JPH0455767A - Static electricity measuring device - Google Patents

Static electricity measuring device

Info

Publication number
JPH0455767A
JPH0455767A JP16719090A JP16719090A JPH0455767A JP H0455767 A JPH0455767 A JP H0455767A JP 16719090 A JP16719090 A JP 16719090A JP 16719090 A JP16719090 A JP 16719090A JP H0455767 A JPH0455767 A JP H0455767A
Authority
JP
Japan
Prior art keywords
electrode
measured
matter
current
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16719090A
Other languages
Japanese (ja)
Inventor
Takashi Namura
名村 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP16719090A priority Critical patent/JPH0455767A/en
Publication of JPH0455767A publication Critical patent/JPH0455767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To reduce generation of dusts without loss of economy and to improve an accuracy and reliability by periodically varying a distance from a matter to be measured and an electrode, and detecting a displacement current flowing to the electrode. CONSTITUTION:A semiconductor substrate 11 of a matter to be measured is secured on a stage 15, and its rear surface is electrically grounded through the stage 15. An electrode 13 is vertically vibrated by a piezoelectric element 12 of a driving mechanism, and a distance between the electrode 13 and the matter 11 is periodically varied. Thus, if an electrostatic capacity between the electrode 13 and the matter 11 is varied and the surface of the matter 11 is charged, a displacement current flows to the electrode 13. This current is detected by current detecting means 14. Since the current I to be detected is represented by a predetermined formula decided by the potential V of the matter 11, a distance D from the matter 11 to the electrode 13, the capacity C, and the effective area S of the electrode 13, the potential V of the matter 11 can be measured from the current I.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、静電気を帯びた半導体基板表面などの電位を
測定する静電気測定器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a static electricity meter that measures the potential of a statically charged surface of a semiconductor substrate.

従来の技術 近年の微細加工技術の進歩により、半導体装置はますま
す高集積化の一途をたどっている。これにともない半導
体装置を構成する絶縁膜の厚みも10nmを切るものも
あられれており、この薄い絶縁膜を、静電気などによる
絶縁破壊から守ることが、高い製造歩留まりを保つ上で
大きな鍵となっている。そのためには、まず、ドライプ
ロセスやウェットプロセスなどの製造工程における半導
体基板の帯電状態を正確に評価する技術が必須である。
BACKGROUND OF THE INVENTION Due to recent advances in microfabrication technology, semiconductor devices are becoming increasingly highly integrated. As a result, the thickness of the insulating films that make up semiconductor devices is now less than 10 nm, and protecting these thin insulating films from dielectric breakdown caused by static electricity is a major key to maintaining high manufacturing yields. ing. To this end, first of all, it is essential to have a technology that accurately evaluates the charging state of semiconductor substrates during manufacturing processes such as dry processes and wet processes.

以下、従来の静電気測定器について述べる。A conventional static electricity meter will be described below.

第2図は、従来の静電気測定器の構成図である。第2図
において、1は被加工物、2はチョッパー 3は電極、
4は電流検出手段である電流計、5はモーター 6はス
テージである。
FIG. 2 is a configuration diagram of a conventional electrostatic meter. In Figure 2, 1 is the workpiece, 2 is the chopper, 3 is the electrode,
4 is an ammeter which is a current detection means, 5 is a motor, and 6 is a stage.

以上のように構成された、静電気測定器について、以下
その動作について説明する。
The operation of the electrostatic meter configured as described above will be described below.

従来の方法では、電気的に接地されたステージ6上に置
いた被測定物1と、電極3の間隔を定められた距離りに
固定し、電気的に接地されたチョッパー2をモーター5
で回転させることによって、電極3に脈流の変位電流を
誘起し、この電流を電流検出手段4で検出することによ
って、被測定物1の電位を測定する。
In the conventional method, the distance between the object to be measured 1 placed on an electrically grounded stage 6 and the electrode 3 is fixed at a predetermined distance, and the electrically grounded chopper 2 is connected to the motor 5.
By rotating the object to be measured 1, a pulsating displacement current is induced in the electrode 3, and this current is detected by the current detection means 4, thereby measuring the potential of the object to be measured 1.

今、被測定物1の電位をV(V)、被測定物1と電極3
の間の静電容量をC(F)、電極3の有効面積をS (
Hi)、被測定物1と電極3との平均距離をD (m)
、誘電率をε(F/m)とすると、電流検出手段4の検
出する電流1(A)は、次式で表すこ七ができる。
Now, the potential of the object to be measured 1 is V (V), the object to be measured 1 and the electrode 3
The capacitance between the electrodes is C(F), and the effective area of the electrode 3 is S(
Hi), the average distance between the object to be measured 1 and the electrode 3 is D (m)
, the dielectric constant is ε (F/m), the current 1 (A) detected by the current detection means 4 can be expressed by the following equation.

■=ユ=旦・  丈Σ・土・■(1) ■= dt  dt     dt  D このように電流Iは、チョッパー2によって電極3の有
効面積Sが変化するために生じる。これはチョッパー2
が図示しであるような回転式のものである場合は、チョ
ッパー2の分割数やモーター5の回転速度に依存する。
■=Yu=Dan・Length Σ・Sat・■(1) ■= dt dt dt D In this way, the current I is generated because the effective area S of the electrode 3 is changed by the chopper 2. this is chopper 2
If it is a rotary type as shown in the figure, it depends on the number of divisions of the chopper 2 and the rotational speed of the motor 5.

測定の条件を適当に定めれば、fi1式右辺のV以外は
既知の量となるので電流■を検出することによって被測
定物の電位Vの値を測定することが可能となる。
If the measurement conditions are appropriately determined, the values other than V on the right side of the fi1 formula are known quantities, so it is possible to measure the value of the potential V of the object to be measured by detecting the current (2).

発明が解決しようとする課題 しかしながら上記従来の構成では、以下に述べる問題点
があった。
Problems to be Solved by the Invention However, the above conventional configuration has the following problems.

まず、回転式チョッパーを用いる場合は、これを駆動す
るための機械部分が存在し、微小なゴミを多数発生する
。従って、ゴミの発生が製品の製造歩留に悪影響を及ぼ
す半導体装置の検査などの用途には適さない。
First, when using a rotary chopper, there is a mechanical part to drive the chopper, which generates a lot of minute dust. Therefore, it is not suitable for applications such as inspection of semiconductor devices, where the generation of dust adversely affects the manufacturing yield of products.

また、測定値が距離りやチョッパーの回転数などによっ
て変動するため、測定精度は通常の電圧測定と比較する
と大幅に低い。通常は、数V程度の精度となる。ただし
、回転数制御はクォーツロック方式などを利用すれば、
ppmオーダーの制御も可能であるが、装置が高価で複
雑なものになってしまう。
Furthermore, since the measured value varies depending on the distance and the chopper's rotation speed, the measurement accuracy is significantly lower than that of normal voltage measurement. Normally, the accuracy is on the order of several volts. However, if you use a quartz lock method to control the rotation speed,
Control on the order of ppm is also possible, but the equipment becomes expensive and complicated.

本発明の目的は上記従来方法のもつ問題点を解決するも
ので、経済性を損なうことなく、ゴミの発生がきわめて
少なくかつ、高精度で信頼性の高い静電気測定器を提供
するものである。
The object of the present invention is to solve the problems of the above-mentioned conventional methods, and to provide a static electricity measuring instrument that generates extremely little dust, has high accuracy, and is highly reliable, without impairing economic efficiency.

課題を解決するための手段 これらの目的を達成するために、本発明は、被測定物の
表面に近接する駆動機構を有する電極と、この電極に流
れる変位電流を検出する電流検出手段を備えている。
Means for Solving the Problems In order to achieve these objects, the present invention includes an electrode having a drive mechanism close to the surface of the object to be measured, and a current detection means for detecting a displacement current flowing through the electrode. There is.

また、被測定物の表面に近接する駆動機構を有する電極
と、この電極に可変の電位を与える電源と、この電極に
流れる変位電流を検出する電流検出手段を備えている。
The apparatus also includes an electrode having a drive mechanism close to the surface of the object to be measured, a power supply for applying a variable potential to this electrode, and current detection means for detecting a displacement current flowing through this electrode.

また、被測定物の表面に近接する電極と、この電極を流
れる変位電流を検出する電流検出手段と、被測定物と電
極との間を気密に保つ遮蔽板を備えている。
The device also includes an electrode close to the surface of the object to be measured, current detection means for detecting a displacement current flowing through the electrode, and a shielding plate that maintains an airtight space between the object to be measured and the electrode.

作用 これらの構成によって本発明の目的が達成される過程を
、以下に順を追って説明する。
Operation The process by which the object of the present invention is achieved by these configurations will be explained in order below.

被測定物と電極との間の距離を周期的に変化させること
により被測定物と電極間の静電容量が周期的に変化し、
被測定物と電極との間に電位差があれば、電極に変位電
流が流れる。この変位電流と被測定物の電位の関係は、
静電容量の変化量によって一義的に決まるので、変位電
流から被測定物の電位が測定できる。
By periodically changing the distance between the object to be measured and the electrode, the capacitance between the object to be measured and the electrode changes periodically.
If there is a potential difference between the object to be measured and the electrode, a displacement current flows through the electrode. The relationship between this displacement current and the potential of the object to be measured is
Since it is uniquely determined by the amount of change in capacitance, the potential of the object to be measured can be measured from the displacement current.

容量の変化は電極と被測定物の間の距離の逆数の変化率
に比例するので、平均距離を小さく取れば、距離の変化
分が小さくても充分な容量変化率かえられる。従って、
駆動機構も、ボイスコイルや電圧素子を利用することが
でき、機械部分を著しく簡素化できる。従って、回転式
のチョッパーを用いる場合などと比較してゴミの発生が
著しく低減される。
Since the change in capacitance is proportional to the rate of change of the reciprocal of the distance between the electrode and the object to be measured, if the average distance is made small, a sufficient rate of change in capacitance can be achieved even if the change in distance is small. Therefore,
The drive mechanism can also use a voice coil or a voltage element, and the mechanical part can be significantly simplified. Therefore, compared to the case where a rotary chopper is used, the generation of dust is significantly reduced.

また、測定精度は、おちにDの制御精度に依存するが、
ボイスコイルや、電圧素子を利用できるので、電極の振
動振幅の制御も容易であり、容易に高い測定精度が得ら
れる。また、構造が単純であるので信頼性が高い。
In addition, the measurement accuracy depends on the control accuracy of D,
Since a voice coil and a voltage element can be used, it is easy to control the vibration amplitude of the electrode, and high measurement accuracy can be easily obtained. Moreover, since the structure is simple, reliability is high.

電極に流れる変位電流は、被測定物と電源出力の電位差
と、被測定物と電極との静電容量の変化率との積に比例
する。まず、被測定物と電極との間の距離を周期的に変
化させることにより被測定物と電極間の静電容量が周期
的に変化するようにした上で、電極に印加する電位を変
化させて、変位電流がOとなる電圧を調べる。変位電流
が0の時、電極と被測定物が互いに等電位となっている
ので、この時の電源電圧を読みとることにより、被測定
物の電位Vを測定することができる。
The displacement current flowing through the electrode is proportional to the product of the potential difference between the object to be measured and the power supply output and the rate of change in capacitance between the object to be measured and the electrode. First, the capacitance between the object to be measured and the electrode changes periodically by periodically changing the distance between the object to be measured and the electrode, and then the potential applied to the electrode is changed. Check the voltage at which the displacement current becomes O. When the displacement current is 0, the electrode and the object to be measured are at the same potential, so by reading the power supply voltage at this time, the potential V of the object to be measured can be measured.

ここで、ゴミの発生が抑えられることや信頼性が高いこ
とは第1の発明と同様であるが、さらに、被測定物の電
位の測定に、容量や距離の絶対値を必要としないという
特徴が加わる。この場合、測定精度は主に電流が0の条
件を決めるための電流の検出感度に依存する。すなわち
、容量変化が大きく、電流検出手段である電流計の感度
が高いほどよいわけであるが、通常これらの値は十分高
い値を得ることができるので、従来のチョッパ一方式と
比較してコストをさほど上げることなく、高い測定精度
を得ることができる。
Here, although the generation of dust is suppressed and the reliability is high as in the first invention, an additional feature is that the absolute value of capacitance or distance is not required to measure the potential of the object to be measured. is added. In this case, the measurement accuracy mainly depends on the current detection sensitivity for determining the condition where the current is zero. In other words, the larger the capacitance change and the higher the sensitivity of the ammeter that is the current detection means, the better.However, since these values can usually be obtained sufficiently high, the cost is lower than that of the conventional chopper type. High measurement accuracy can be obtained without significantly increasing the value.

電極と被測定物との間が気密に保たれており、電極の振
動によりゴミが発生することが多少あっても、被測定物
に達することがなくきわめて正常な測定が可能となる。
The space between the electrode and the object to be measured is kept airtight, and even if some dust is generated due to vibration of the electrode, it will not reach the object to be measured, allowing extremely normal measurements.

また、気密に保った部分を減圧状態にすることも可能で
あり、振動が音波として伝搬してゴミの発生につながる
ことを防ぐこともできる。
It is also possible to reduce the pressure in the airtight area, which prevents vibrations from propagating as sound waves and causing dust.

実施例 以下第1の発明、第2の発明、第3の発明の実施例を、
それぞれ図面を参照しながら説明する。
Examples Examples of the first invention, second invention, and third invention are as follows:
Each will be explained with reference to the drawings.

第1図(A)〜(C)は、それぞれ、第1の発明の実施
例、第2の発明の実施例、第3の発明の実施例に於ける
静電気測定器の構成図である。
FIGS. 1(A) to 1(C) are configuration diagrams of static electricity measuring instruments in an embodiment of the first invention, an embodiment of the second invention, and an embodiment of the third invention, respectively.

第1図(A)〜(C)において、11は被測定物である
半導体基板、12は駆動機構である圧電素子、13は電
極、14は電流検出手段である電流計、15は接地され
たステージ、16は静電遮蔽、17は電源、18は遮蔽
板である誘電体膜である。
In FIGS. 1(A) to (C), 11 is a semiconductor substrate which is an object to be measured, 12 is a piezoelectric element which is a driving mechanism, 13 is an electrode, 14 is an ammeter which is a current detection means, and 15 is grounded. 16 is an electrostatic shield, 17 is a power source, and 18 is a dielectric film serving as a shielding plate.

第1の発明の実施例である第1図(A)の装置について
、以下その動作を説明する。
The operation of the apparatus shown in FIG. 1A, which is an embodiment of the first invention, will be described below.

被測定物である半導体基板11は、ステージ15の上に
固定され、その裏面がステージ15を介して電気的に接
地されている。電極13が駆動機構である圧電素子12
によって上下に振動し、電極13と被測定物11との距
離が周期的に変化する。この圧電素子12と電極13と
の間は、適当な長さのアームによって接続されており、
てこの原理で圧電素子の振動が拡大されるようになって
いる。これにより電極13と被測定物11との間の静電
容量が変化し、被測定物11の表面が帯電している場合
、電極13に変位電流が流れる。これを電流検出手段1
4によって検出する。検出される電流1(A)は、被測
定物11の電位をV(V)、被測定物11と電極13と
の間の距離をD(m)、静電容量C(F)、電極13の
有効面積をs crrt>とじて次式で表される。
A semiconductor substrate 11, which is an object to be measured, is fixed on a stage 15, and its back surface is electrically grounded via the stage 15. Piezoelectric element 12 whose electrode 13 is a driving mechanism
The distance between the electrode 13 and the object to be measured 11 changes periodically. The piezoelectric element 12 and the electrode 13 are connected by an arm of an appropriate length.
The vibration of the piezoelectric element is magnified by the lever principle. This changes the capacitance between the electrode 13 and the object to be measured 11, and if the surface of the object to be measured 11 is charged, a displacement current flows through the electrode 13. This is the current detection means 1
Detected by 4. The detected current 1 (A) is determined by the potential of the object to be measured 11 being V (V), the distance between the object to be measured 11 and the electrode 13 being D (m), the capacitance C (F), and the electrode 13 The effective area of s crrt is expressed by the following formula.

I=dQ=dC,v−d(1/D)、εs■ (2゜d
t  dt      di ここで、(2)式右辺において■以外は既知とできるの
で、電流■から被測定物11の電位Vが測定できる。
I=dQ=dC, v-d(1/D), εs■ (2゜d
t dt di Here, in the right side of equation (2), everything other than ■ can be known, so the potential V of the object to be measured 11 can be measured from the current ■.

この方法では、容量Cの変化は電極13と被測定物11
の間の距離りの逆数の変化率に比例している。いま、距
離りの平均量を1(I)前後と充分小さく取ることによ
って、距離の変化量は、例えば0.5(+on)と小さ
くて済んでいる。本実施例のように電極13を駆動機構
である圧電素子12によって、てこの原理で駆動すれば
十分なストロークを得ることができることになり、機械
部分が著しく簡素化される。従って、経済的である上に
ゴミの発生が著しく低減されている。
In this method, the change in capacitance C is the difference between the electrode 13 and the object to be measured 11.
It is proportional to the rate of change of the reciprocal of the distance between Now, by setting the average amount of distance to be sufficiently small, around 1 (I), the amount of change in distance can be as small as, for example, 0.5 (+on). As in this embodiment, if the electrode 13 is driven by the piezoelectric element 12, which is a drive mechanism, on the principle of leverage, a sufficient stroke can be obtained, and the mechanical part can be significantly simplified. Therefore, in addition to being economical, the generation of dust is significantly reduced.

また、測定の精度は、Dの制御精度に主に依存すること
になるが、圧電素子12を利用しているので、電極13
の振動振幅の制御も容易であり、高い測定精度が得られ
る。また、導電体でつくられた静電遮蔽16は電極13
に被測定物11以外との間に変位電流が流れることを防
ぎ、測定精度の低下を防いでいる。この実施例では、1
7以上の測定精度を得ており、従来のチョッパ一方式と
比較して同一コストで約1桁の精度向上が図れた。この
ように構造がきわめて単純であるので信頼性も高い。
Furthermore, the accuracy of measurement mainly depends on the control accuracy of D, but since the piezoelectric element 12 is used, the electrode 13
It is also easy to control the vibration amplitude, and high measurement accuracy can be obtained. Further, the electrostatic shield 16 made of a conductor is connected to the electrode 13.
This prevents a displacement current from flowing between the device and the object other than the object to be measured 11, thereby preventing a decrease in measurement accuracy. In this example, 1
We obtained a measurement accuracy of 7 or more, which is about an order of magnitude more accurate than the conventional chopper type at the same cost. Since the structure is extremely simple as described above, the reliability is also high.

なお、本実施例では距離りの平均値を1(n+n)前後
、距離の変化量を0.5(ran)などとしたが、これ
は、実現できる機械的精度や、あるいは、測定に必要な
精度に応じて変更しても何等差し支えない。
In this example, the average value of the distance was set to around 1 (n+n), and the amount of change in distance was set to 0.5 (ran), but this is due to the mechanical accuracy that can be achieved or the amount required for measurement. There is no problem in changing it depending on the accuracy.

第2の発明の実施例である第1図(B)の装置について
、以下その動作を説明する。
The operation of the apparatus shown in FIG. 1B, which is an embodiment of the second invention, will be described below.

第2の実施例では第1の実施例に、電極13の電位を可
変にする電源17を備えた構成となっており、これによ
って、電極13に流れる電流1(A)は、被測定物11
の電位をV(V)、電源17により電極13に与える電
位をv’ (v)、被測定物11と電極13との間の距
離をD (m)、静電容量C(F)、電極13の有効面
積をS (nf)として次式で表される。
The second embodiment is the same as the first embodiment except that it includes a power source 17 that makes the potential of the electrode 13 variable, so that the current 1 (A) flowing through the electrode 13 is
, the potential given to the electrode 13 by the power source 17 is v' (v), the distance between the object to be measured 11 and the electrode 13 is D (m), the capacitance C (F), the electrode The effective area of 13 is expressed by the following equation as S (nf).

従って、電位V′を変化させ、電流Iが0(A)となる
電圧では、v=v’の関係が成り立っており、この時の
電源電圧から被測定物11の電位Vを測定することがで
きる。
Therefore, at a voltage where the potential V' is changed and the current I becomes 0 (A), the relationship v=v' holds true, and it is possible to measure the potential V of the device under test 11 from the power supply voltage at this time. can.

第2の実施例で、ゴミの発生が抑えられることや信頼性
が高いことは第1の実施例と同様であるが、さらに(3
)式より分かるように、被測定物11の電位■の測定に
、容量Cや距離りや有効面8IS等の絶対値を必要とし
ないという新たな特徴が加わる。
The second embodiment is similar to the first embodiment in that dust generation is suppressed and reliability is high, but in addition, (3
) As can be seen from the equation, a new feature is added to the measurement of the potential (2) of the object to be measured 11 in that the absolute values of the capacitance C, distance, effective surface 8IS, etc. are not required.

測定精度は電流が0となる電源17の電圧を決めるため
の検出感度に依存する。すなわち、容量Cの変化が大き
く、電流検出手段14の感度が高いほどよいわけである
が、通常これらの値は十分高い値を得ることができるの
で、容易に高い測定精度を得ることができるという新た
な効果が生まれる。例えば、約I QmVの精度を持つ
電源と約1nAの測定精度を持つ交流電流計を使用し、
容量の変化量を1pF、変化の周期を1kHzとして、
約10 QmVの測定精度を得ることができる。このよ
うに、従来のチョッパ一方式と比較して同一コストでお
よそ2桁の精度向上が図れる。
The measurement accuracy depends on the detection sensitivity for determining the voltage of the power supply 17 at which the current becomes zero. In other words, the larger the change in capacitance C and the higher the sensitivity of the current detection means 14, the better; however, these values can usually be obtained sufficiently high, so high measurement accuracy can be easily obtained. A new effect is born. For example, using a power supply with an accuracy of about IQmV and an AC ammeter with a measurement accuracy of about 1 nA,
Assuming that the amount of change in capacitance is 1 pF and the period of change is 1 kHz,
A measurement accuracy of about 10 QmV can be obtained. In this way, accuracy can be improved by approximately two orders of magnitude at the same cost compared to the conventional chopper type.

なお、電極13の電位を電源17によって接地電位から
変化させているが、これの代わりにステージ15の電位
を変化させても良いことは言うまでもない。
Although the potential of the electrode 13 is changed from the ground potential by the power source 17, it goes without saying that the potential of the stage 15 may be changed instead.

第3の発明の実施例である第1図(C)の装置について
、以下その動作を説明する。
The operation of the apparatus shown in FIG. 1C, which is an embodiment of the third invention, will be described below.

第3の実施例では、第2の実施例に、電極13及び、そ
の駆動機構12の周囲を石英製の遮蔽板18と導電体で
つくられた静電遮蔽16とによって被測定物11に対し
気密に保つ機能が新たに加わる。これによって電極13
あるいは駆動機構12によって発生したゴミが、被測定
物11に達することがないという特徴が生まれる。さら
に、本実施例では遮蔽板18と静電遮蔽16によって囲
まれた内部は減圧状態であり、音波の伝播により振動が
伝わることが抑制されるためゴミの発生が極めて少ない
。さらに、遮蔽板18に高誘電率の誘電体を使用するこ
とにより、電極13と被測定物11との間の静電容量が
増加し、感度が向上するという効果も生まれる。
In the third embodiment, the electrode 13 and its drive mechanism 12 are surrounded by a shielding plate 18 made of quartz and an electrostatic shielding 16 made of a conductive material, which protects the object to be measured 11 from the second embodiment. A new function to keep it airtight has been added. As a result, the electrode 13
Alternatively, there is a feature that the dust generated by the drive mechanism 12 does not reach the object to be measured 11. Furthermore, in this embodiment, the interior surrounded by the shielding plate 18 and the electrostatic shielding 16 is in a reduced pressure state, and the transmission of vibrations due to the propagation of sound waves is suppressed, so that the generation of dust is extremely small. Furthermore, by using a dielectric material with a high dielectric constant for the shielding plate 18, the capacitance between the electrode 13 and the object to be measured 11 increases, resulting in an effect of improving sensitivity.

なお、本実施例では、電極11の周囲を減圧としたが常
圧としてもよいことは言うまでもない。
In this embodiment, the pressure around the electrode 11 is reduced, but it goes without saying that the pressure may be set to normal pressure.

また、遮蔽板18の材質を石英としたが、これを各種の
樹脂あるいは、無機材料としてよいことは言うまでもな
い。また、ゴミの拡散が遮蔽板11で遮断されているの
で、回転式の駆動機構や、従来例で述べたチョッパ一方
式などを採用しても良いことは言うまでもない。
Moreover, although the material of the shielding plate 18 is quartz, it goes without saying that it may be made of various resins or inorganic materials. Further, since the diffusion of dust is blocked by the shielding plate 11, it goes without saying that a rotary drive mechanism or a single chopper type as described in the conventional example may be employed.

なお、以上第1の発明、第2の発明、第3の発明におい
て、いずれも電極13を振動させる駆動機構12として
圧電素子を用いているが、これをボイスコイルなどとし
ても良いことは言うまでもない。
In addition, in the first invention, second invention, and third invention described above, a piezoelectric element is used as the drive mechanism 12 for vibrating the electrode 13, but it goes without saying that this may also be a voice coil or the like. .

また、以上第1の発明、第2の発明、第3の発明におい
て、被測定物11がステージによって上向きに固定され
ている場合を示したが、ゴミの落下を軽減するためにこ
れを任意の方向に変えて良いことは言うまでもない。
Further, in the first invention, second invention, and third invention, the case where the object to be measured 11 is fixed upward by the stage has been shown, but this can be changed to any arbitrary position in order to reduce the falling of dust. Needless to say, it is good to change direction.

また、以上第1の発明、第2の発明、第3の発明におい
て、被測定物11は半導体基板としたが、これを半導体
以外のものとしても良いことは言うまでもない。
Furthermore, in the first, second, and third inventions, the object to be measured 11 is a semiconductor substrate, but it goes without saying that it may be made of something other than a semiconductor.

発明の効果 このように本発明は、ゴミの発生がきわめて少なくかつ
高精度で信頼性の高い静電気測定器を提供するものであ
る。
Effects of the Invention As described above, the present invention provides a static electricity measuring instrument that generates very little dust and is highly accurate and reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(C)はそれぞれ本発明の一実施例にお
ける静電気測定器の構成図、第2図は従来の静電気測定
器の構成図である。 11・・・・・・被測定物、12・・・・・・駆動機構
、13・・・・・・電極、14・・・・・・電流検出手
段、17・・・・・・電源、18・・・・・・遮蔽板。 代理人の氏名 弁理士 粟野重孝 はか1名!!・・・
1語 yz・・真直板
FIGS. 1A to 1C are block diagrams of a static electricity meter according to an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional static electricity meter. 11...Object to be measured, 12...Drive mechanism, 13...Electrode, 14...Current detection means, 17...Power source, 18... Shielding plate. Name of agent: Patent attorney Shigetaka Awano Haka 1 person! ! ...
1 word yz...straight board

Claims (3)

【特許請求の範囲】[Claims] (1)被測定物の表面に近接する駆動機構を有する電極
と、前記電極に流れる変位電流を検出する電流検出手段
とから構成される静電気測定器。
(1) A static electricity measuring instrument comprising an electrode having a drive mechanism close to the surface of an object to be measured, and a current detection means for detecting a displacement current flowing through the electrode.
(2)被測定物の表面に近接する駆動機構を有する電極
と、前記電極に可変の電位を与える電源と、前記電極を
流れる変位電流を検出する電流検出手段とから構成され
る静電気測定器。
(2) An electrostatic meter comprising an electrode having a drive mechanism close to the surface of an object to be measured, a power supply that applies a variable potential to the electrode, and current detection means for detecting a displacement current flowing through the electrode.
(3)被測定物と電極との間を気密に保つ遮蔽板を有す
る請求項2記載の静電気測定器。
(3) The electrostatic meter according to claim 2, further comprising a shielding plate that maintains airtightness between the object to be measured and the electrode.
JP16719090A 1990-06-25 1990-06-25 Static electricity measuring device Pending JPH0455767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16719090A JPH0455767A (en) 1990-06-25 1990-06-25 Static electricity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16719090A JPH0455767A (en) 1990-06-25 1990-06-25 Static electricity measuring device

Publications (1)

Publication Number Publication Date
JPH0455767A true JPH0455767A (en) 1992-02-24

Family

ID=15845100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16719090A Pending JPH0455767A (en) 1990-06-25 1990-06-25 Static electricity measuring device

Country Status (1)

Country Link
JP (1) JPH0455767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083004B2 (en) * 2014-01-24 2017-02-22 国立研究開発法人情報通信研究機構 Electric field detection output device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083004B2 (en) * 2014-01-24 2017-02-22 国立研究開発法人情報通信研究機構 Electric field detection output device

Similar Documents

Publication Publication Date Title
US5028875A (en) Linear rotary differential capacitance transducer
CN107014480A (en) Linear motor displacement amplitude detection method and detection means
JP2003505685A (en) Coriolis effect transducer
JP4281985B2 (en) Improvement on offset removal device for vibrating gyroscope
Kawai et al. High-resolution microgyroscope using vibratory motion adjustment technology
EP4303596A1 (en) Method and apparatus for measuring electrical properties of sample material, and device and medium
CN117665419B (en) Ion-flow-interference-resistant resonant electrostatic field sensor and measuring device
JPH0455767A (en) Static electricity measuring device
US4100442A (en) Electrically driven oscillating capacitor device
Johnson et al. An acoustically driven Kelvin probe for work‐function measurements in gas ambient
Harms et al. Vibrating reed apparatus with optical detection and digital signal processing: application to measurements on thin films
JPH09211046A (en) Method and apparatus for non-contact detection of potential
Kielczyński et al. Piezoelectric sensors for investigations of microstructures
Picotto et al. Scanning tunneling microscopy head having integrated capacitive sensors for calibration of scanner displacements
US7598746B2 (en) Surface voltmeter and surface voltage measurement method
Scholl et al. In situ force calibration of high force constant atomic force microscope cantilevers
JPH05209913A (en) Electrostatic formula measurement device
JPH0772196A (en) Static potential level measuring instrument
RU2266588C1 (en) Method for estimating electrical heterogeneity of semiconductor surface
JPH08248082A (en) Potential distribution measuring method and scanning microscope
Ryoo et al. Design and fabrication of a dual-axial gyroscope with piezoelectric ceramics
JPH08153762A (en) Instrument and method for measuring contact potential difference of two-layer film
JP2791257B2 (en) Evaluation method and apparatus for ultrasonic cleaning
Jiang et al. Electric field effects on the surface tension of air/solution interfaces
RU2315265C1 (en) Micro mechanical gyroscope