JPH0456225B2 - - Google Patents

Info

Publication number
JPH0456225B2
JPH0456225B2 JP58035803A JP3580383A JPH0456225B2 JP H0456225 B2 JPH0456225 B2 JP H0456225B2 JP 58035803 A JP58035803 A JP 58035803A JP 3580383 A JP3580383 A JP 3580383A JP H0456225 B2 JPH0456225 B2 JP H0456225B2
Authority
JP
Japan
Prior art keywords
temperature
capacity
condenser
cooling fluid
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58035803A
Other languages
Japanese (ja)
Other versions
JPS59161646A (en
Inventor
Kenji Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3580383A priority Critical patent/JPS59161646A/en
Publication of JPS59161646A publication Critical patent/JPS59161646A/en
Publication of JPH0456225B2 publication Critical patent/JPH0456225B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 <技術分類、分野> 開示技術は空調用ターボ冷凍機の冷凍サイクル
の冷媒循環容量の制御技術の分野に属する。
[Detailed Description of the Invention] <Technical Classification, Field> The disclosed technology belongs to the field of technology for controlling the refrigerant circulation capacity of the refrigeration cycle of an air conditioning centrifugal refrigerator.

<要旨の解説> 而して、この出願の発明は蒸発器からの蒸発冷
媒ガスを圧縮器に送給して高温高圧に圧縮し次い
で凝縮器で高温高圧冷媒を冷却水で凝縮液化し再
び蒸発器に戻し冷水から気化熱を奪つて気化蒸発
し圧縮器にリサイクルし、冷水は冷却されて利用
されるようにした冷凍サイクルを行うターボ冷凍
機の上記圧縮機の吸込ベーンのサージング抑制を
上記凝縮器の冷却水の入口温度に対し行うように
した状態て該吸込ベーンの作動を自動制御するよ
うにした循環冷媒の容量制御方法と該制御方法に
直接使用する装置に関する発明であり、特に、該
凝縮器の冷却水等の冷却流体の入口温度をサーミ
スタ等で実測し、温度調節装置に入力して上記吸
込ベーンのアクチユエータを制御してサージング
抑制を保証した状態でその作動下限点を実測変度
変化に応じて変化させ実負荷に則応した最低能力
で運転出来るようにしたターボ冷凍機の容量制御
方法とそれに直接使用する装置に係る発明であ
る。
<Explanation of the gist> Accordingly, the invention of this application supplies the evaporated refrigerant gas from the evaporator to the compressor to compress it to high temperature and high pressure, and then condenses and liquefies the high temperature and high pressure refrigerant with cooling water in the condenser, and evaporates it again. The above condensation suppresses surging of the suction vane of the compressor of a turbo chiller that performs a refrigeration cycle in which the heat of vaporization is taken from the cold water returned to the container, vaporized and recycled to the compressor, and the cold water is cooled and used. This invention relates to a method for controlling the capacity of a circulating refrigerant in which the operation of the suction vane is automatically controlled according to the temperature at the inlet of the cooling water of the refrigerant, and a device directly used in the control method. The inlet temperature of the cooling fluid such as the cooling water of the condenser is actually measured with a thermistor, etc., and inputted to the temperature control device to control the actuator of the suction vane to ensure surging suppression and set its lower operating limit to the actual deviation. This invention relates to a method for controlling the capacity of a centrifugal chiller, which changes the capacity according to the change in capacity so as to be able to operate at the minimum capacity corresponding to the actual load, and a device directly used therefor.

<従来技術> 周知の如く、空調システムには吸収式のものや
ターボ式のものがあるが、運転効率が良く、管理
がし易い等の点から後者は広く用いられている。
<Prior Art> As is well known, there are absorption type and turbo type air conditioning systems, and the latter is widely used because of its high operational efficiency and ease of management.

而して、従来態様のターボ冷凍システムにおい
ては蒸発器で発生した冷媒ガスを圧縮機で高温高
圧に圧縮して次段凝縮機に送給し冷却水で凝縮液
化して該蒸発器に戻す冷凍サイクルが採用されて
いるが、該冷凍サイクルの循環冷媒のサージング
発生は円滑な空調運転を阻害することから上記圧
縮機の吸込ベーンの作動範囲を制限するように設
計されている。
In the conventional turbo refrigeration system, the refrigerant gas generated in the evaporator is compressed to high temperature and high pressure by the compressor, sent to the next stage condenser, condensed with cooling water, liquefied, and returned to the evaporator. However, since surging of the refrigerant circulating in the refrigeration cycle disturbs smooth air conditioning operation, the refrigeration cycle is designed to limit the operating range of the suction vanes of the compressor.

又、一般に空調使用態様の一般基準に合うよう
に凝縮器での循環冷媒の凝縮液化冷媒量を決める
ため該凝縮器の冷却水入口の温度を仕様温度とし
て決めており、したがつて、該仕様温度でサージ
ング発生抑制をするようにし、吸込ベーンの作動
を制限制御するようにされている。
Additionally, in order to determine the amount of condensed liquefied refrigerant in the circulating refrigerant in the condenser in order to meet the general standards for air conditioning usage, the temperature at the cooling water inlet of the condenser is determined as the specification temperature. The generation of surging is controlled by temperature, and the operation of the suction vane is controlled to be limited.

そのため、吸込ベーンの作動特性は結果的に凝
縮器の冷却水の入口温度の仕様温度で一意的に決
められていた。
As a result, the operating characteristics of the suction vanes are uniquely determined by the specified temperature of the cooling water inlet of the condenser.

なお、この種のものとして関連するものに例え
ば特開昭57−115656号が挙げられる。
A related example of this type is JP-A-57-115656.

<従来技術の問題点> したがつて、仕様温度が設定されている従来態
様のターボ冷凍システムにおいては運転中の循環
冷媒の容量制御の下限は該仕様温度によつて拘束
され、即ち、換言すれば仕様温度に対してのみ達
成されることになる運転上弾力性の無い欠点があ
り、仕様温度自体がオールシーズンに適合しない
欠点があつた。
<Problems with the Prior Art> Therefore, in a conventional turbo refrigeration system in which a specified temperature is set, the lower limit of the capacity control of the circulating refrigerant during operation is constrained by the specified temperature. For example, there was a drawback in that there was no operational flexibility because the temperature was achieved only at the specified temperature, and the specified temperature itself was not suitable for all seasons.

又、該仕様温度より低い冷却水入口温度の条件
下では吸込ベーンの作動が上述の如く仕様温度に
対して制限された作動態様をとるためにサージン
グこそ発生しないものゝ、当該低温条件下での限
界容量まで制御出来ないという難点もあつた。
Furthermore, under conditions where the cooling water inlet temperature is lower than the specified temperature, surging does not occur because the operation of the suction vane is limited to the specified temperature as described above. Another drawback was that it was not possible to control the capacity up to its limit.

更に設定仕様温度に対してのみ容量制御が可能
であるため、吸込ベーンの駆動アクチユエータの
発停頻度が多く、したがつて、保守点検の回数も
多く、その限り、装置の寿命も充分延ばせないき
らいがある不具合もあり、メンテナンスコストも
高くなる不利点があつた。
Furthermore, since the capacity can be controlled only for the set specification temperature, the suction vane drive actuator starts and stops frequently, which means that maintenance and inspections are required frequently, and as long as this is the case, the life of the device cannot be extended sufficiently. There were some defects, and the disadvantage was that maintenance costs were high.

<発明の目的> この出願の発明の目的は上述従来技術に基づく
ターボ冷凍システムの冷凍サイクルにおける吸込
ベーンによる容量制御の問題点を解決すべき技術
的課題とし、冷却水入口温度の仕様温度に拘束さ
れることなく、実負荷に応じた容量制御が可能と
なり被冷却流体の過冷却を避け、省エネルギーを
図り、頻繁な発停を避け、装置寿命を延ばし、最
小限の能力で円滑な運転が出来るようにして各種
産業における空調利用分野に益する優れたターボ
冷凍機の容量制御方法とそれに直接使用する装置
を提供せんとするものである。
<Objective of the Invention> The object of the invention of this application is to solve the problem of capacity control by the suction vane in the refrigeration cycle of the turbo refrigeration system based on the above-mentioned prior art, and to solve the problem by restricting the cooling water inlet temperature to the specified temperature. It is possible to control the capacity according to the actual load, avoid overcooling of the fluid to be cooled, save energy, avoid frequent starts and stops, extend the life of the equipment, and enable smooth operation with minimum capacity. In this way, it is an object of the present invention to provide an excellent method for controlling the capacity of a centrifugal chiller, which is beneficial to the field of air conditioning application in various industries, and a device directly used therefor.

<発明の構成> 上述目的に沿い先述特許請求の範囲を要旨とす
るこの出願の発明は前述問題点を解決するため
に、ターボ冷凍機を運転して蒸発器からの蒸発冷
媒ガスを圧縮機の吸込ベーンにより回転状態にし
て圧縮状態を変化させて高温高圧状態にして凝縮
器に圧送し、該凝縮器で冷却流体により冷却され
て凝縮液化冷媒となり上記蒸発器に循環送給され
て被冷却流体から気化熱を奪い再び蒸発ガス化し
て冷凍サイクルをたどるようにされ、該被冷却流
体は冷却されて空調利用されるようにされ、而し
て、該凝縮器の冷却流体入口に設けられた温度セ
ンサーにより該冷却流体の入口温度が検知されて
温度調節装置に入力され、該温度調節装置は該検
出冷却水入口温度とそれに対応する予め設定され
て記憶させておいた吸込ベーン作動開度を演算し
て吸込ベーンの作動下限を変化させ、サージング
限界になる状態で制御信号を出力し、駆動アクチ
ユエータを動作させ、最低出力で被冷却流体の過
冷却を避けて実負荷に最適な運転でターボ冷凍機
を稼動させるようにした技術的手段を講じたもの
である。
<Structure of the Invention> In order to solve the above-mentioned problems, the invention of this application, which is based on the above-mentioned claims in accordance with the above-mentioned object, operates a centrifugal refrigerator to transfer evaporated refrigerant gas from an evaporator to a compressor. The suction vane rotates the refrigerant, changes the compression state, brings it to a high temperature and high pressure state, and sends it under pressure to a condenser, where it is cooled by a cooling fluid to become a condensed liquefied refrigerant, which is circulated and fed to the evaporator to cool the fluid. The heat of vaporization is removed from the fluid and the fluid is evaporated and gasified again to follow the refrigeration cycle, and the fluid to be cooled is cooled and used for air conditioning. The inlet temperature of the cooling fluid is detected by the sensor and input to the temperature adjustment device, and the temperature adjustment device calculates the detected cooling water inlet temperature and the corresponding preset and memorized suction vane operation opening. to change the lower operating limit of the suction vane, output a control signal when the surging limit is reached, operate the drive actuator, avoid overcooling of the cooled fluid at the minimum output, and perform turbo refrigeration with the optimum operation for the actual load. This is a technical measure that allows the machine to operate.

<実施例−構成> 次に、この出願の発明の1実施例を図面を参照
して説明すれば以下の通りである。
<Embodiment - Configuration> Next, one embodiment of the invention of this application will be described below with reference to the drawings.

第1図に示す態様はターボ冷凍機1であり、蒸
発器2、圧縮機3、凝縮器4は冷媒の循環通路
5,5,5を介して直列接続されており、蒸発器
2は被冷却水管路6が、又、凝縮器4には冷却水
管路7が介装されており、そして、圧縮機3には
駆動モータ8が連結されると共にその吸引側には
アクチユエータ9に連係された吸込ベーン10が
設けられており、これらの構造は実質的に機械的
には在来ターボ冷凍機の構造と変りはない。
The embodiment shown in FIG. 1 is a centrifugal refrigerator 1, in which an evaporator 2, a compressor 3, and a condenser 4 are connected in series via refrigerant circulation passages 5, 5, 5, and the evaporator 2 is the one to be cooled. A water pipe line 6 is connected to the condenser 4, and a cooling water line 7 is interposed in the condenser 4. A drive motor 8 is connected to the compressor 3, and a suction side connected to an actuator 9 is connected to the compressor 3. Vanes 10 are provided, and their structure is substantially mechanically similar to that of conventional centrifugal chillers.

而して、この出願の発明においては上記凝縮器
4の冷却水管路7の冷却水入口部11に温度セン
サーとしてのサーミスタ12が介設されており、
温度調節装置13に信号回路14で接続されてい
る。
Therefore, in the invention of this application, a thermistor 12 as a temperature sensor is interposed at the cooling water inlet portion 11 of the cooling water pipe 7 of the condenser 4,
It is connected to the temperature control device 13 through a signal circuit 14 .

該温度調節装置13は図示しないが適宜マイク
ロコンピユータが設けられて上記サーミスタ検出
による凝縮器4の冷却水入口温度に対してサージ
ング限界となる冷却水温度の場合にのみ出力信号
を出す設定値が予め記憶入力されており、これと
実検出冷却水入口温度とを比較演算して運転時の
冷却水温度の変化に応じて吸込ベーン10を作動
下限を変化させアクチユエータ9に制御回路15
を介して制御信号を送信するようにしている。
Although not shown, the temperature control device 13 is appropriately equipped with a microcomputer, and has a preset value that outputs an output signal only when the cooling water temperature reaches the surging limit with respect to the cooling water inlet temperature of the condenser 4 detected by the thermistor. The actuator 9 controls the control circuit 15 by comparing and calculating the actual detected cooling water inlet temperature and changing the lower limit of operation of the suction vane 10 according to changes in the cooling water temperature during operation.
I'm trying to send control signals through the .

尚、16は該アクチユエータ9から温度調節装
置13への帰還回路である。
Note that 16 is a feedback circuit from the actuator 9 to the temperature adjustment device 13.

又、ターボ冷凍機1においてはサージング限界
は低容量の狭い範囲に限ればほゞ直線的に近似可
能であることが分つており、したがつて、低容量
域では冷却水入口温度に対してサージング限界は
アクチユエータ9の作動量を帰還回路16を介し
て温度調節装置13に入力して上記冷却水入口温
度検出信号と比較演算してサージング限界となる
状態でアクチユエータ9を作動させる。
In addition, it is known that in the turbo chiller 1, the surging limit can be approximated almost linearly if limited to a narrow range of low capacity.Therefore, in the low capacity range, the surging limit is The limit is determined by inputting the operating amount of the actuator 9 to the temperature control device 13 via the feedback circuit 16, comparing it with the cooling water inlet temperature detection signal, and operating the actuator 9 in a state where the surging limit is reached.

尚、サーミスタ12の検出温度信号を電気抵抗
信号に変換することは当業者にとり何ら困難性は
ない。
Note that it is not difficult for those skilled in the art to convert the temperature signal detected by the thermistor 12 into an electrical resistance signal.

第2図に示すグラフは吸込ベーン10の作動変
化による圧縮器3の性能変化を示すものである
が、横軸にベーン10の吸込ガス量Vをとり、縦
軸に断熱ヘツドHをとつたもので、凝縮器4の冷
却水入口温度Tc(Tc1〜Tc5)を有段的にとり、
吸込ベーン10の作動開度D(D0〜D4)を有段的
にとつた相関が示してある。
The graph shown in FIG. 2 shows changes in the performance of the compressor 3 due to changes in the operation of the suction vane 10, with the horizontal axis representing the suction gas amount V of the vane 10, and the vertical axis representing the adiabatic head H. Then, the cooling water inlet temperature Tc (Tc 1 to Tc 5 ) of the condenser 4 is set in stages,
A correlation is shown in which the operating opening degree D (D 0 to D 4 ) of the suction vane 10 is determined in stages.

これにより冷却水入口温度に対する吸込ベーン
10の作動下限点が該入口温度の変化に応じて変
化されるのが分る。
This shows that the lower limit of operation of the suction vane 10 with respect to the cooling water inlet temperature is changed in accordance with the change in the inlet temperature.

<実施例−作用> 上述構成において、予め設計々算により当該タ
ーボ冷凍機1の吸込ベーン10の特性を計算し温
度調節装置13のマイクロコンピユータにその冷
却水入口温度Tcに対するサージング限界値とベ
ーン10の作動下限値を記憶入力させておく。
<Embodiment - Effect> In the above configuration, the characteristics of the suction vane 10 of the centrifugal chiller 1 are calculated in advance by design calculations, and the microcomputer of the temperature control device 13 is programmed with the surging limit value and the vane 10 for the cooling water inlet temperature Tc. The operating lower limit value of is memorized and input.

したがつて、この発明によれば特に特定の仕様
温度は設定する必要はないが、特定の範囲として
設定することはかまわない。
Therefore, according to the present invention, it is not necessary to set a specific specified temperature, but it may be set within a specific range.

このようにしてターボ冷凍機1を稼動させると
先述の如く蒸発器2からの蒸発冷媒ガスは圧縮機
3に吸引され、吸引ベーン10により回転を与え
られて絞り効果により吸引量を制御され容量制御
作用を受けて高温高圧化され凝縮器4に至り、冷
却水によつて冷却されて凝縮液化され、次いで蒸
発器2に送給され被冷却水から気化熱を奪い蒸発
し、再び圧縮機3に吸引されて冷凍サイクルに供
され、被冷却水は蒸発熱を奪われて冷却され空調
に利用される。
When the centrifugal chiller 1 is operated in this manner, the evaporated refrigerant gas from the evaporator 2 is sucked into the compressor 3 as described above, and is rotated by the suction vanes 10 to control the suction amount by the throttling effect, thereby controlling the capacity. The water is heated to high temperature and pressure, reaches the condenser 4, is cooled by cooling water, is condensed and liquefied, is then sent to the evaporator 2, absorbs the heat of vaporization from the water to be cooled, evaporates, and returns to the compressor 3. The water is sucked in and sent to the refrigeration cycle, where the heat of evaporation is removed from the water to be cooled and used for air conditioning.

而して、この間、第3図に示す様に凝縮器4の
冷却水入口部11におけるサーミスタ12が冷却
水入口温度を常に感知しており、その検出信号は
電気抵抗信号に変換されて温度調節装置13に入
力され、呼出された上記記憶ベーン特性値の冷却
水入口温度に対応する特性値が比較演算されて対
応特性値が決められ、第2図に示す様にその作動
下限点が設定され、又は、サージングの限界値が
決められ、アクチユエータ9の実動検出値の帰還
回路16を介してのフイードバツク信号と上記入
口温度とが比較演算されてサージング限界状態に
てアクチユエータ作動信号が制御回路15を介し
て出力されアクチユエータ9を制御し、冷却水々
温に対応した容量制御を行い実負荷に則応した最
低限の能力で稼動される。
During this time, as shown in FIG. 3, the thermistor 12 at the cooling water inlet 11 of the condenser 4 is constantly sensing the cooling water inlet temperature, and the detection signal is converted into an electrical resistance signal to adjust the temperature. The characteristic values corresponding to the cooling water inlet temperature of the stored vane characteristic values inputted and recalled into the device 13 are compared and calculated to determine the corresponding characteristic value, and the lower limit point of its operation is set as shown in FIG. Alternatively, the surging limit value is determined, and the feedback signal of the actual operation detection value of the actuator 9 via the feedback circuit 16 is compared with the above-mentioned inlet temperature, and the actuator operation signal is sent to the control circuit 15 in the surging limit state. The actuator 9 is controlled by the actuator 9, and the capacity is controlled according to the temperature of the cooling water, so that the actuator 9 is operated at the minimum capacity corresponding to the actual load.

<他の実施例> 尚、この出願の発明の実施態様は上述実施例に
限るものでないことは勿論であり、例えば、凝縮
器の冷却流体には上記冷却水に代えて大気を用い
ても良く、温度センサーには適宜測温抵抗体を用
いることも可能であり、種々の態様が採用可能で
ある。
<Other Examples> It goes without saying that the embodiments of the invention of this application are not limited to the above-mentioned embodiments. For example, air may be used as the cooling fluid of the condenser instead of the cooling water described above. It is also possible to use a resistance temperature sensor as appropriate for the temperature sensor, and various embodiments can be adopted.

<発明の効果> 以上この出願の発明によれば、基本的にターボ
冷凍機の容量制御が仕様温度には特に拘束され
ず、作動範囲を著るしく拡大し、実負荷の状態に
対応した最小限の能力で容量制御を行つて運転が
行えるため、エネルギー節減が出来る上にオール
シーズンタイプの運転も可能となる優れた効果が
奏される。
<Effects of the Invention> According to the invention of this application, the capacity control of a centrifugal chiller is basically not limited to the specified temperature, and the operating range is significantly expanded, and the minimum Since the system can be operated with limited capacity while controlling its capacity, it not only saves energy but also enables all-season operation.

又、仕様温以下の低温でも容量制御運転が出来
るため、被冷却流体の過冷却が阻止されるため、
機器の負荷が少なく、寿命が延びる効果もあり、
頻繁な整備点検も不要な利点もある。
In addition, since capacity control operation is possible even at low temperatures below the specification temperature, supercooling of the cooled fluid is prevented.
It also has the effect of reducing the load on the equipment and extending its life.
It also has the advantage of not requiring frequent maintenance inspections.

そして、吸込ベーンの作動下限点が下げられる
ので発停回数も減少し、それだけ故障や摩耗も少
くなりエネルギーコストも低減されるメリツトが
ある。
In addition, since the lower limit of operation of the suction vane is lowered, the number of times the suction vane starts and stops is reduced, which has the advantage of reducing breakdowns and wear and reducing energy costs.

而して、凝縮器の入口温度は温度センサにより
容易に検出され、又、その検出信号は温度調節装
置により吸込ベーンのアクチユエータに制御信号
を送つて制御されるため、実動負荷に則応する容
量制御が正確に行える効果がある。
Therefore, the condenser inlet temperature can be easily detected by the temperature sensor, and the detection signal is controlled by the temperature control device by sending a control signal to the actuator of the suction vane, so that the condenser inlet temperature can be easily detected in accordance with the actual load. This has the effect of accurately controlling the capacity.

更に、該温度調節装置に予め設計計算で得られ
る入口温度とサージング限界値、吸込ベーンの作
動下限値を入力記憶させておくことにより、容易
に比較演算が出来、該作動下限値を設定すること
が出来又、サージング限界状態でアクチユエータ
作動信号を出力させることが出来る効果がある。
Furthermore, by inputting and storing the inlet temperature, surging limit value, and suction vane operating lower limit value obtained through design calculations in advance in the temperature control device, comparison calculations can be easily made and the operating lower limit value can be set. This also has the effect of allowing the actuator actuation signal to be output in the surging limit state.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの出願の発明の1実施例の説明図であ
り、第1図はターボ冷凍機の機構図、第2図は吸
込ベーンの作動変化による圧縮機の性能を示すグ
ラフ図、第3図は作動フローチヤート図である。 2……蒸発器、3……圧縮機、4……凝縮器、
10……吸込ベーン、11……冷却流体入口
(部)、5……循環系路、9……アクチユエータ、
15……制御回路、13……温度調節装置、12
……温度センサー、14……信号回路。
The drawings are explanatory diagrams of one embodiment of the invention of this application, in which Fig. 1 is a mechanical diagram of a centrifugal chiller, Fig. 2 is a graph showing the performance of the compressor due to changes in suction vane operation, and Fig. 3 is It is an operation flowchart. 2...evaporator, 3...compressor, 4...condenser,
10... Suction vane, 11... Cooling fluid inlet (part), 5... Circulation system path, 9... Actuator,
15... Control circuit, 13... Temperature adjustment device, 12
...Temperature sensor, 14...Signal circuit.

Claims (1)

【特許請求の範囲】 1 蒸発器で発生した冷媒ガスを圧縮機で高温高
圧に圧縮して次段凝縮器に送給し、冷却流体で凝
縮液化して前記蒸発器に戻す冷凍サイクルの循環
冷媒量を前記圧縮機の吸込ベーンを作動して制御
するターボ冷凍機の容量制御方法において、前記
凝縮器の冷却流体入口の温度を検出し、この検出
温度の変化に応じて予め冷却流体の温度と圧縮機
のサージング限界とから定めた設定点まで吸込ベ
ーンの作動下限点を変化させることを特徴とする
ターボ冷凍機の容量制御方法。 2 凝縮器の冷却流体が冷却水であることを特徴
とする前記特許請求の範囲第1項記載のターボ冷
凍機の容量制御方法。 3 凝縮器の冷却流体が大気であることを特徴と
する前記特許請求の範囲第1項記載のターボ冷凍
機の容量制御方法。 4 蒸発器で発生した冷媒ガスを圧縮機で高温高
圧に圧縮して次段凝縮器に送給し、冷却流体で凝
縮液化して前記蒸発器に戻す冷凍サイクルの循環
冷媒量を前記圧縮機の吸込ベーンを作動して制御
するターボ冷凍機の容量制御装置において、前記
蒸発器の吸込ベーンにアクチユエータを連結し、
このアクチユエータには、温度調節装置を接続す
ると共に温度調節装置には前記凝縮器の冷却流体
入口に設けた温度センサーを接続し、前記温度調
節装置には温度センサーが検出する流体入口温度
に対してサージング限界となる温度の場合にのみ
出力信号を出す設定値が予め記憶入力されてお
り、これと前記流体入口温度とを比較演算して流
体入口温度の変化に応じて吸込ベーンの作動下限
を変化させることを特徴とするターボ冷凍機の容
量制御装置。
[Claims] 1. A circulating refrigerant in a refrigeration cycle in which refrigerant gas generated in an evaporator is compressed to high temperature and pressure by a compressor, sent to the next stage condenser, condensed with a cooling fluid, liquefied, and returned to the evaporator. In a method for controlling the capacity of a centrifugal chiller in which the amount is controlled by operating a suction vane of the compressor, the temperature of the cooling fluid inlet of the condenser is detected, and the temperature of the cooling fluid is adjusted in advance according to a change in the detected temperature. A method for controlling the capacity of a centrifugal chiller, characterized by changing a lower operating limit point of a suction vane from a surging limit of a compressor to a predetermined set point. 2. The method for controlling the capacity of a turbo chiller according to claim 1, wherein the cooling fluid of the condenser is cooling water. 3. The method for controlling the capacity of a turbo chiller according to claim 1, wherein the cooling fluid of the condenser is the atmosphere. 4. The refrigerant gas generated in the evaporator is compressed to high temperature and high pressure by a compressor, sent to the next stage condenser, condensed with cooling fluid, liquefied, and returned to the evaporator. In a capacity control device for a centrifugal chiller that operates and controls a suction vane, an actuator is connected to the suction vane of the evaporator,
A temperature control device is connected to this actuator, and a temperature sensor provided at the cooling fluid inlet of the condenser is connected to the temperature control device. A set value that outputs an output signal only when the temperature reaches the surging limit is stored and input in advance, and this value is compared and calculated with the fluid inlet temperature to change the lower limit of operation of the suction vane according to changes in the fluid inlet temperature. A capacity control device for a centrifugal chiller, characterized in that:
JP3580383A 1983-03-07 1983-03-07 Method and device for controlling capacity of turbo-refrigerator Granted JPS59161646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3580383A JPS59161646A (en) 1983-03-07 1983-03-07 Method and device for controlling capacity of turbo-refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3580383A JPS59161646A (en) 1983-03-07 1983-03-07 Method and device for controlling capacity of turbo-refrigerator

Publications (2)

Publication Number Publication Date
JPS59161646A JPS59161646A (en) 1984-09-12
JPH0456225B2 true JPH0456225B2 (en) 1992-09-07

Family

ID=12452076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3580383A Granted JPS59161646A (en) 1983-03-07 1983-03-07 Method and device for controlling capacity of turbo-refrigerator

Country Status (1)

Country Link
JP (1) JPS59161646A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281642A (en) * 1976-12-06 1977-07-08 Ebara Corp Turbo type refriegerator
JPS575123A (en) * 1980-06-13 1982-01-11 Hitachi Ltd Controller for cooling water of turbo-refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281642A (en) * 1976-12-06 1977-07-08 Ebara Corp Turbo type refriegerator
JPS575123A (en) * 1980-06-13 1982-01-11 Hitachi Ltd Controller for cooling water of turbo-refrigerator

Also Published As

Publication number Publication date
JPS59161646A (en) 1984-09-12

Similar Documents

Publication Publication Date Title
US8590327B2 (en) Refrigerating apparatus
JP2000039220A (en) Apparatus and method for controlling refrigerating cycle
US10876777B2 (en) Air conditioning device using vapor injection cycle and method for controlling the device
US4932221A (en) Air-cooled cooling apparatus
JP7011766B2 (en) Cooling device and its control method and control program
CN106796061A (en) Two grades of boosting type refrigeration EGRs
JP2009210213A (en) Air conditioner for railway vehicle
CN105737419B (en) Active dynamic cooling control device and method
JPH1038392A (en) Speed adjuster of blower for condenser
WO2023185369A1 (en) Variable-frequency air conditioner, and control method and control apparatus therefor
KR101702008B1 (en) Combine air conditioning system for communication equipment
CN114857665A (en) Multi-split system
JPH0456225B2 (en)
JPH07310958A (en) Refrigerating cycle controller
CN114370727A (en) Compressor control method and device and air conditioner
JPH0814671A (en) Refrigerating plant and its control method
JPH0545447B2 (en)
EP1508752A1 (en) Thermohygrostat-type air conditioner with means for controlling evaporation temperature
CN217004720U (en) Novel direct current frequency conversion condensation reheating swimming pool dehumidification heat pump system
CN221076662U (en) Air conditioning unit of wide temperature refrigeration work of an organic whole external formula
CN114857664A (en) Multi-split system
JPH0240449Y2 (en)
CN104697228A (en) Turbine refrigerator
JPH01312358A (en) Air conditioner
CN114370699A (en) Air conditioner heating operation control method and device and air conditioner