JPH0455674B2 - - Google Patents

Info

Publication number
JPH0455674B2
JPH0455674B2 JP59281338A JP28133884A JPH0455674B2 JP H0455674 B2 JPH0455674 B2 JP H0455674B2 JP 59281338 A JP59281338 A JP 59281338A JP 28133884 A JP28133884 A JP 28133884A JP H0455674 B2 JPH0455674 B2 JP H0455674B2
Authority
JP
Japan
Prior art keywords
group
cells
hydantoin
microbial cells
carbamyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59281338A
Other languages
Japanese (ja)
Other versions
JPS61152291A (en
Inventor
Kenzo Yokozeki
Yoshiteru Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP28133884A priority Critical patent/JPS61152291A/en
Publication of JPS61152291A publication Critical patent/JPS61152291A/en
Publication of JPH0455674B2 publication Critical patent/JPH0455674B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔発明の目的〕 産業䞊の利甚分野 本発明は埮生物の菌䜓たたは菌䜓凊理物を甚い
お、−眮換ヒダントむン類を生化孊的に加氎分
解するこずにより、−−カルバミル−α−ア
ミノ酞類を埗る方法に関し、医薬等の䞭間䜓ずし
お有甚な物質を極めお有利に補造するこずにあ
る。 埓来の技術 本発明の方法に類䌌した方法ずしお、DL䜓の
−眮換ヒダントむン類に仔牛の肝臓から採取し
た酵玠ヒドロピリミゞン・ヒドラヌれを䜜甚
させるず、䜓の−カルバミル−α−アミノ酞
類が埗られるこずが既に報告されおいる〔プツ
ブス・レタヌズFEBS LETTERS57巻、
号、192頁、1975幎。たた、本発明のように、埮
生物を利甚しお−眮換ヒダントむン類を−
−カルバミル−α−アミノ酞類に倉換させる方法
ずしおは特開昭53−91189が知られおいる。 本発明が解決しようずする問題点 本発明が解決しようずする問題点は埓来の−
−カルバミル−α−アミノ酞の補造法よりも曎
に安䟡な効率の良い補造法を開発するこずにあ
る。 〔発明の構成〕 問題点を解決するための手段 本発明者らはこの様な埓来の−−カルバミ
ル−α−アミノ酞の補造法に察しおより効率の良
い方法を芋い出すべく研究した結果、フラボバク
テリりム属、ミコプラナ属、リドビりム属、コレ
トトリクム属、コリネスポラ属、クルブラリア
属、フザリりム属、ペスタロテむア属、セプトリ
ア属、コレスロプシス属、ヘルコセラス属、バむ
゜クラミス属、キシラリア属、クラドスポリりム
属、ナりペニシリりム属、゚メリセロプシス属、
゜ルダリア属、ワヌドマむセス属に属する埮生物
が−眮換ヒダントむンを氎解しお−−カル
バミル−α−アミノ酞に倉換する胜力を有する異
を初めお芋い出し、本発明を完成するに至぀た。 即ち本発明は、−眮換ヒダントむンを−
−カルバミル−α−アミノ酞に倉換する胜力を有
する埮生物を−眮換ヒダントむンに䜜甚せしめ
お−眮換ヒダントむンを−−カルバミル−
α−アミノ酞に倉換せしめるこずを特城ずする
−−カルバミル−α−アミノ酞の補造法であ
る。 たた、光孊掻性の−カルバミル−α−アミノ
酞を亜硝酞ず反応させるず、立䜓䜍眮に倉化を䞎
えるこずなく光孊掻性のα−アミノ酞が埗られる
こずが既に知られおいる。埓぀お、本発明の方法
を組合せるこずによ぀お、䜓のα−アミノ酞類
を工業的に有利に補造できる。近幎、抗生物質等
の䞭間原料ずしお䜓のα−アミノ酞類の重芁性
が高た぀おきおいるので、そのような意味から本
発明の有甚性は極めお倧きいものである。 本発明においお䜿甚される菌䜓内酵玠は、−
眮換ヒダントむン類の䜓のみに遞択的に䜜甚し
お、それを開裂加氎分解する。加氎分解されない
䜓は反応媒䜓䞭でラセミ化されるために、反応
系には実質的に䜓が垞に䟛絊される。埓぀お、
反応の出発物質ずしおDL䜓、䜓又は䜓のい
ずれを甚いおも、生成物ずしおは、䜓の−カ
ルバミル−α−アミノ酞類を埗るこずができる。 本発明の芁点を匏で瀺すず次のようになる。 䞀般匏〔〕および〔〕の䞭で、はアルキ
ル基、アラルキル基、たたは眮換基を有するそれ
らの基を瀺す。 䞊蚘のように、本発明は䞀般匏〔〕で衚わさ
れる−眮換ヒダントむン類に、ヒダントむン環
を䞍斉的に開裂加氎分解する胜力を有する埮生物
の培逊液、菌䜓たたは菌䜓凊理物を䜜甚させるこ
ずを特城ずする䞀般匏〔〕で衚わされる−
−カルバミル−α−アミノ酞の補造法である。 䜜甚 本発明の埮生物は具䜓的には以䞋のものがあ
る。 フラボバクテリりム フカタム
Flavobacterium fucatum
AJ−2478 FERM −7053 ミコプラナ デむモルフアMycoplana
dimorpha ATCC−4279 リゟビりム メリロテむRhizobium meliloti
ATCC−4400 コレトトリクム グラミニコヌラ
Colletotriehum graminicola ATCC−11870 コリネスポラ カルデむナヌレCorynespora
cordinale ATCC−13063 グルブラリア コむシスCurvularia coicis
ATCC−42585 フザリりム ニバレFusarium nivale
ATCC−42316 ペスタロテむア ポダンスPestalotia
foedans ATCC−11817 セプトリア ノドラムSeptoria nodorum
ATCC−24425 コレスプロシス ホミニスCorethropsis
hominis AJ−6568 FERM −8024 ヘリコセラス オリれヌHelicoceras oryzae
AJ−6580 FERM −8025 バむ゜クラミス フルバByssochlamys fulva
ATCC−24474 キシラリア ポリモルフアXylaria
polymorpha IFO−30369 グラドスポリりム レゞナ゚Cladosporium
resinae IFO−6367 ナりペニシリりム アルタセりム
Eupenicillium alutaceum IFO−8943 ゚メリセロプシス ミニタEmericellopsis
minta ATCC−20422 ゜ルダリア ゚クむナSordaric equina
ATCC−24019 ワヌドマむセス オバリスWardomyes
ovalis ATCC−22329 −眮換ヒダントむンは実斜䟋にお詳述するよ
うに本発明者が入手しえお詊隓に䟛しえたものの
すべおが本発明の方法により察応する−−カ
ルバミル−α−アミノ酞に倉換されたので、いか
なるものでも本発明の方法により−−カルバ
ミル−α−アミノ酞に倉換されるこずは明らかで
ある。 以䞋は−眮換ヒダントむンの−眮換基の䟋
瀺である。  盎鎖状もしくは、分岐鎖状たたは環状の飜和
脂肪族炭化氎玠残基。 たずえば、メチル基、゚チル基、プロピル
基、む゜プロピル基、む゜ブチル基、−メチ
ルプロピル基、第玚ブチル基、シクロヘキシ
ル基、シクロベンゞル基等が䟋瀺される。  䞍飜和結合を含んだ盎鎖状、もしくは、分岐
鎖状たたは環状の脂肪族炭化氎玠残基。 たずえば、−プロペニル基、−プロピル
基、−シクロヘキセニル基、−ゞシク
ルヘキセニル基等が䟋瀺される。  たたは以䞊の眮換基を有した盎鎖状もし
くは、分岐鎖状、たたは環状の飜和及び䞍飜和
結合を有した脂肪族炭化氎玠。 ここで眮換基ずは、ヒドロキシル基、カルボ
キシル基、スルフヒドリル基、アルキルメルカ
プト基、アミノ基、アルキルアミノ基、アルコ
キシ基、カルバモむル基、グアニゞド基、りレ
むド基、スルホキシル基、ニトロ基、ハロゲン
原子、燐酞基、アシル基、アミノスルプニル
基、アリルメルカプト基、−むミダゟむル
基、−チ゚ニル基等が䟋瀺される。  芳銙族炭化氎玠基 たずえば、プニル基、ナフチル基等が䟋瀺
される。  眮換基を有した芳銙族炭化氎玠基 ここで眮換基ずしおは、アルキル基、アルケ
ニル基、脂環匏基、ヒドロキシル基、アルコキ
シ基、ハロゲン原子、ベンゞルオキシ基、ベン
ゞルオキシメチルオキシ基、メトキシメチルオ
キシ基、アシルオキシ基、アシル基、アリヌル
オキシ基、アミノスルフオニル基、トリフルオ
ロメチル基、アルキルメルカプト基、アミノ
基、アシルアミノ基、アルキルアミノ基、ニト
ロ基、カルボキシル基、カルバモむル基等が䟋
瀺される。又、これらは、あるいは以䞊の
眮換基が同䞀の芳銙族炭化氎玠基に眮換しおも
よい。  ヘテロ環匏基 たずえば、−チ゚ニル基、−チアゟヌル
基、−むミダゟヌル基、−フリル基等が䟋
瀺される。  眮換基を有したヘテロ環匏基 ここで眮換基ずは、頁に瀺したものずほが
同じである。 −眮換ヒダントむンに本発明の埮生物を䜜甚
せしめる方法は、本埮生物を−眮換ヒダントむ
ンを含む培地䞭にお培逊しながら反応せしめおも
よいし、たたこれらの埮生物の菌䜓たたは菌䜓の
凊理物を氎溶液䞭で、−眮換ヒダントむンず接
觊せしめおもよい。 本埮生物を培逊するこずにより−眮換ヒダン
トむンを−−カルバミル−α−アミノ酞に倉
換せしめる方法は培逊圓初より−眮換ヒダント
むンを含有する培地に本発明の埮生物を培逊しお
もよいし、たた培逊途䞭に−眮換ヒダントむン
を培地に添加しおもよい。 本埮生物の培逊のために甚いられる培地は−
眮換ヒダントむンを含むほかは通垞の炭玠源、窒
玠源、無機むオンを含有する通垞の培地である。
曎にビタミン、アミノ酞等の有機埮量栄逊玠を添
加するず望たしい結果が埗られる堎合が倚い。 炭玠源ずしおは、グルコヌス、シナクロヌス等
の炭氎化物、酢酞等の有機酞、アルコヌル類、そ
の他が適宜䜿甚される。窒玠源ずしおは、アンモ
ニアガス、アンモニア氎、アンモニりム塩、その
他が甚いられる。無機むオンずしおは、マグネシ
りムむオン、燐酞むオン、カリむオン、鉄むオン
その他が必芁に応じ適宜䜿甚される。 培逊は奜気的条件䞋に、PHないし、枩床25な
いし40℃の適圓な範囲に制埡し぀぀行えば望たし
い結果が埗られる。 かくしおないし10日間も培逊を行えば、−
眮換ヒダントむンは−α−アミノ酞のみに効率
よく倉換される。 䞀方、本埮生物の菌䜓たたは菌䜓の凊理物を、
氎溶液䞭にお−眮換ヒダントむンず接觊せしめ
お䜜甚せしめる堎合には、−眮換ヒダントむン
ず菌䜓たたは菌䜓の凊理物を溶解たたはけん濁し
た氎溶液をPH〜11、10ないし70℃の適圓な枩床
に調節し぀぀暫次静眮たたは撹拌すればよい。 反応の進行に䌎぀お媒䜓のPHは䜎䞋するので、
反応䞭に適時䞭和剀を添加しお至適PH保持するこ
ずが望たしい。䞭和剀ずしおは、アンモニア、苛
性゜ヌダ、苛性カリ、炭酞゜ヌダなどが適圓であ
る。 菌䜓ずしおは、菌䜓を含む培逊液をそのたた甚
いおもよい。たた、これを䞀旊培逊液より粉離し
お掗滌たたは掗滌せずに䜿甚しおもよい。菌䜓凊
理物ずしおは、機械的摩砕菌䜓、超音波にお凊理
した菌䜓、凍結也燥菌䜓、アセトン也燥菌䜓、リ
ゟチヌム等の酵玠で凊理した菌䜓、界面掻性剀、
トル゚ン等で凊理した菌䜓、菌䜓の蛋癜画分、そ
の他が適宜甚いられる。 このような菌䜓を埗る方法は前蚘の培地及び培
逊方法がそのたた採甚できる。培地には曎に本発
明の−眮換ヒダントむンを少量添加すれば、曎
に−眮換ヒダントむンを−−カルバミル−
α−アミノ酞に倉換する掻性の高い菌䜓が埗られ
る。たた培逊時間はこの堎合、埮生物が充分増殖
すればよいので、123ないし48時間皋床で培逊を
終えおもよい。 氎溶液には必芁に応じ抗酞化剀、界面掻性剀、
補酵玠、ヒドロキシルアミン等が添加されるず反
応収率が向䞊する堎合がある。 かくしおないし100時間も経過すれば、氎溶
液䞭には倚量の−−カルバミル−α−アミノ
酞が生成蓄積される。 このようにしお埗られた−−カルバミル−
α−アミノ酞を培逊液又は氎溶液より採取する方
法は、本発明の方法によれば、−−カルバミ
ル−α−アミノ酞が副生しないのでむオン亀換暹
脂を甚いる方法、等電点にお沈柱せしめる方法
等、通垞の方法が採甚できる。 生成した−−カルバミル−α−アミノ酞の
定量は、−ゞメチルアミノベンズアルデヒドを
甚いる通垞の比色法および液䜓クロマトで枬定す
る方法を甚いた。 光孊異性䜓は光孊分割カラムキラルパツク
WH ダむセル瀟補を甚いる液䜓クロマトおよ
び結晶の比旋光床を枬定する事によ぀お、、
を定めた。 実斜䟋  グルコヌス0.5dl、NH42SO40.5dl、
KH2PO40.1dl、K2HPO40.3dl、
MgSO47H2O0.05dlFeSO4・7H2O1mg
dl、MnSO4・4H2O1mgdl、酵母゚キス1.0
dl、ペプトン1.0dl、DL−−む゜プロピル
ヒダントむン0.2dlを含む培地PH7.0を
500ml容フラスコに50ml入れ120℃に50ml入れ120
℃で15分間殺菌した。これにブむペン寒倩培地で
30℃に24時間培逊したフラボバクテリりム フカ
タムAJ−2478、あるいはミコプラナ デむモル
フアATCC−4279、あるいはリゟビりム メリロ
テむATCC−4400を癜金耳接皮し、30℃で20時
間培逊した。この培逊液より菌株を遠心分離によ
り採取し、培逊液ず同量の生理食塩氎で回掗浄
し、菌䜓を集めた。この菌䜓をDL−−む゜プ
ロピルヒダントむンdlを含む0.1Mトリス
バツフアヌPH9.0終末mlにdlにな
る様に添加し16時間30℃に保持反応した。 反応液䞭に生成した−カルバミルバリンを前
述の比色法で枬定し、衚−に瀺した。たた−
カルバミルバリンを分離生成した旋光床を枬定
衚−した結果䜓である事が刀明した。
[Objective of the Invention] <Industrial Application Field> The present invention is directed to biochemically hydrolyzing 5-substituted hydantoins using microorganism cells or a processed product of microorganisms to produce D-N-carbamyl- The present invention relates to a method for obtaining α-amino acids, and the object is to produce substances useful as intermediates for pharmaceuticals and the like in a very advantageous manner. <Prior art> As a method similar to the method of the present invention, when an enzyme (hydropyrimidine hydrolase) collected from calf liver is reacted with DL-form 5-substituted hydantoin, D-form N-carbamyl-α is produced. - It has already been reported that amino acids can be obtained [FEBS LETTERS Vol. 57, 2
No. 192, 1975). Furthermore, as in the present invention, 5-substituted hydantoins can be produced using microorganisms.
JP-A-53-91189 is known as a method for converting into -carbamyl-α-amino acids. <Problems to be solved by the present invention> The problems to be solved by the present invention are different from the conventional D-
The object of the present invention is to develop a manufacturing method that is cheaper and more efficient than the method for manufacturing N-carbamyl-α-amino acids. [Structure of the Invention] <Means for Solving the Problems> The present inventors conducted research to find a more efficient method for producing D-N-carbamyl-α-amino acids than the conventional method for producing D-N-carbamyl-α-amino acids. Results: Flavobacterium, Mycoplana, Lydobium, Colletotrichum, Corynespora, Curvularia, Fusarium, Pestaloteia, Septoria, Colethropsis, Hercoceras, Bysochlamis, Xylaria, Cladosporium, Eupenicillium Genus, Emeryseropsis,
It was discovered for the first time that microorganisms belonging to the genus Sordaria and Wardmyces have the ability to hydrolyze 5-substituted hydantoin and convert it into DN-carbamyl-α-amino acid, leading to the completion of the present invention. That is, the present invention provides 5-substituted hydantoin with D-N
- A microorganism capable of converting into carbamyl-α-amino acid is allowed to act on 5-substituted hydantoin to convert 5-substituted hydantoin into D-N-carbamyl-amino acid.
D characterized in that it is converted into α-amino acid.
- A method for producing N-carbamyl-α-amino acid. Furthermore, it is already known that when an optically active N-carbamyl-α-amino acid is reacted with nitrous acid, an optically active α-amino acid can be obtained without changing the steric position. Therefore, by combining the methods of the present invention, D-amino acids can be advantageously produced industrially. In recent years, the importance of D-form α-amino acids as intermediate raw materials for antibiotics and the like has been increasing, and in this sense, the usefulness of the present invention is extremely large. The intracellular enzyme used in the present invention is 5-
It selectively acts only on the D-form of substituted hydantoins to cleave and hydrolyze it. Since the unhydrolyzed L form is racemized in the reaction medium, the D form is substantially always supplied to the reaction system. Therefore,
Regardless of whether DL, L, or D is used as a starting material for the reaction, D-form N-carbamyl-α-amino acids can be obtained as a product. The main points of the present invention can be expressed as follows. (In the general formulas [] and [], R represents an alkyl group, an aralkyl group, or a group thereof having a substituent.) As described above, the present invention relates to the 5-substituted D-N represented by the general formula [], which is characterized in that hydantoins are treated with a culture solution, bacterial cells, or treated bacterial cells of a microorganism that has the ability to asymmetrically cleave and hydrolyze hydantoin rings.
- A method for producing carbamyl-α-amino acid. <Function> Specifically, the microorganisms of the present invention include the following. Flavobacterium fucatum
AJ-2478 FERM P-7053 Mycoplana Deimorpha
dimorpha) ATCC−4279 Rhizobium meliloti
ATCC-4400 Colletotrichum graminicola ATCC-11870 Corynespora
cordinale) ATCC−13063 Curvularia coicis
ATCC−42585 Fusarium nivale
ATCC−42316 Pestalotia hoedance (Pestalotia
septoria nodorum) ATCC−11817 Septoria nodorum
ATCC−24425 Corethropsis hominis
hominis) AJ-6568 FERM P-8024 Helicoceras oryzae
AJ−6580 FERM P−8025 Byssochlamys fulva
ATCC−24474 Xylaria polymorpha (Xylaria
IFO−30369 Cladosporium reginae
resinae) IFO−6367 Eupenicillium alutaceum IFO−8943 Emericellopsis minita
minta) ATCC−20422 Sordaria equina
ATCC−24019 Wardmys Obalis
ovalis) ATCC-22329 As detailed in the Examples, all of the 5-substituted hydantoins that the inventors were able to obtain and test were converted to the corresponding D-N-carbamyl-α-amino acids by the method of the present invention. It is clear that anything can be converted to a DN-carbamyl-α-amino acid by the method of the present invention. The following are examples of 5-substituents of 5-substituted hydantoins. 1 Straight chain, branched chain or cyclic saturated aliphatic hydrocarbon residue. Examples include methyl group, ethyl group, propyl group, isopropyl group, isobutyl group, 1-methylpropyl group, tertiary butyl group, cyclohexyl group, and cyclobenzyl group. 2 A linear, branched or cyclic aliphatic hydrocarbon residue containing an unsaturated bond. For example, 2-propenyl group, 2-propyl group, 1-cyclohexenyl group, 1,4-dicylhexenyl group, etc. are exemplified. 3 A linear, branched, or cyclic aliphatic hydrocarbon having saturated and unsaturated bonds with one or more substituents. Here, the substituents include hydroxyl group, carboxyl group, sulfhydryl group, alkylmercapto group, amino group, alkylamino group, alkoxy group, carbamoyl group, guanidide group, ureido group, sulfoxyl group, nitro group, halogen atom, and phosphoric acid group. , an acyl group, an aminosulfenyl group, an allylmercapto group, a 4-imidazoyl group, a 2-thienyl group, and the like. 4 Aromatic hydrocarbon group Examples include phenyl group and naphthyl group. 5 Aromatic hydrocarbon group having a substituent Here, the substituent includes an alkyl group, an alkenyl group, an alicyclic group, a hydroxyl group, an alkoxy group, a halogen atom, a benzyloxy group, a benzyloxymethyloxy group, and a methoxymethyl group. Examples include oxy group, acyloxy group, acyl group, aryloxy group, aminosulfonyl group, trifluoromethyl group, alkylmercapto group, amino group, acylamino group, alkylamino group, nitro group, carboxyl group, carbamoyl group, etc. Ru. In addition, one or more of these substituents may be substituted with the same aromatic hydrocarbon group. 6 Heterocyclic group Examples include 2-thienyl group, 5-thiazole group, 4-imidazole group, and 2-furyl group. 7 Heterocyclic group having a substituent The substituent herein is almost the same as shown on page 5. The method of causing the microorganism of the present invention to act on 5-substituted hydantoin may be carried out by culturing the microorganism in a medium containing 5-substituted hydantoin, or by treating the cells or cells of these microorganisms. The product may be contacted with the 5-substituted hydantoin in an aqueous solution. The method for converting 5-substituted hydantoin into DN-carbamyl-α-amino acid by culturing the present microorganism may involve culturing the present microorganism in a medium containing 5-substituted hydantoin from the beginning of the culture, or Furthermore, 5-substituted hydantoin may be added to the medium during the culture. The medium used for culturing this microorganism is 5-
It is a conventional medium containing a conventional carbon source, nitrogen source, and inorganic ions except for the substituted hydantoin.
Additionally, desirable results can often be obtained by adding organic micronutrients such as vitamins and amino acids. As the carbon source, carbohydrates such as glucose and sucrose, organic acids such as acetic acid, alcohols, and others are used as appropriate. As the nitrogen source, ammonia gas, aqueous ammonia, ammonium salt, and others are used. As the inorganic ions, magnesium ions, phosphate ions, potassium ions, iron ions, and others are used as appropriate. Desired results can be obtained if the culture is carried out under aerobic conditions, with pH 4 and temperature controlled within an appropriate range of 25 to 40°C. Thus, if the culture is carried out for 1 to 10 days, 5-
Substituted hydantoins are efficiently converted to only D-α-amino acids. On the other hand, the cells of this microorganism or the processed material of the cells,
When the 5-substituted hydantoin is brought into contact with the aqueous solution, an aqueous solution prepared by dissolving or suspending the 5-substituted hydantoin and bacterial cells or a processed product of the bacterial cells is prepared at a pH of 6 to 11 and an appropriate temperature of 10 to 70°C. What is necessary is to temporarily leave it still or stir it while adjusting the temperature. As the reaction progresses, the pH of the medium decreases, so
It is desirable to maintain the optimum pH by adding a neutralizing agent at appropriate times during the reaction. Suitable neutralizing agents include ammonia, caustic soda, caustic potash, and soda carbonate. As the bacterial cells, a culture solution containing the bacterial cells may be used as is. Alternatively, the powder may be separated from the culture medium and washed or used without washing. Examples of bacterial cell treatments include mechanically ground bacterial cells, ultrasonic-treated bacterial cells, freeze-dried bacterial cells, acetone-dried bacterial cells, bacterial cells treated with enzymes such as lysozyme, surfactants,
Bacterial cells treated with toluene or the like, protein fractions of microbial cells, and others are used as appropriate. As a method for obtaining such bacterial cells, the above-described culture medium and culture method can be used as they are. If a small amount of the 5-substituted hydantoin of the present invention is further added to the medium, the 5-substituted hydantoin can be further converted into D-N-carbamyl-
Bacterial cells with high activity of converting into α-amino acids can be obtained. In this case, the culture may be completed in about 123 to 48 hours, as long as the microorganisms sufficiently proliferate. Antioxidants, surfactants, etc. are added to the aqueous solution as necessary.
Addition of coenzyme, hydroxylamine, etc. may improve the reaction yield. Thus, after 5 to 100 hours have elapsed, a large amount of DN-carbamyl-α-amino acid is produced and accumulated in the aqueous solution. DN-carbamyl thus obtained
According to the method of the present invention, α-amino acid is collected from a culture solution or an aqueous solution, and L-N-carbamyl-α-amino acid is not produced as a by-product. Ordinary methods can be used. The produced DN-carbamyl-α-amino acid was quantified using a conventional colorimetric method using p-dimethylaminobenzaldehyde and a method using liquid chromatography. Optical isomers are determined using an optical separation column (chiral pack).
By measuring the specific rotation of the crystal and liquid chromatography using WH...manufactured by Daicel, D, L
has been established. Example 1 Glucose 0.5g/dl, (NH 4 ) 2 SO 4 0.5g/dl,
KH 2 PO 4 0.1g/dl, K 2 HPO 4 0.3g/dl,
MgSO 4 7H 2 O0.05g/dl. FeSO4・7H2O1mg /
dl, MnSO 4・4H 2 O1mg/dl, yeast extract 1.0g/
dl, peptone 1.0 g/dl, and a medium (PH7.0) containing DL-5-isopropylhydantoin 0.2 g/dl.
Pour 50ml into a 500ml flask and heat to 120°C.120
Sterilize for 15 minutes at °C. Add to this a bouillon agar medium.
One platinum loop of Flavobacterium fucatum AJ-2478, Mycoplana deimorpha ATCC-4279, or Rhizobium melilotei ATCC-4400, which had been cultured at 30°C for 24 hours, was inoculated and cultured at 30°C for 20 hours. Bacterial strains were collected from this culture solution by centrifugation, washed once with physiological saline in the same amount as the culture solution, and the bacterial cells were collected. This bacterial cell was added to 0.1 M Tris buffer (PH 9.0) (final volume: 5 ml) containing 2 g/dl of DL-5-isopropylhydantoin at a concentration of 5 g/dl, and the reaction was maintained at 30°C for 16 hours. N-carbamylvaline produced in the reaction solution was measured by the colorimetric method described above, and is shown in Table 1. Also N-
As a result of measuring the optical rotation of the separated carbamylvaline (Table 1), it was found that it was in the D form.

【衚】 実斜䟋  シナヌクロヌス0.1dl、ペプトン1.0
dl、酵母゚キス0.5dl、マルツ゚キス0.5
dl、KH2PO40.2dl、NaCl0.3dl、DL−
−メチルメルカプト゚チルヒダントむン0.2
dlを含む培地PH7.0を300ml容䞉角フラス
コに150ml入れ、120℃で15分間殺菌した。これ
に、酵母゚キス0.3dl、マルツ゚キス0.3
dl、ペプトン0.5dl、グルコヌス1.0dlを
含む寒倩スラント培地PH6.0で26℃、日間
培逊した衚−に瀺した菌株をこの培逊液より菌
䜓を過により採取し培逊液ず同量の生理食塩氎
で回掗浄し菌䜓を調補した。この菌䜓をDL−
−メチルメルカプト゚チルヒダントむン
dlを含む0.1MトリスバツフアヌPH9.0終末
mlにdlになる様添加し、16時間30℃に
保持反応した。反応液䞭に生成した−カルバミ
ルメチオニンを前述の比色法で枬定し、衚−に
瀺した。たた生成−カルバミルメチオニンを光
孊分割カラムを甚いた高速液䜓クロマトで調べた
結果、どの菌株を甚いた堎合でも党お䜓である
事が刀明した。
[Table] Example 2 Seuculose 0.1g/dl, peptone 1.0g/
dl, yeast extract 0.5g/dl, malt extract 0.5g/
dl, KH 2 PO 4 0.2g/dl, NaCl0.3g/dl, DL−
5-Methylmercaptoethylhydantoin 0.2
150 ml of a medium (PH7.0) containing g/dl was placed in a 300 ml Erlenmeyer flask and sterilized at 120°C for 15 minutes. In addition to this, yeast extract 0.3g/dl, malt extract 0.3g/dl
The strains shown in Table 2 were cultured in an agar slant medium (PH 6.0) containing 0.5 g/dl, peptone, 0.5 g/dl, and glucose 1.0 g/dl at 26°C for 5 days. Bacterial cells were prepared by washing once with physiological saline in the same amount as the culture solution. DL-
5-methylmercaptoethylhydantoin 1g/
The mixture was added to 0.1 M Tris buffer (PH9.0) (5 ml final) containing dl at a concentration of 5 g/dl, and the reaction was maintained at 30°C for 16 hours. N-carbamylmethionine produced in the reaction solution was measured by the colorimetric method described above and is shown in Table 2. Furthermore, as a result of examining the produced N-carbamylmethionine by high-performance liquid chromatography using an optical resolution column, it was found that all N-carbamylmethionine was in the D-form no matter which strain was used.

【衚】【table】

【衚】【table】

【衚】 実斜䟋  ミコプラナ デむモルフアATCC4279を実斜䟋
ず同様に培逊し、実斜䟋ず同様に菌䜓を調敎
した。この菌䜓を衚−に瀺す−眮換ヒダント
むンdlを含む0.1MトリスバツフアヌPH
9.0にdlになる様に添加し、16時間30℃
に保持反応した。その時に生成した−カルバミ
ルアミノ酞を前述の方法で定量し、結果を衚−
に瀺した。たた光孊分割カラムによる光孊掻性枬
定により生成−カルバミルアミノ酞は党お䜓
である事が刀明した。
[Table] Example 3 Mycoplana deimorpha ATCC4279 was cultured in the same manner as in Example 1, and bacterial cells were prepared in the same manner as in Example 1. The cells were injected into 0.1M Tris buffer (PH) containing 3g/dl of 5-substituted hydantoin shown in Table 3.
9.0) at 5g/dl and kept at 30℃ for 16 hours.
Retention reaction occurred. The N-carbamyl amino acid produced at that time was quantified using the method described above, and the results are shown in Table 3.
It was shown to. Furthermore, optical activity measurement using an optical resolution column revealed that all of the produced N-carbamyl amino acids were in the D form.

【衚】【table】

【衚】 実斜䟋  グルコヌス2.0dl、NH42SO40.5dl、
KH2PO40.1dl、K2HPO40.3dl、
MgSO47H2O0.05dl、FeSO47H2O1mgdl、
MnSO4H2O1mgdl、酵母゚キス1.0dl、ペ
プトン1.0dl、DL−−む゜プロピルヒダン
トむン0.2dl、CaCO32dl別殺を含む
培地PH7.0を500ml容フラスコに50ml入れ120
℃で15分間殺菌した。これにブむペン寒倩培地で
培逊したリゟビりム メリロテむ ATCC−4400
を癜金耳接皮し、30℃で培逊した。培逊16時間
后に50dlのDL−−む゜プロピルヒダント
むンを無菌的に培逊液にml添加し曎に24時間培
逊を続けた。この培逊終了液䞭の生成−−カ
ルバミルバリンを枬定したずころ1.29dlであ
぀た。 実斜䟋  実斜䟋ず同様に調敎したフラボバクテリりム
フカタム AJ−2478、ミコプラナ デむモルフ
アATCC−4279、リゟビりム メリロテむ
ATCC−4400の菌䜓を脱むオン氎mlに加え
お懞濁し、氷冷したのちアクリルアミド750mgず
メチレンビスアクリルアミド45mlを加えお溶解さ
せ、窒玠ガスを通じお酞玠を远い出した埌、過流
酞アンモニりム3.5mgおよびN′−ゞメチルア
ミノプロピオニトリル8Όを加えお氷冷䞋に静
眮した時間埌、生成した菌䜓含有ゲルを50メツ
シナの金網で裏ごしし、生理食塩氎で掗浄し、ゲ
ル固定化物を調敎した。これらの固定化物を
DL−−−ヒドロキシプニルヒダントむ
ンdlを含む0.1Mリン酞緩衝液PH8.0
mlに添加し、30℃、24時間反応させた。この反応
液を枬定したずころフラボバクテリりム フカタ
ムAJ−2478の堎合には0.59dl、ミコプラナ
デむモルフアATCC−4279の堎合には0.49
dl、リゟビりム メリロテむ ATCC−4400の堎
合には0.44dlの−−カルバミル−−ハ
むドロキシプニルグリシンが生成しおいた。
[Table] Example 4 Glucose 2.0g/dl, (NH 4 ) 2 SO 4 0.5g/dl,
KH 2 PO 4 0.1g/dl, K 2 HPO 4 0.3g/dl,
MgSO 4 7H 2 O0.05g/dl, FeSO 4 7H 2 O1mg/dl,
A medium (PH7.0) containing 1 mg/dl of MnSO 4 H 2 O, 1.0 g/dl of yeast extract, 1.0 g/dl of peptone, 0.2 g/dl of DL-5-isopropylhydantoin, and 2 g/dl of CaCO 3 (separately) was used. Pour 50ml into a 500ml flask 120
Sterilize for 15 minutes at °C. Rhizobium melilotei ATCC-4400 cultured on bouillon agar medium
One platinum loop of was inoculated and cultured at 30°C. After 16 hours of culture, 2 ml of 50 g/dl DL-5-isopropylhydantoin was added aseptically to the culture solution, and culture was continued for an additional 24 hours. The amount of produced DN-carbamylvaline in the culture solution was measured and found to be 1.29 g/dl. Example 5 Flavobacterium fucatum AJ-2478, Mycoplana deimorpha ATCC-4279, Rhizobium melilotei prepared in the same manner as in Example 1
Add 1 g of ATCC-4400 bacterial cells to 4 ml of deionized water, suspend, cool on ice, add 750 mg of acrylamide and 45 ml of methylenebisacrylamide to dissolve, and after expelling oxygen through nitrogen gas, 3.5 mg of ammonium persulfate. After 1 hour of adding 8Ό of N,N'-dimethylaminopropionitrile and letting it stand under ice-cooling, the gel containing the bacterial cells was strained through a 50-mesh wire mesh, washed with physiological saline, and the gel was fixed. The compound was adjusted. 2g of these immobilized substances
0.1M phosphate buffer (PH8.0) containing DL-5-(p-hydroxyphenyl)hydantoin 1g/dl 5
ml and reacted at 30°C for 24 hours. When this reaction solution was measured, it was 0.59 g/dl for Flavobacterium fucatum AJ-2478 and 0.49 g/dl for Mycoplanadeimorpha ATCC-4279.
In the case of Rhizobium melilotei ATCC-4400, 0.44 g/dl of DN-carbamyl-P-hydroxyphenylglycine was produced.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、はアルキル基、アラルキル基たたは眮
換基を有するそれらの基を瀺す。で衚わされる
−眮換ヒダントむン類に、ヒダントむン環を䞍
斉的に開裂加氎分解する胜力を有するフラボバク
テリりム属、ミコプラナ属、リゟビりム属、コレ
トトリクム属、コリネスポラ属、クルブラリア
属、フザリりム属、ペスタロテむア属、セプトリ
ア属、コレスロプシス属、ヘリコセラス属、バむ
゜クラミス属、キシラリア属、クラドスポリりム
属、ナりペニシリりム属、゚メリセロプシス属、
゜ルダリア属、ワヌドマむセス属に属する埮生物
の菌䜓たたは菌䜓凊理物を、PH〜11の氎性媒䜓
䞭で䜜甚させるこずを特城ずする、䞀般匏 匏䞭、は前蚘の匏ず同じ。で衚わされる
−−カルバミル−α−アミノ酞類の補造法。  埮生物の菌䜓ずしお、生菌䜓たたは也燥菌䜓
を䜿甚する特蚱請求の範囲第項蚘茉の補造法。  埮生物の菌䜓凊理物ずしお、菌䜓磚砕物たた
は菌䜓抜出物を䜿甚する特蚱請求の範囲第項蚘
茉の補造法。  埮生物の菌䜓たたは菌䜓凊理物を䜿甚する圢
態ずしお、菌䜓たたは菌䜓凊理物の固定化物を甚
いる特蚱請求の範囲第項、第項たたは第項
蚘茉の補造法。  培地にヒダントむン類を添加しお培逊し、ヒ
ダントむン環を䞍斉的に開裂加氎分解する胜力を
増匷させた埮生物を䜿甚する特蚱請求の範囲第
項、第項、第項たたは第項蚘茉の補造法。  −眮換ヒダントむン類がDL䜓である特蚱
請求の範囲第項蚘茉の補造法。  −眮換ヒダントむン類が䜓又は䜓であ
る特蚱請求の範囲第項蚘茉の補造法。
[Claims] 1. General formula (In the formula, R represents an alkyl group, an aralkyl group, or a group thereof having a substituent.) Flavobacterium which has the ability to asymmetrically cleave and hydrolyze the hydantoin ring is added to the 5-substituted hydantoin represented by Genus, Mycoplana, Rhizobium, Colletotrichum, Corynespora, Curvularia, Fusarium, Pestaloteia, Septoria, Colethropsis, Helicoceras, Bysochlamys, Xylaria, Cladosporium, Eupenicillium, Emeryceropsis,
A general formula characterized by allowing bacterial cells or treated bacterial cells of microorganisms belonging to the genus Sordaria and Wardmyces to act in an aqueous medium with a pH of 6 to 11. (In the formula, R is the same as the above formula.) D
-Method for producing N-carbamyl-α-amino acids. 2. The production method according to claim 1, wherein live or dried microbial cells are used as the microbial cells. 3. The production method according to claim 1, wherein a microbial cell grind or a microbial cell extract is used as the microbial cell-treated product. 4. The production method according to claim 1, 2, or 3, which uses immobilized microbial cells or processed microbial cells as a form of using microbial cells or processed microbial cells. 5. Claim 1, which uses a microorganism that is cultured by adding hydantoins to a medium and has an enhanced ability to asymmetrically cleave and hydrolyze hydantoin rings.
The manufacturing method according to item 2, item 3, or item 4. 6. The production method according to claim 1, wherein the 5-substituted hydantoin is a DL form. 7. The manufacturing method according to claim 1, wherein the 5-substituted hydantoin is in L-form or D-form.
JP28133884A 1984-12-27 1984-12-27 Production of d-n-carbamyl-alpha-aminoacid Granted JPS61152291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28133884A JPS61152291A (en) 1984-12-27 1984-12-27 Production of d-n-carbamyl-alpha-aminoacid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28133884A JPS61152291A (en) 1984-12-27 1984-12-27 Production of d-n-carbamyl-alpha-aminoacid

Publications (2)

Publication Number Publication Date
JPS61152291A JPS61152291A (en) 1986-07-10
JPH0455674B2 true JPH0455674B2 (en) 1992-09-04

Family

ID=17637711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28133884A Granted JPS61152291A (en) 1984-12-27 1984-12-27 Production of d-n-carbamyl-alpha-aminoacid

Country Status (1)

Country Link
JP (1) JPS61152291A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726115A (en) * 1980-07-23 1982-02-12 Nippon Steel Corp Method for preventing clogging of nozzle for charging additive to molten iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726115A (en) * 1980-07-23 1982-02-12 Nippon Steel Corp Method for preventing clogging of nozzle for charging additive to molten iron

Also Published As

Publication number Publication date
JPS61152291A (en) 1986-07-10

Similar Documents

Publication Publication Date Title
EP0610048A2 (en) Process for producing optically active alpha-hydrocarboxylic acid having phenyl group
EP0610049A2 (en) Process for producing optically active alpha-hydroxycarboxylic acid having phenyl group
US4211840A (en) Method for producing D-α-amino acid
US5219731A (en) Method for preparing optically-active amino acid derivatives
FR2586702A1 (en) PROCESS FOR THE PRODUCTION OF L-AMINO ACIDS
US4242452A (en) Process for preparing N-carbamoyl-D-thienylglycines
JPH0455674B2 (en)
JP4300289B2 (en) Hydrolysis or dehydration condensing enzyme, method for producing the enzyme, and method for synthesizing amide using the enzyme
JP2640958B2 (en) Hydroxamic acid hydrolase
JP2679031B2 (en) Amino acid production method and amino acid-producing bacterium
JP2674076B2 (en) Method for producing D-α-amino acid
JPH0644870B2 (en) Method for producing D-α-amino acid
JP2674078B2 (en) Process for producing D-α-amino acid
JPH0574353B2 (en)
US5212069A (en) Method of using N-acetyl-2,3-Didehydroleucine acylase for the preparation of D- or L-tryptophyl glycine, D- or L-tryptophyl-D-methionine or L-tryptophyl-D-cysteine
JPS6319158B2 (en)
KR970004014B1 (en) Enhanced preparing method of l-tryptophan by tryptophanase using glycerol
JPH01181797A (en) Production of d-threo-3-(3,4-dihydroxyphenyl)serine derivative
JPS60184392A (en) Preparation of d-alpha-amino acid
JPS63157990A (en) Production of l-alpha-methylphenylalanines
JPH01225482A (en) Aminopeptidase and its use
JPS62296895A (en) Production of l-isoleucine from d, l-alpha-hydroxybutyrate and variant of corynebacterium glutamicum
JPH0525476B2 (en)
FR2763599A1 (en) L-aspartic acid preparation
JPS61242585A (en) Production of gamma-halogenated-beta-hydroxybutyric acid