる
。このとき、2値画像の解像性は黒、白のランレングス
が大きくなるにしたがい徐々に劣化するが、入力画像は
濃度レベル変化の少ない非文字部分であるため解像性の
劣化は画質に影響しない。
Effect With the above configuration, error data at pixel positions far from the pixel of interest are accumulated in the non-character portion of the binarized image within a certain block. The compression ratio can be improved since there is a low probability that a black or white run length of two or more pixels will appear corresponding to the distance between the pixel positions of the error data. At this time, the resolution of the binary image gradually deteriorates as the black and white run lengths increase, but since the input image is a non-text portion with little change in density level, the deterioration in resolution does not affect the image quality. It does not affect.

また、画像の一定ブロック内の2値化画像の文字部では
注目画素に隣接した画素位置の誤差データを集積するだ
め、従来と同様の階調性と解像性にすぐれた2値画像が
得られる。
In addition, in the character part of a binarized image within a certain block of the image, it is necessary to accumulate error data at pixel positions adjacent to the pixel of interest, so a binary image with excellent gradation and resolution similar to conventional ones can be obtained. It will be done.

実施例 第1図乃至第3図は本発明による画像処理装置の第1の
実施例を示す図である。
Embodiment FIGS. 1 to 3 are diagrams showing a first embodiment of an image processing apparatus according to the present invention.

これらの図において、符号11は多値の画信号を入力す
る入力端子、12は注目画素の入力レベルとその周辺画
素位置の集積誤差を加算し補正レベルを出力する入力補
正手段、13は前記補正レベルを予め定められたスライ
スレベル14と比較し注目画素の2値化レベルを決定す
る2値化手段、15は前記2値化レベルを出力する2値
化画像出力部、16は前記補正レベルと2値化レベルの
差分により2値化誤差を求める差分演算手段、17は前
記2値化誤差を注目画素位置に対応させて記憶する誤差
記憶手段である。また、符号18は注目画素を含む一定
画素範囲を1ブロツクとしての入力多値画像データを予
め定められたスライスレベルと比較し2値化レベルを決
定しその2値化レベルの変化点数を求める変化点数検出
手段、19は前記変化点数により前記誤差記憶手段内の
注目画素に対応した一組の周辺画素位置を選択し、その
画素位置より一組の周辺誤差を読み出す周辺誤差選択手
段、加は前記−組の周辺誤差と予め定められた係数によ
り重み付け加算し集積誤差を求める重み付け加算手段で
ある。
In these figures, reference numeral 11 is an input terminal for inputting a multi-valued image signal, 12 is an input correction means for adding the input level of the pixel of interest and the integrated error of its surrounding pixel positions, and outputting a correction level, and 13 is the above-mentioned correction unit. A binarization means compares the level with a predetermined slice level 14 and determines the binarization level of the pixel of interest; 15 is a binarized image output unit that outputs the binarization level; 16 is the correction level; Difference calculation means calculates a binarization error based on a difference in binarization levels, and 17 is an error storage means that stores the binarization error in correspondence with the pixel position of interest. Further, reference numeral 18 indicates a change in which the input multilevel image data, in which a certain pixel range including the pixel of interest is treated as one block, is compared with a predetermined slice level to determine the binarization level, and the number of change points in the binarization level is determined. point detection means; 19 is peripheral error selection means for selecting a set of peripheral pixel positions corresponding to the pixel of interest in the error storage means based on the number of change points, and reading out a set of peripheral errors from the pixel positions; - A weighted addition means that performs weighted addition based on a set of peripheral errors and a predetermined coefficient to obtain an integrated error.

かかる構成を有する画像処理装置について、以下動作を
説明する。
The operation of the image processing apparatus having such a configuration will be described below.

入力補正手段12で多値画像入力部11から入力した多
値画像データと注目画素の周辺画素位置の集積誤差を加
算し補正レベルを出力する。2値化手段13は、前記補
正レベルを予め定められたスライスレベル14と比較し
画像出力部15から出力される注目画素の2値画像デー
タを決定する。差分演算手段16は前記補正レベルと2
値化レベルの差分により2値化誤差を求め、誤差記憶手
段17に前記2値化誤差を注目画素に対応させて記憶す
る。変化点数検出手段18は注目画素を含む一定画素範
囲を1ブロツクとしての入力画像データを予め定められ
たスライスレベルと比較し2値化レベルを決定しその2
値化レベルの変化点数を求める。周辺誤差選択手段19
は前記変化点数の大小により誤差記憶手段内の注目画素
に対応した一組の周辺画素位置を選択し、その画素位置
より一組の周辺誤差を読み出す。また、重み付け加算手
段加は前記−組の周辺誤差と予め定められた係数により
重み付け加算し集積誤差を求める。
The input correction means 12 adds the multi-value image data input from the multi-value image input section 11 and the accumulated errors of the peripheral pixel positions of the pixel of interest, and outputs a correction level. The binarization means 13 compares the correction level with a predetermined slice level 14 and determines the binary image data of the pixel of interest to be output from the image output section 15. The difference calculation means 16 calculates the correction level and 2.
A binarization error is obtained from the difference in the digitization levels, and the binarization error is stored in the error storage means 17 in association with the pixel of interest. The change point number detecting means 18 compares the input image data, in which a certain pixel range including the pixel of interest is taken as one block, with a predetermined slice level to determine the binarization level.
Find the number of changes in the value level. Marginal error selection means 19
selects a set of peripheral pixel positions corresponding to the pixel of interest in the error storage means based on the magnitude of the number of change points, and reads out a set of peripheral errors from the selected pixel positions. Further, the weighted addition means weights and adds the - group of peripheral errors and a predetermined coefficient to obtain an integrated error.

第2図は第1図に示されたブロック図中の周辺誤差選択
手段19と重み付け加算手段加の回路構成の一例を示し
たブロック図である。この図において、符号21は変化
点数検出手段18からの変化点数入力ηと予め決められ
たスライスレベル乙を比較し周辺画素位置選択信号を求
める比較器、24.5.26は周辺画素位置選択信号に
より周辺誤差を選択するセレクタ、27.28.29.
30は予め決められた誤差拡散係数を乗算する乗算器、
31.32.33は前記乗算結果の総和を求める加算器
である。
FIG. 2 is a block diagram showing an example of the circuit configuration of the peripheral error selection means 19 and the weighted addition means in the block diagram shown in FIG. 1. In this figure, reference numeral 21 is a comparator that compares the change point number input η from the change point number detection means 18 with a predetermined slice level B to obtain a peripheral pixel position selection signal, and 24, 5, and 26 are peripheral pixel position selection signals. Selector for selecting marginal error by 27.28.29.
30 is a multiplier that multiplies a predetermined error diffusion coefficient;
31, 32, and 33 are adders for calculating the sum of the multiplication results.

このような回路構成において、変化点数人力nがスライ
スレベルおより小さい場合、セレクタ24.5.26は
、それぞれのA側、B側の入力信号のうち、注目画素よ
り離れた画素位置に対応するA側の信号を選択する。ま
た、入力した変化点数nがスライスレベルnよシ大きい
場合、セレクタ24.5.26は注目画素に隣接した画
素位置に対応するB側の信号を選択する。選択された信
号は重み付け加算手段により誤差拡散係数を乗算し、そ
の総和を集積誤差として出力する。
In such a circuit configuration, when the number of change points n is smaller than the slice level, the selectors 24, 5, and 26 correspond to the pixel position distant from the pixel of interest among the input signals on the A side and B side, respectively. Select the A side signal. Further, when the input change point number n is larger than the slice level n, the selector 24.5.26 selects the B-side signal corresponding to the pixel position adjacent to the pixel of interest. The selected signal is multiplied by an error diffusion coefficient by the weighted addition means, and the sum is outputted as an integrated error.

第3図は第1図における変化点数検出手段のブロック構
成図である。この図中、符号41は多値画像人力11と
スライスレベル42とを比較し2値画像レベルを求める
比較器、43は2値画像レベルを1画素シフトするラッ
チ、44はEXOR(排他的論理和)ゲート、45はブ
ロック内のEXOR出力が1となる画素数をカウントす
る変化点数カウンタ、46は変化点数出力である。
FIG. 3 is a block diagram of the change point detection means in FIG. 1. In this figure, reference numeral 41 is a comparator that compares the multivalued image input 11 and the slice level 42 to obtain a binary image level, 43 is a latch that shifts the binary image level by one pixel, and 44 is an EXOR (exclusive OR). ) gate, 45 is a change point number counter that counts the number of pixels for which the EXOR output becomes 1 in a block, and 46 is a change point number output.

かかる回路において、比較器41は多値画像人力11と
スライスレベル42を比較し2値画像レベルを求め、ラ
ッチ43は2値画像レベルを1画素シフトして出力する
。EXORゲート44は、1画素シフトの前後の2値画
像レベルの排他的論理和を求め、その結果2値画像レベ
ルの変化点では1″を出力する。変化点数カウンタ45
はブロック内のEXOR出力が1″となる画素数をカウ
ントし、その結果は変化点数nとして出力される。
In this circuit, the comparator 41 compares the multi-valued image input 11 and the slice level 42 to obtain a binary image level, and the latch 43 shifts the binary image level by one pixel and outputs it. The EXOR gate 44 calculates the exclusive OR of the binary image levels before and after the one-pixel shift, and as a result outputs 1'' at the change point of the binary image level.Change point number counter 45
counts the number of pixels in the block whose EXOR output is 1'', and outputs the result as the number of change points n.

第4図及び第5図は本発明による画像処理装置の第2の
実施例を示す図である。
FIGS. 4 and 5 are diagrams showing a second embodiment of the image processing apparatus according to the present invention.

この実施例に係る画像処理装置は、基本的には前記第1
の実施例の画像処理装置と同様な構成を有するから同一
の部分には同一の符号を付して詳細な説明は省略する。
The image processing device according to this embodiment basically consists of the first
Since it has the same configuration as the image processing apparatus of the embodiment, the same parts are given the same reference numerals and detailed explanation will be omitted.

この実施例に係る画像処理装置は前記第1の実施例にお
ける変化点数検出手段18に代えて、多値画像データを
入力し注目画素とその周辺の一定範囲内の画像データの
最大レベル差を求める最大レベル差検出手段50を備え
ており、この最大レベル差検出手段50の出力を周辺誤
差選択手段19に送出するように構成されている。
The image processing apparatus according to this embodiment inputs multivalued image data instead of the change point detection means 18 in the first embodiment and calculates the maximum level difference between the pixel of interest and image data within a certain range around it. A maximum level difference detection means 50 is provided, and the output of this maximum level difference detection means 50 is sent to the peripheral error selection means 19.

この最大レベル差検出手段50は、注目画素とその周辺
画素の入力レベルによりそのデータ範囲内の最大レベル
と最小レベルの差を検出し、その最大レベルと最小レベ
ルの差を演算し最大レベル差を求める。この最大レベル
差の検出結果は周辺誤差選択手段19に入力され、周辺
誤差選択手段19は最大レベル差の大小により誤差記憶
手段内の注目画素に対応した一組の周辺画素位置を選択
し、その画素位置よシー組の周辺誤差を読み出す。次い
で重み付け加算手段加は前記−組の周辺誤差と予め定め
られた係数により重み付け加算し集積誤差を求める。
The maximum level difference detection means 50 detects the difference between the maximum level and minimum level within the data range based on the input levels of the pixel of interest and its surrounding pixels, calculates the difference between the maximum level and the minimum level, and calculates the maximum level difference. demand. The detection result of this maximum level difference is input to the peripheral error selection means 19, which selects a set of peripheral pixel positions corresponding to the pixel of interest in the error storage means according to the magnitude of the maximum level difference, and Read out the peripheral error of the pixel position and the set. Next, the weighted addition means weights and adds the - group of peripheral errors and a predetermined coefficient to obtain an integrated error.

第5図は第4図における最大レベル差検出手段50の一
具体例を表すブロック図である。この図において、符号
51.52は画信号を1ラインシフトする1ラインバツ
フアメモリ、53.54.55.56.57.58は1
画素毎に画信号をシフトするラッチ、−59は最大値検
出手段、60は最小値検出手段、61は差分演算手段、
62は最大レベル差出力を示す。
FIG. 5 is a block diagram showing a specific example of the maximum level difference detection means 50 in FIG. 4. In this figure, 51.52 is a 1-line buffer memory that shifts the image signal by 1 line, and 53.54.55.56.57.
A latch that shifts the image signal for each pixel, -59 is a maximum value detection means, 60 is a minimum value detection means, 61 is a difference calculation means,
62 indicates the maximum level difference output.

かかる構成において、■ラインバッファメモリ51.5
2とラッチ53.54.55.56.57.58により
注目画素信号e及びその周辺画素信号a。
In such a configuration, ■ line buffer memory 51.5;
2 and latches 53, 54, 55, 56, 57, and 58, the target pixel signal e and its peripheral pixel signal a.

by  CP  d、fy  gt  hy  1を発
生する。最大値検出手段59は信号a、 b、  c、
  d、  et  ft  ILh、iより最大レベ
ルを求め、まだ最小値検出手段60は信号&r by 
 Ct d、et  L gt h+  1より最小レ
ベルを求める。そして差分演算手段61で前記最大値よ
シ前記最小値を減算し最大レベル差を求める。この最大
レベル差検出方法は一例を示したものでさらに周辺画素
数を多くしたり、また上述の方法の様に1画素毎に最大
レベル差を求めず、入力画素を所定のブロックに分割し
そのブロック内の最大レベル差を求めるなどの方法が考
えられる。
by CP d, fy gt hy 1 is generated. The maximum value detection means 59 detects the signals a, b, c,
The maximum level is determined from d, et ft ILh, i, and the minimum value detection means 60 still detects the signal &r by
Find the minimum level from Ct d,et L gt h+1. Then, the difference calculating means 61 subtracts the minimum value from the maximum value to obtain a maximum level difference. This maximum level difference detection method is an example, and it is possible to further increase the number of surrounding pixels, or divide the input pixels into predetermined blocks instead of calculating the maximum level difference for each pixel as in the above method. Possible methods include finding the maximum level difference within a block.

第6図及び第7図は本発明による画像処理装置の第3の
実施例を示す図である。
FIGS. 6 and 7 are diagrams showing a third embodiment of the image processing apparatus according to the present invention.

この実施例に係る画像処理装置もまた、基本的には前記
第1の実施例の画像処理装置と同様な構成を有するから
同一の部分には同一の符号を付して詳細な説明は省略す
る。この実施例に係る画像処理装置は前記第1の実施例
における変化点数検出手段18、第2の実施例における
最大レベル差検出手段50に代えて、注目画素とその周
辺画素の入力レベルよシ所定の空間周波数のノ(ワース
ペクトラム−1itヲ求めるパワースペクトラム演算手
段70を備えており、この、Cr7−スペクトラム演算
手段70の出力を周辺誤差選択手段19に送出するよう
に構成されている。
The image processing device according to this embodiment also basically has the same configuration as the image processing device of the first embodiment, so the same parts are given the same reference numerals and detailed explanations will be omitted. . The image processing apparatus according to this embodiment uses the input level of the pixel of interest and its surrounding pixels in place of the change point detection means 18 in the first embodiment and the maximum level difference detection means 50 in the second embodiment. It is equipped with a power spectrum calculation means 70 for determining the spatial frequency of the spatial frequency -1it, and is configured to send the output of the Cr7-spectrum calculation means 70 to the peripheral error selection means 19.

このパワースペクトラム演算手段70は注目画素とその
周辺画素の入力レベルをディスクリートフーリエ変換し
最大空間周波数(入力画像のサンブリンノ周波数の1/
2)のパワースペクトラム量を求める。周辺誤差選択手
段19は前記ノ(ワースペクトラム量により誤差記憶手
段17内の注目画素に対応する一組の周辺画素位置を選
択しその画素位置よシー組の周辺誤差を読み出す。次い
で重み付け加算手段加は前記−組の周辺誤差と予め定め
られた係数により重み付け加算し集積誤差を求める。
This power spectrum calculation means 70 performs discrete Fourier transform on the input levels of the pixel of interest and its surrounding pixels, and performs a maximum spatial frequency (1/1 of the Sambrinno frequency of the input image).
2) Find the power spectrum amount. The peripheral error selection means 19 selects a set of peripheral pixel positions corresponding to the pixel of interest in the error storage means 17 based on the above-mentioned war spectrum amount, and reads out the peripheral errors of the set from the pixel positions.Then, the weighted addition means adds is weighted and added to the marginal errors of the − group and a predetermined coefficient to obtain an integrated error.

第7図は第6図における)くワースペクトラム演算手段
70の一例を示すブロック図である。この図において、
符号71.72は画信号を1ラインシフトする1ライン
バツフアメモリ、73.74.75.76、は1画素毎
に画信号をシフトするラッチ、77.78.79.80
は加算器、81は乗算手段、82は入力信号の符号が正
の場合はそのまま、また負の場合は−1を乗算してパワ
ースペクトラム出力83を送出する絶対値演算手段を示
す。
FIG. 7 is a block diagram showing an example of the lower spectrum calculation means 70 in FIG. 6. In this diagram,
71.72 is a one-line buffer memory that shifts the image signal by one line, 73.74.75.76 is a latch that shifts the image signal for each pixel, and 77.78.79.80
81 is an adder, 81 is a multiplication means, and 82 is an absolute value calculation means that outputs a power spectrum output 83 by leaving it as is when the sign of the input signal is positive, or by multiplying by -1 when it is negative.

ディスクリートフーリエ変換の一般式は、N個のサンプ
ルデータx (n)対し、 で示される。
The general formula for discrete Fourier transform is expressed as follows for N sample data x (n).

隣接する2画素間の最大空間周波数のパワースペクトラ
ムは上式においてN=2、k=1として求めると、 p (1) −1x (]) = l x (0) −x (1) 1となり、このこ
とにより注目画素と主走査方向、副走査方向に隣接する
4画素間のパワースペクトルは第7図においてeを注目
画素に対応する信号レベルとすると P−”   a   e+b−e+c−e+d−ea 
+ b + c + d −4e となる。
When the power spectrum of the maximum spatial frequency between two adjacent pixels is determined in the above equation with N=2 and k=1, it becomes p (1) −1x (]) = l x (0) −x (1) 1, As a result, the power spectrum between the pixel of interest and four pixels adjacent in the main scanning direction and the sub-scanning direction is P-"a e+b-e+c-e+d-ea, where e is the signal level corresponding to the pixel of interest in FIG. 7.
+ b + c + d −4e.

1ラインバツフアメモリ71.72とラッチ73.74
.75.76により上式のlL+ b+ C+  do
  e信号を発生し、加算器77.78.79.80と
係数乗算手段81、絶対値演算手段82により上式の演
算を行なっている。このパワースペクトラム演算方法は
一例を示したもので、さらにサンプル数Nを多くしたシ
、また参照画素として斜め方向のデータを加えるなどの
方法が考えられる。
1 line buffer memory 71.72 and latch 73.74
.. 75.76, the above formula lL+ b+ C+ do
The adder 77, 78, 79, 80, coefficient multiplication means 81, and absolute value calculation means 82 perform the calculation of the above equation. This power spectrum calculation method is just an example, and methods such as increasing the number of samples N, or adding data in a diagonal direction as a reference pixel are conceivable.

発明の詳細 な説明したように、本発明によれば画像処理装置に、注
目画素を含む一定画素範囲の入力多値画像の状態に応じ
て、注目画素に隣接した一組または注目画素から離れた
一組の画素位置の誤差データを周辺誤差データとして重
み付け加算し集積誤差を求め、その集積誤差により入力
レベルを補正し、誤差拡散処理を実行するようにしたた
め、誤差拡散処理の画質特性を保持しつつ、MH,MR
により符号化した場合でも、データ量の増加を抑え通信
時間が異常に長くなることを防止することができる。
As described in detail, according to the present invention, an image processing device is provided with a set of pixels adjacent to the pixel of interest or a set of pixels separated from the pixel of interest, depending on the state of an input multilevel image of a certain pixel range including the pixel of interest. The error data of a set of pixel positions is weighted and summed as peripheral error data to obtain an integrated error, and the input level is corrected using the integrated error to perform error diffusion processing, so the image quality characteristics of error diffusion processing are maintained. Tsutsu, MH, MR
Even in the case of encoding, it is possible to suppress an increase in the amount of data and prevent the communication time from becoming abnormally long.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による画像処理装置の第1の実施例を示
すブロック図、第2図は第1図の周辺誤差選択手段と重
み付け加算手段の回路構成の一例を示すブロック図、第
3図は第1図の変化点数検出手段の回路構成の一例を示
すブロック図、第4図は本発明による画像処理装置の第
2の実施例を示すブロック図、第5図は第4図の最大レ
ベル差検出手段の回路構成の一例を示すブロック図、第
6図は本発明による画像処理装置の第3の実施例を示す
ブロック図、第7図は第6図のパワースペクトラム演算
手段の回路構成の一例を示すブロック図、第8図は従来
の画像処理装置の一例を示すブロック図である。 11・・・多値画像入力、12・・・入力補正手段、1
3・・・2値化手段、15・・・2値画像出力、16・
・差分演算出段、17・・・誤差記憶手段、18・・・
変化点数検出手段、19・・・・・周辺誤差選択手段、
加・・・重み付け加算手段、50・・・最大レベル差検
出手段、70・・・パワースペクトラム演算手段。 代理人の氏名 弁理士 粟野重孝ほか1名味 第 図
FIG. 1 is a block diagram showing a first embodiment of an image processing apparatus according to the present invention, FIG. 2 is a block diagram showing an example of the circuit configuration of the peripheral error selection means and weighted addition means shown in FIG. 1, and FIG. is a block diagram showing an example of the circuit configuration of the change point detection means in FIG. 1, FIG. 4 is a block diagram showing a second embodiment of the image processing device according to the present invention, and FIG. FIG. 6 is a block diagram showing an example of the circuit configuration of the difference detection means, FIG. 6 is a block diagram showing a third embodiment of the image processing device according to the present invention, and FIG. 7 is a block diagram showing the circuit configuration of the power spectrum calculation means of FIG. 6. Block Diagram Showing an Example FIG. 8 is a block diagram showing an example of a conventional image processing device. 11... Multivalued image input, 12... Input correction means, 1
3... Binarization means, 15... Binary image output, 16.
- Difference calculation output stage, 17...Error storage means, 18...
Change point number detection means, 19... peripheral error selection means,
Addition: Weighted addition means, 50: Maximum level difference detection means, 70: Power spectrum calculation means. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (3)

【特許請求の範囲】[Claims] (1)画信号を入力する画信号入力手段と、注目画素の
入力レベルとその周辺画素位置の集積誤差とから補正レ
ベルを求める入力補正手段と、前記補正レベルと2値化
レベルの差分により2値化誤差を求める差分演算手段と
、2値化誤差を注目画素位置に対応させて記憶する誤差
記憶手段と、注目画素を含む一定画素範囲のブロックに
ついて2値化レベルを求めこの2値化レベルの変化点数
を検出する変化点数検出手段と、この変化点数により前
記誤差記憶手段内の注目画素に対応した1組の周辺画素
位置を選択しその画素位置より1組の周辺誤差を読み出
す周辺誤差選択手段と、前記1組の周辺誤差と予め定め
られ係数とにより重み付け加算し集積誤差を求める重み
付け加算手段と、から成る画像処理装置。
(1) An image signal input means for inputting an image signal, an input correction means for calculating a correction level from the input level of the pixel of interest and the integrated error of the surrounding pixel positions, and a A difference calculating means for calculating a value conversion error, an error storage means for storing a value corresponding to the position of a pixel of interest, and a means for calculating a value of a value, and a means for calculating a value of a value, and a means for calculating a value of a value. change point number detection means for detecting the number of change points; and peripheral error selection for selecting a set of peripheral pixel positions corresponding to the pixel of interest in the error storage means based on the change point number and reading out a set of peripheral errors from the pixel positions. and weighted addition means for performing weighted addition based on the set of peripheral errors and a predetermined coefficient to obtain an integrated error.
(2)前記変化点数検出手段に代えて注目画素とその周
辺の一定範囲内の画像データの最大レベル差を求める最
大レベル差検出手段を設け、さらに周辺誤差選択手段は
、前記最大レベル差により前記誤差記憶手段内の注目画
素に対応した1組の周辺画素位置を選択しその画素位置
より1組の周辺誤差を読み出すことを特徴とする請求項
1記載の画像処理装置。
(2) In place of the change point number detecting means, a maximum level difference detecting means for determining the maximum level difference between the pixel of interest and the image data within a certain range around it is provided, and furthermore, the peripheral error selecting means detects the maximum level difference according to the maximum level difference. 2. The image processing apparatus according to claim 1, further comprising selecting a set of peripheral pixel positions corresponding to a pixel of interest in the error storage means and reading out a set of peripheral errors from the selected pixel positions.
(3)前記変化点数検出手段に代えて注目画素とその周
辺画素の入力レベルから所定の空間周波数のパワースペ
クトラム量を求めるパワースペクトラム演算手段を設け
、さらに周辺誤差選択手段は、前記パワースペクトラム
量により前記誤差記憶手段内の注目画素に対応した1組
の周辺画素位置を選択しその画素位置より1組の周辺誤
差を読み出すことを特徴とする請求項1記載の画像処理
装置。
(3) In place of the change point number detection means, a power spectrum calculation means for calculating a power spectrum amount of a predetermined spatial frequency from the input level of the pixel of interest and its surrounding pixels is provided, and furthermore, the peripheral error selection means is configured to calculate the power spectrum amount based on the power spectrum amount. 2. The image processing apparatus according to claim 1, wherein a set of peripheral pixel positions corresponding to the pixel of interest in the error storage means is selected, and a set of peripheral errors is read from the selected pixel positions.
JP2167717A 1990-06-26 1990-06-26 Image processing device Expired - Fee Related JP2574519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2167717A JP2574519B2 (en) 1990-06-26 1990-06-26 Image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2167717A JP2574519B2 (en) 1990-06-26 1990-06-26 Image processing device

Publications (2)

Publication Number Publication Date
JPH0456565A true JPH0456565A (en) 1992-02-24
JP2574519B2 JP2574519B2 (en) 1997-01-22

Family

ID=15854889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2167717A Expired - Fee Related JP2574519B2 (en) 1990-06-26 1990-06-26 Image processing device

Country Status (1)

Country Link
JP (1) JP2574519B2 (en)

Also Published As

Publication number Publication date
JP2574519B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
US6510250B2 (en) Apparatus and method of decoding an image using a statistical model based on pixels
EP0613290B1 (en) Method and apparatus for binary image data compression
US5177795A (en) Image processing apparatus
US20020054354A1 (en) Image processing apparatus and image processing method
JPH07307866A (en) Processing unit and method for binarizing image signal
JP2574519B2 (en) Image processing device
JPH04365182A (en) Variable power picture processor
JP2851724B2 (en) Image processing device
JPH06284281A (en) Picture processor
JP2900907B2 (en) Image processing device
JPH07302190A (en) Divider and image signal reader using the same
JP3212339B2 (en) Image magnification device
KR0159418B1 (en) Apparatus for improving the transmission picture quality in the facsimile system and method thereof
JP2836992B2 (en) Image scaling processor
JPH0879513A (en) Binary error diffusion processor
JP2860039B2 (en) Pseudo halftone image reduction device
JP2702593B2 (en) Isolated point removal device
JPH0494266A (en) Half tone picture processing unit
JPH05145745A (en) Reduction processor for pseudo halftone image
JPH0937072A (en) Image magnifying device
JPH07212573A (en) Resolution conversion device for binary picture
JPH08307678A (en) Image processing unit
JPH0474062A (en) Picture processing method
JPH06178108A (en) Image processor
JPH04367166A (en) Pseudo gradation processor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees