JPH0455603B2 - - Google Patents

Info

Publication number
JPH0455603B2
JPH0455603B2 JP60242406A JP24240685A JPH0455603B2 JP H0455603 B2 JPH0455603 B2 JP H0455603B2 JP 60242406 A JP60242406 A JP 60242406A JP 24240685 A JP24240685 A JP 24240685A JP H0455603 B2 JPH0455603 B2 JP H0455603B2
Authority
JP
Japan
Prior art keywords
mol
reaction
hours
parts
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60242406A
Other languages
Japanese (ja)
Other versions
JPS62101621A (en
Inventor
Yoshimitsu Fukuyama
Toshio Takagishi
Shigeru Ura
Haruo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP24240685A priority Critical patent/JPS62101621A/en
Priority to DE8686308345T priority patent/DE3686547T2/en
Priority to EP86308345A priority patent/EP0220960B1/en
Priority to CA000521520A priority patent/CA1278898C/en
Priority to FI864343A priority patent/FI92596C/en
Priority to AU64470/86A priority patent/AU591526B2/en
Publication of JPS62101621A publication Critical patent/JPS62101621A/en
Priority to US07/586,339 priority patent/US5034501A/en
Priority to US07/700,944 priority patent/US5114758A/en
Priority to US07/748,723 priority patent/US5158611A/en
Publication of JPH0455603B2 publication Critical patent/JPH0455603B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は紙塗工用などに有用な新規な熱硬化性
樹脂の製造法に関するものである。 <従来の技術> 従来より顔料、接着剤、分散剤およびその他の
助剤からなる種々の紙用塗工組成物に対して耐水
性を付与する目的で、あるいはインキ受理性を向
上させる目的で、メラミン−ホルムアルデヒド樹
脂、尿素−ホルムアルデヒド樹脂もしくはポリア
ミド−尿素−ホルムアルデヒド樹脂などのホルム
アルデヒド系樹脂を使用することは公知である
(例えば、特公昭44−11667、特公昭59−32597)。 <発明が解決しようとしている問題点> しかしながら、前者のホルムアルデヒド系樹脂
にあつては塗工紙から有害なホルムアルデヒドが
発生するし、後者樹脂にあつては有害成分の発生
は、少ないものの、近年、塗工紙のインキ受理
性、耐水性等の品質に対する要求の高度化に伴
い、それらの要求に対処しきれなくなつている。
従つて本発明は従来にない優れた耐水性、インキ
受理性を発現する紙塗工用樹脂として有用な熱硬
化性樹脂の製造法を提供するものである。 <問題点を解決するための手段> 本発明者らは特に耐水効果ならびにインキ受理
性にすぐれ、しかも塗工紙よりホルムアルデヒド
などの悪臭の発生の少ない紙塗工用樹脂を得るべ
く鋭意検討した結果、本発明を完成させるに至つ
た。 すなわち本発明は、 (a) ポリアルキレンンポリアミン、 (b) (イ) 脂環式二塩基性カルボン酸および/また
は (ロ) 脂環式二塩基性カルボン酸とグリコール類
との反応で得られる遊離カルボキシル基を有
する反応生成物、 (c) 尿素類、および (d) ホルムアルデヒド を反応せしめることを特徴とする紙塗工用樹脂と
して有用な熱硬化性樹脂の製造方法を提供するも
のである。 本発明において使用される成分(a)のポリアルキ
レンポリアミンとは、分子中に2個の一級アミノ
基および少なくとも1個の二級アミノ基を有する
化合物であり、例えばジエチレントリアミン、ト
リエチレンテトラミン、テトラエチレンペンタミ
ン、イミノビスプロピルアミン、3−アザヘキサ
ン、1,6−ジアミン、4,7−ジアザデカン−
1,10−ジアミン等が挙げられる。これらポリア
ルキレンポリアミンは一種のみならず二種以上の
混合物としても用いることができる。また、エチ
レンジアミン、プロピレンジアミン等の脂肪族ジ
アミンを本発明の目的を阻害しない範囲で、上記
ポリアルキレンポリアミンと併用することを何ら
妨げるものではない。 本発明に使用される成分(b)(イ)の脂環式二塩基性
カルボン酸とは、分子中に2個のカルボキシル基
を有する化合物、あるいはそれらのエステル類、
さらにはそれらの酸無水物も包含して総称するも
のであつて、かかる脂環式二塩基性カルボン酸の
代表的なものには次の様なものがある。 テトラハイドロフタル酸、ヘキサハイドロフタ
ル酸、シクロヘキサン−1,4−ジカルボン酸、
4−メチルテトラハイドロフタル酸等のカルボン
酸、およびこれらのエステル類、テトラハイドロ
無水フタル酸、ヘキサハイドロ無水フタル酸、4
−メチルテトラハイドロ無水フタル酸、4−メチ
ルヘキサハイドロ無水フタル酸、4−テトラハイ
ドロ無水フタル酸、4−メチル−△4−テトラハ
イドロ無水フタル酸等の酸無水物である。 これらは一種類のみでも、二種類以上の併用で
もよい。 また本発明で使用されるグリコール類として
は、エチレングリコール、プロピレングリコー
ル、ブタンジオール等のアルキレングリコール
類、シクロペンタンジオール、シクロヘキサンジ
オール等のシクロアルキレングリコール類、ブテ
ンジオール、オクテンジオール等のアルケニレン
グリコール類、ジエチレングリコール、ジプロピ
レングリコール、トリエチレングリコール、ポリ
エチレングリコール、ポリテトラメチレングリコ
ール等のポリアルキレングリコール類、ビスフエ
ノールAのエチレンオキシド付加物、水素化ビス
フエノールAのエチレンオキシド付加物等を例示
することができる。 更に、成分(b)(ロ)の脂環式二塩基性カルボン酸と
グリコール類との反応で得られる遊離カルボキシ
リル基を有する反応生成物としては、前記脂環式
二塩基性カルボン酸と前記グリコール類とを、カ
ルボン酸過剰モル比で反応させて得られる分子末
端にカルボキシル基を有するポリエステルであ
る。この脂環式二塩基性カルボン酸とグリコール
類との反応は、通常触媒の存在下又は不存在下に
80〜200℃で30分〜2時間加熱することにより行
われる。 さらにこれらの脂環式二塩基性カルボン酸とと
もに、本発明の効果を阻害しない範囲で他の二塩
基性カルボン酸、例えばアジピン酸、グルタル酸
等の脂肪族ジカルボン酸あるいはテレフタル酸、
フタル酸等の芳香族ジカルボン酸を併用して使用
してもよい。 又、(c)尿素類とは、尿素、チオ尿素、グアニル
尿素、メチル尿素、ジメチル尿素等を挙げること
ができるが工業的見地から尿素が好ましい。 本発明の方法によつて得られる水溶性熱硬化性
樹脂は、水溶液の状態で得られ、通常50重量%樹
脂固形分濃度水溶液の25℃における粘度が、5な
いし1000センチポイズ(以下cpと略す)のもの
であり、該粘度の極めて低いものは、紙用塗工組
成物としての樹脂の添加効果が低い傾向にあり、
また粘度の高いものは、調整した紙用塗工組成物
の粘度が高くなり一般的に好ましくない欠点を伴
うこともあるので、実用的には10ないし500cp、
特に好ましくは20〜200cpの該粘度範囲のものが
好んで用いられる。 次に各成分(a)、(b)、(c)及び(d)の反応方法につい
て述べる。本発明の樹脂は例えば成分(a)、(b)及び
(c)の反応生成物に(d)を反応させることにより製造
することができる。この成分(a)、(b)及び(c)の反応
は、任意の順序で反応させることができる。 まず第一に、成分(a)と(b)を反応させ、次に成分
(c)を反応させることができる。成分(a)と(b)の反応
は、温度120〜250℃、好ましくは180〜200℃で、
生成する水を系外に除去しながら2〜12時間行な
う。成分(a)のポリアルキレンポリアミン1モルに
対し、成分(b)中のカルボキシル基が0.4〜4当量、
好ましくは0.8〜8当量の比率で反応を行なう。
このようにして得られた脱水縮合反応生成物と、
成分(c)の尿素類との反応は、温度100〜180℃、好
ましくは、110〜160℃で、発生するアンモニアを
系外に除去しながら1〜6時間行なう。成分(c)の
使用量は、成分(a)中のアミノ基すなわち一級及び
二級アミノ基1当量に対し、1当量以下、好まし
くは、0.1〜0.8当量である。 別の方法として、まず成分(a)と(c)を反応させ、
次いで成分(b)を反応させ、更に成分(c)を反応させ
ることができる。成分(a)1モルに対し、成分(c)を
0.2〜1モル、好ましくは、0.3〜0.8モル使用し、
温度100〜180℃、好ましくは、110〜160℃で、1
〜6時間脱アンモニア反応を行なう。このように
して得られた反応生成物と成分(b)との反応は、温
度120〜250℃、好ましくは、180〜200℃で、生成
する水を系外に除去しながら、2〜12時間行な
う。成分(b)は、成分(a)1モルに対し、0.2〜2当
量、好ましくは、0.3〜1.8当量の範囲で用いられ
る。このようにして得られた成分(a),(b),(c)の反
応生成物に、更に再度成分(c)を反応させる工程
は、温度100〜180℃、好ましくは、110〜160℃で
1〜6時間行なわれる。成分(c)の使用量は、成分
(a)中の二級アミノ基1当量に対し、2当量以下、
好ましくは、0.1〜1.5当量の範囲である。 更に別の方法として、成分(a),(b),(c)を同時に
反応させ、得られた反応生成物に更に成分(c)を反
応させることもできる。最初の成分(a),(b),(c)の
反応は、温度100〜200℃、好ましくは、110〜180
℃で、発生するアンモニア及び水を系外に除去し
つつ2〜12時間行なわれる。この工程での各成分
の使用比率は、成分(a)1モルに対し、成分(b)のカ
ルボキシル基0.2〜2当量、好ましくは、0.8〜1.8
当量、成分(c)0.2〜1モル、好ましくは、0.3〜0.8
モルが適当である。このようにして得られた反応
生成物に更に成分(c)を反応させる工程は、温度
100〜180℃、好ましくは、110〜160℃で1〜6時
間行なわせる。成分(c)の使用量は、成分(a)の二級
アミノ基1当量に対し、2当量以下、好ましく
は、0.1〜1.5当量が適当である。 以上のような種々の方法で得られた成分(a),
(b),(c)の反応生成物は、いずれも水に溶解させた
後、ホルムアルデヒドと反応せしめる。反応は、
濃度20〜80重量%、好ましくは、30〜70重量%の
水溶液中で、PH7以下、好ましくはPH3.5〜6.5と
なるように酸、例えば塩酸、硫酸、りん酸、ギ
酸、酢酸等により調整した後、反応温度40〜80℃
で1〜10時間行なわれる。この反応は、上記の如
く酸性下で行なうが、あらかじめ反応液のPHが8
〜12といつたアルカリ性下で反応を行ない、つい
でPHを7以下、好ましくはPH3.5〜6.5に調整して
更に反応を続けることによつても本発明の目的物
を得ることができる。この場合アルカリ性下の反
応は、温度40〜80℃で0.5〜3時間、酸性下での
反応は温度40〜80℃で1〜10時間行なわれる。ホ
ルムアルデヒドの量は成分(c)1モルに対し、0.1
〜1.0モル、好ましくは0.2〜0.7モルが適当であ
る。反応終了後、必要ならば、苛性ソーダ、苛性
カリ等によりPHを6〜9に調整することにより本
発明の目的物を得る。 以上に詳説されたように、本発明の方法は、 (a) ポリアルキレンポリアミン (b) (イ)脂環式二塩基性カルボン酸および/又は (ロ) 脂環式二塩基性カルボン酸とグリコール類
との反応で得られる遊離カルボキシル基を有
する反応生成物 (c) 尿素類 (d) ホルムアルデヒド を反応せしめることにより達成せられ、得られる
熱硬化性樹脂を紙塗工用組樹脂として用いた場合
はすぐれたインキ受理性、耐水性を有し極めて有
用なものである。本発明の特徴は、二塩基性カル
ボン酸として、特定の二塩基性カルボン酸すなわ
ち脂環式の二塩基性カルボン酸を使用するところ
にあり、従来使用されていた脂肪族あるいは芳香
族二塩基性カルボン酸から得られる紙塗工用樹脂
に比し、本発明により得られる樹脂は飛躍的な性
能の向上が認められる。 次に本発明を実施例及び比較例により具体的に
説明する。以下において部及び%は、特に断わり
のない限りすべて重量基準を示すものである。 実施例 1 温度計、還流冷却器および撹拌棒を備えた四ツ
口フラスコにトリエチレンテトラミン58.5部
(0.4モル)と尿素12.0部(0.2モル)を仕込み内温
120〜140℃にて3時間加熱し脱アンモニア反応を
行つた。その後ヘキサハイドロフタル酸34.4部
(0.2モル)を仕込み内温を150〜160℃にて5時
間、脱水アミド化反応を行つた。その後内温を
130℃に冷却し、尿素48.0部(0.8モル)を仕込み
温度120℃〜130℃で2時間脱アンモニア反応を行
つた。その後100℃まで冷却し水加えて50%水溶
液とした。次いで37%ホルマリン32.4部(0.4モ
ル)を加え、70%硫酸で系のPHを5.1に合わせた。 これを60℃に昇温し5時間反応させた後、冷却
し28%苛性ソーダ水溶液にて中和し製品PH=7.1、
濃度48.5%、粘度45cp(センチポイズを表わす。
以下略。)の樹脂液を得た。これを樹脂液Aと称
す。 実施例 2 実施例1と同様の容器にトリエチレンテトラミ
ン58.5部(0.4モル)と尿素2.0部(0.2モル)を仕
込み内温120〜140℃にて3時間加熱し、脱アンモ
ニア反応を行つた。その後テトラハイドロ無水フ
タル酸30.4部(0.2モル)を仕込み、内温150〜
160℃にて5時間脱水アミド化応を行つた。その
後内温を130℃に冷却し、尿素48部(0.8モル)を
仕込み、温度120〜1130℃で2時間、脱アンモニ
ア反応を行つた。その後100℃まで冷却し、水を
加えて50%水溶液とした。次いで37%ホルマリン
32.4部(0.4モル)を加え70%硫酸で系のPHを5.0
に合わせた。 これを60℃に昇温し4時間反応させた後、冷却
し28%苛性ソーダ水溶液にて中和し製品PH=
7.34、濃度49.0%、粘度52.1cpの樹脂液を得た。
これを樹脂液Bと称す。 実施例 3 実施例1と同様の容器にテトラエチレンペンタ
ミン75.7部(0.4モル)と尿素12.0部(0.2モル)
を仕込み内温120〜140℃にて3時間加熱し、脱ア
ンモニア反応を行つた。その後テトラハイドロ無
水フタル酸30.4部(0.2モル)を仕込み内温150〜
160℃にて5時間、脱水アミド化反応を行つた。
その後内温を130℃に冷却し尿素24.0部(0.4モ
ル)を仕込み、温度120〜30℃で2時間の脱アン
モニア反応を行つた。 その後100℃まで冷却し、水を加えて50%水溶
液とした。ついで37%ホルマリン16.2部(0.2モ
ル相当)を加え、70%硫酸にて系のPHを5.15に合
わせた。これを60℃に昇温し4時間反応させた。
その後冷却し、28%苛性ソーダ水溶液で中和し、
製品PH=7.23、粘度79.5cpの樹脂液を得た。これ
を樹脂液Cと称す。 実施例 4 実施例1と同様の容器にトリエチレンテトラミ
ン58.5部(0.4モル)と尿素12.0部(0.2モル)を
仕込み内温120〜140℃にて3時間加熱し、脱アン
モニア反応を行つた。その後HN−2200(日立化
成工業(株)社製、脂環式酸無水物、下式) 33.2部(0.2モル)を仕込み内温150〜160℃にて
5時間、脱水アミド化反応を行つた。その後内温
を130℃に冷却し尿素12.0部(0.2モル)を仕込
み、温度120〜130℃で2時間の脱アンモニア反応
を行つた。その後100℃まで冷却し、水を加えて
50%水溶液とした。ついで37%ホルマリン8.1部
(0.1モル相当)を加え、70%硫酸にて系のPHを
5.0に合わせ、これを60に昇温し、60℃で4時間
反応させた。その後冷却し、28%苛性ソーダ水溶
液で中和し製品とした。製品PH=7.06、粘度
52.0cp、濃度50.1%の樹脂液を得た。これを樹脂
液Dと称す。 実施例 5 実施例1と同様の容器にエチレングリコール
12.4部(0.2モル)とテトラハイドロ無水フタル
酸60.8部(0.4モル)を仕込み140℃で2時間加熱
し、遊離カルボキシル基を有する反応生成物を得
た。これに更に尿素12.0部(0.2モル)を仕込み
110〜120℃下で撹拌しつつトリエチレントラミン
58.5部(0.4モル)を加えた。 これを150℃で5時間脱アンモニア反応及び脱
水アミド化反応をさせた。これを130℃まで冷却
し更に尿素12.0部(0.2モル)を加え、温度120〜
130℃で2時間脱アンモニア反応させた。その後
100℃まで冷却し、水を加えて50%水溶液とした。
次いで37%ホルマリン8.1部(0.1モル)を加え、
70%硫酸にて系のPHを5.0に合わせ、これを60℃
に昇温し、4時間反応させた。その後、冷却し28
%苛性ソーダ水溶液で中和し製品とした。 製品PH=7.23、粘度43cpの樹脂液を得た。これ
を樹脂液Eと称す。 実施例 6 実施例1と同様の容器にトリエチレンテトラミ
ン29.2部(0.2モル)を仕込み、これにヘキサハ
イドロ無水フタル酸を30.8部(0.2モル)を加え
て昇温し、150〜155℃で脱水アミド化を行つた。
次いで130℃まで冷却し、尿素12部(0.2モル)を
仕込み、125〜130℃で2時間、脱アンモニア反応
を行つた。次いでこれを60℃まで冷却し、水を仕
込んで希釈し50%水溶液とした。次いで37%ホル
マリンを8.1部(0.1モル)加え、70%硫酸で系の
PHを5.0に合わせ、60〜65℃で4時間反応させた。 反応後28%苛性ソーダ水溶液で中和し製品PH=
7.2とした。製品は濃度47.9%、粘度36cpの樹脂
液を得た。これを樹脂液Fと称す。 実施例 7 実施例1に準じトリエチレンテトラミン58.5部
(0.4モル)およびテトラハイドロ無水フタル酸
30.4部(0.2モル)更に尿素12部(0.2モル)を同
時に仕込み昇温し150〜155℃で5時間脱水アミド
化、脱アンモニア反応を同時に行つた。次いで
130℃まで冷却し、更に尿素12部(0.2モル)を仕
込み、125〜130℃で2時間の脱アンモニア反応を
行つた。これに水を加えて希釈し濃度50%の水溶
液とした。次いで37%ホルマリン8.1部(0.1モ
ル)を加え、70%硫酸で系のPHを5.0に合わせ、
これを60〜65℃で4時間反応させた。 その後冷却し28%苛性ソーダ水溶液で中和し製
品とした。 製品PH=7.42、粘度32cpの樹脂液を得た。これ
を樹脂液Gと称す。 実施例 8 実施例5と同様にトリエチレンテトラミン58.5
部(0.4モル)と尿素12部(0.2モル)を仕込み、
145〜150℃で脱アンモニア反応を4時間行つた。
また別の容器でテトラハイドロ無水フタル酸60.8
部(0.4モル)とプロピレングリコール15.2部
(0.2モル)を混合し、140〜150℃で2時間加熱し
ポリエステルを得た。このポリエステルを全量前
述の脱アンモニア反応を終えた容器中に仕込み、
内温を150〜155℃で4時間加熱して脱水、脱アン
モニア反応を行つた。次いで130℃まで冷却し、
尿素12部(0.2モル)を加えて125〜130℃で2時
間脱アンモニア反応を行つた。その後水を加えて
50%水溶液とし37%ホルマリン8.1部(0.1モル)
を加えて70%硫酸にてPHを5.1に合わせ、60〜65
℃で4時間反応させ、これを冷却し28%苛性ソー
ダ水溶液にて中和して製品とした。 製品PH=7.51、粘度47cpの樹脂液を得た。これ
を樹脂液Hと称す。 比較例 1 実施例1に従い、実施例1のヘキサハイドロ無
水フタル酸の替わりに、無水フタル酸を29.6部
(0.2モル)使用した以外はすべて、同一の原料、
同一条件で合成し最終的に製品PH=7.2、粘度
44cpの樹脂液を得た。 これを樹脂液と称す。 比較例 2 実施例1に従い、実施例1のヘキサハイドロ無
水フタル酸の替わりに、アジピン酸を29.2部
(0.2モル)使用した以外はすべて同一原料、同一
条件で合成し、最終的に製品PH=7.01、粘度66cp
の樹脂液を得た。 これを樹脂液Jと称す。 比較例 3 実施例5に準じ、まずアジピン酸58.5部(0.4
モル)とエチレングリコール12.4部(0.2モル)
とから160〜180℃で3時間加熱し、脱水エステル
化させ末端にカルボキシル基を有するポリエステ
ルを得た。これに更に尿素12.0部(0.2モル)を
加え、110〜120℃で撹拌しつつトリエチレンテト
ラミン58.5部(0.4モル)を加えた。これを150℃
で5時間脱アンモニアおよび脱水アミド化反応を
行つた。これを130℃に冷却し尿素12.0部(0.2モ
ル)を加え、温度120〜130℃で2時間脱アンモニ
ア反応をさせた。その後水を加えて50%水溶液と
した。次いで37%ホルマリン8.1部(0.1モル)を
加え、70%硫酸にて系のPHを4.8に合わせ、これ
を60℃に昇温し、4時間反応させた。その後冷却
し28%苛性ソーダ水溶液で中和し、製品とした。
製品PH=7.25、粘度96cpの樹脂液を得た。これを
樹脂液Kと称す。 応用例 実施例1〜8、比較例1〜3で得た熱硬化性樹
脂水溶液およびスミレーズレジン613(住友化学工
業社、メラミン/ホルマリン樹脂)を用いて第一
表の配合による紙用塗工組成物を調整した。
<Industrial Application Field> The present invention relates to a method for producing a novel thermosetting resin useful for paper coating and the like. <Prior art> Conventionally, for the purpose of imparting water resistance to various paper coating compositions consisting of pigments, adhesives, dispersants, and other auxiliary agents, or for the purpose of improving ink receptivity, The use of formaldehyde resins such as melamine-formaldehyde resins, urea-formaldehyde resins or polyamide-urea-formaldehyde resins is known (for example, Japanese Patent Publication No. 11667-1970, Japanese Patent Publication No. 32597-1983). <Problems to be solved by the invention> However, in the case of the former formaldehyde-based resin, harmful formaldehyde is generated from the coated paper, and in the case of the latter resin, although the generation of harmful components is small, in recent years, As demands for quality such as ink receptivity and water resistance of coated paper become more sophisticated, it is becoming increasingly difficult to meet these demands.
Therefore, the present invention provides a method for producing a thermosetting resin useful as a paper coating resin that exhibits unprecedented water resistance and ink receptivity. <Means for Solving the Problems> The inventors of the present invention have conducted intensive studies to obtain a paper coating resin that has particularly excellent water resistance and ink receptivity, and also produces less odor such as formaldehyde than coated paper. , we have completed the present invention. That is, the present invention provides (a) a polyalkylene polyamine, (b) (a) an alicyclic dibasic carboxylic acid, and/or (b) an alicyclic dibasic carboxylic acid obtained by reaction with a glycol. The present invention provides a method for producing a thermosetting resin useful as a paper coating resin, which comprises reacting a reaction product having a free carboxyl group, (c) ureas, and (d) formaldehyde. The polyalkylene polyamine as component (a) used in the present invention is a compound having two primary amino groups and at least one secondary amino group in the molecule, such as diethylenetriamine, triethylenetetramine, tetraethylene Pentamine, iminobispropylamine, 3-azahexane, 1,6-diamine, 4,7-diazadecane-
Examples include 1,10-diamine. These polyalkylene polyamines can be used not only alone but also as a mixture of two or more. Further, there is no hindrance to the use of aliphatic diamines such as ethylene diamine and propylene diamine in combination with the polyalkylene polyamines described above as long as the object of the present invention is not impaired. The alicyclic dibasic carboxylic acid of component (b)(a) used in the present invention refers to a compound having two carboxyl groups in the molecule, or an ester thereof,
The term also includes acid anhydrides thereof, and representative examples of such alicyclic dibasic carboxylic acids include the following. Tetrahydrophthalic acid, hexahydrophthalic acid, cyclohexane-1,4-dicarboxylic acid,
Carboxylic acids such as 4-methyltetrahydrophthalic acid, and their esters, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4
-Methyltetrahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, 4-tetrahydrophthalic anhydride, 4-methyl-Δ4-tetrahydrophthalic anhydride, and other acid anhydrides. These may be used alone or in combination of two or more. In addition, the glycols used in the present invention include alkylene glycols such as ethylene glycol, propylene glycol, and butanediol; cycloalkylene glycols such as cyclopentanediol and cyclohexanediol; alkenylene glycols such as butenediol and octenediol; Examples include polyalkylene glycols such as diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, and polytetramethylene glycol, ethylene oxide adducts of bisphenol A, and ethylene oxide adducts of hydrogenated bisphenol A. Furthermore, the reaction product having a free carboxylyl group obtained by the reaction of the alicyclic dibasic carboxylic acid and the glycol of component (b) (b) is the alicyclic dibasic carboxylic acid and the aforementioned alicyclic dibasic carboxylic acid. It is a polyester having a carboxyl group at the end of the molecule, which is obtained by reacting glycols with an excess molar ratio of carboxylic acid. The reaction between this alicyclic dibasic carboxylic acid and glycols is usually carried out in the presence or absence of a catalyst.
This is carried out by heating at 80 to 200°C for 30 minutes to 2 hours. Furthermore, together with these alicyclic dibasic carboxylic acids, other dibasic carboxylic acids such as adipic acid, aliphatic dicarboxylic acids such as glutaric acid, or terephthalic acid, to the extent that the effects of the present invention are not impaired.
Aromatic dicarboxylic acids such as phthalic acid may also be used in combination. The ureas (c) include urea, thiourea, guanylurea, methylurea, dimethylurea, etc., but urea is preferred from an industrial standpoint. The water-soluble thermosetting resin obtained by the method of the present invention is obtained in the form of an aqueous solution, and usually has a viscosity of 5 to 1000 centipoise (hereinafter abbreviated as CP) at 25°C of an aqueous solution with a resin solid content of 50% by weight. If the viscosity is extremely low, the effect of adding resin as a paper coating composition tends to be low.
In addition, if the viscosity is high, the viscosity of the prepared paper coating composition may become high, which is generally undesirable.
Particularly preferably, those having a viscosity in the range of 20 to 200 cp are preferably used. Next, the reaction method of each component (a), (b), (c) and (d) will be described. The resin of the present invention includes, for example, components (a), (b) and
It can be produced by reacting the reaction product of (c) with (d). The components (a), (b) and (c) can be reacted in any order. First of all, components (a) and (b) are reacted, then components
(c) can be reacted. The reaction of components (a) and (b) is carried out at a temperature of 120 to 250°C, preferably 180 to 200°C,
This is carried out for 2 to 12 hours while removing the produced water from the system. 0.4 to 4 equivalents of carboxyl group in component (b) per mol of polyalkylene polyamine of component (a),
The reaction is preferably carried out at a ratio of 0.8 to 8 equivalents.
The dehydration condensation reaction product thus obtained,
The reaction of component (c) with ureas is carried out at a temperature of 100 to 180°C, preferably 110 to 160°C, for 1 to 6 hours while removing generated ammonia from the system. The amount of component (c) used is 1 equivalent or less, preferably 0.1 to 0.8 equivalent, per 1 equivalent of amino groups, ie, primary and secondary amino groups, in component (a). Alternatively, components (a) and (c) are first reacted,
Component (b) can then be reacted, and then component (c) can be reacted. Component (c) for 1 mole of component (a)
Use 0.2 to 1 mol, preferably 0.3 to 0.8 mol,
1 at a temperature of 100 to 180°C, preferably 110 to 160°C.
The deammonification reaction is carried out for ~6 hours. The reaction between the reaction product thus obtained and component (b) is carried out at a temperature of 120 to 250°C, preferably 180 to 200°C, for 2 to 12 hours while removing the produced water from the system. Let's do it. Component (b) is used in an amount of 0.2 to 2 equivalents, preferably 0.3 to 1.8 equivalents, per mole of component (a). The reaction product of components (a), (b), and (c) thus obtained is further reacted with component (c) at a temperature of 100 to 180°C, preferably 110 to 160°C. It is held for 1 to 6 hours. The amount of component (c) used is
2 equivalents or less per 1 equivalent of secondary amino group in (a),
Preferably, it is in the range of 0.1 to 1.5 equivalents. As yet another method, components (a), (b), and (c) may be reacted simultaneously, and the resulting reaction product may be further reacted with component (c). The reaction of the first components (a), (b), and (c) is carried out at a temperature of 100 to 200°C, preferably 110 to 180°C.
C. for 2 to 12 hours while removing generated ammonia and water from the system. The ratio of each component used in this step is 0.2 to 2 equivalents of the carboxyl group of component (b) per 1 mole of component (a), preferably 0.8 to 1.8
equivalent, component (c) 0.2 to 1 mol, preferably 0.3 to 0.8
Moles are appropriate. The step of further reacting component (c) with the reaction product obtained in this way is carried out at a temperature of
It is carried out at 100-180°C, preferably 110-160°C for 1-6 hours. The appropriate amount of component (c) to be used is 2 equivalents or less, preferably 0.1 to 1.5 equivalents, per equivalent of the secondary amino group of component (a). Component (a) obtained by various methods as mentioned above,
The reaction products (b) and (c) are both dissolved in water and then reacted with formaldehyde. The reaction is
In an aqueous solution with a concentration of 20 to 80% by weight, preferably 30 to 70% by weight, the pH is adjusted to 7 or less, preferably 3.5 to 6.5 using an acid such as hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, etc. After that, the reaction temperature is 40~80℃
It is held for 1 to 10 hours. This reaction is carried out under acidic conditions as described above, but the pH of the reaction solution is adjusted to 8 in advance.
The object of the present invention can also be obtained by carrying out the reaction under alkalinity such as pH 7 to 12, then adjusting the pH to 7 or less, preferably PH 3.5 to 6.5, and continuing the reaction. In this case, the alkaline reaction is carried out at a temperature of 40 to 80°C for 0.5 to 3 hours, and the acidic reaction is carried out at a temperature of 40 to 80°C for 1 to 10 hours. The amount of formaldehyde is 0.1 per mole of component (c).
~1.0 mol, preferably 0.2-0.7 mol is suitable. After the reaction is completed, the object of the present invention is obtained by adjusting the pH to 6 to 9 with caustic soda, caustic potash, etc., if necessary. As detailed above, the method of the present invention comprises (a) a polyalkylene polyamine (b) (a) an alicyclic dibasic carboxylic acid and/or (b) an alicyclic dibasic carboxylic acid and a glycol. Reaction products with free carboxyl groups obtained by reaction with (c) ureas (d) formaldehyde, and when the resulting thermosetting resin is used as a composite resin for paper coating. It has excellent ink receptivity and water resistance and is extremely useful. The feature of the present invention is that a specific dibasic carboxylic acid, that is, an alicyclic dibasic carboxylic acid is used as the dibasic carboxylic acid, and aliphatic or aromatic dibasic Compared to paper coating resins obtained from carboxylic acids, the resins obtained by the present invention are recognized to have dramatically improved performance. Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. In the following, all parts and percentages are by weight unless otherwise specified. Example 1 58.5 parts (0.4 mol) of triethylenetetramine and 12.0 parts (0.2 mol) of urea were charged into a four-neck flask equipped with a thermometer, reflux condenser, and stirring bar, and the internal temperature was adjusted to
Ammonia removal reaction was performed by heating at 120 to 140°C for 3 hours. Thereafter, 34.4 parts (0.2 mol) of hexahydrophthalic acid was added, and a dehydration and amidation reaction was carried out at an internal temperature of 150 to 160°C for 5 hours. Then check the internal temperature
The mixture was cooled to 130°C, 48.0 parts (0.8 mol) of urea was added thereto, and ammonia removal reaction was carried out at a temperature of 120°C to 130°C for 2 hours. Thereafter, it was cooled to 100°C and water was added to make a 50% aqueous solution. Next, 32.4 parts (0.4 mol) of 37% formalin was added, and the pH of the system was adjusted to 5.1 with 70% sulfuric acid. After raising the temperature to 60℃ and reacting for 5 hours, it was cooled and neutralized with a 28% caustic soda aqueous solution, resulting in a product pH of 7.1.
Concentration 48.5%, viscosity 45 cp (represents centipoise).
The following is omitted. ) was obtained. This is called resin liquid A. Example 2 58.5 parts (0.4 mol) of triethylenetetramine and 2.0 parts (0.2 mol) of urea were placed in the same container as in Example 1 and heated at an internal temperature of 120 to 140°C for 3 hours to perform a deammonia reaction. After that, 30.4 parts (0.2 mol) of tetrahydrophthalic anhydride was added, and the internal temperature was 150~
The dehydration amidation reaction was carried out at 160°C for 5 hours. Thereafter, the internal temperature was cooled to 130°C, 48 parts (0.8 mol) of urea was charged, and ammonia removal reaction was carried out at a temperature of 120 to 1130°C for 2 hours. Thereafter, it was cooled to 100°C and water was added to make a 50% aqueous solution. Then 37% formalin
Add 32.4 parts (0.4 mol) and adjust the pH of the system to 5.0 with 70% sulfuric acid.
tailored to. After raising the temperature to 60℃ and reacting for 4 hours, it was cooled and neutralized with a 28% caustic soda aqueous solution, resulting in product pH =
7.34, a resin liquid with a concentration of 49.0% and a viscosity of 52.1 cp was obtained.
This is called resin liquid B. Example 3 In a container similar to Example 1, 75.7 parts (0.4 moles) of tetraethylenepentamine and 12.0 parts (0.2 moles) of urea were added.
was charged and heated at an internal temperature of 120 to 140°C for 3 hours to perform a deammoniation reaction. After that, add 30.4 parts (0.2 mol) of tetrahydrophthalic anhydride and the internal temperature will be 150~
The dehydration and amidation reaction was carried out at 160°C for 5 hours.
Thereafter, the internal temperature was cooled to 130°C, 24.0 parts (0.4 mol) of urea was charged, and a deammonification reaction was carried out at a temperature of 120 to 30°C for 2 hours. Thereafter, it was cooled to 100°C and water was added to make a 50% aqueous solution. Then, 16.2 parts (equivalent to 0.2 mol) of 37% formalin was added, and the pH of the system was adjusted to 5.15 with 70% sulfuric acid. This was heated to 60°C and reacted for 4 hours.
After that, it was cooled and neutralized with a 28% caustic soda aqueous solution.
A resin liquid with a product pH of 7.23 and a viscosity of 79.5 cp was obtained. This is called resin liquid C. Example 4 58.5 parts (0.4 mol) of triethylenetetramine and 12.0 parts (0.2 mol) of urea were placed in the same container as in Example 1 and heated at an internal temperature of 120 to 140° C. for 3 hours to perform a deammoniation reaction. Then HN-2200 (manufactured by Hitachi Chemical Co., Ltd., alicyclic acid anhydride, formula below) 33.2 parts (0.2 mol) was charged and dehydration and amidation reaction was carried out at an internal temperature of 150 to 160°C for 5 hours. Thereafter, the internal temperature was cooled to 130°C, 12.0 parts (0.2 mol) of urea was charged, and a deammonification reaction was carried out at a temperature of 120 to 130°C for 2 hours. Then cool to 100℃ and add water.
It was made into a 50% aqueous solution. Next, 8.1 parts of 37% formalin (equivalent to 0.1 mol) was added, and the pH of the system was adjusted with 70% sulfuric acid.
5.0, the temperature was raised to 60°C, and the reaction was carried out at 60°C for 4 hours. Thereafter, it was cooled and neutralized with a 28% caustic soda aqueous solution to produce a product. Product PH=7.06, viscosity
A resin liquid of 52.0 cp and a concentration of 50.1% was obtained. This is called resin liquid D. Example 5 In a container similar to Example 1, add ethylene glycol.
12.4 parts (0.2 mol) and 60.8 parts (0.4 mol) of tetrahydrophthalic anhydride were charged and heated at 140°C for 2 hours to obtain a reaction product having free carboxyl groups. Add 12.0 parts (0.2 mol) of urea to this.
Triethylenetramine with stirring at 110-120℃
58.5 parts (0.4 mol) were added. This was subjected to deammonia reaction and dehydration amidation reaction at 150°C for 5 hours. Cool this to 130℃, add 12.0 parts (0.2 mol) of urea, and
Ammonia removal reaction was carried out at 130°C for 2 hours. after that
It was cooled to 100°C and water was added to make a 50% aqueous solution.
Then 8.1 parts (0.1 mol) of 37% formalin was added,
Adjust the pH of the system to 5.0 with 70% sulfuric acid and heat it at 60℃.
The temperature was raised to 1, and the mixture was reacted for 4 hours. Then cool down 28
% caustic soda aqueous solution to prepare a product. A resin liquid with a product pH of 7.23 and a viscosity of 43 cp was obtained. This is called resin liquid E. Example 6 29.2 parts (0.2 mol) of triethylenetetramine was charged in the same container as in Example 1, 30.8 parts (0.2 mol) of hexahydrophthalic anhydride was added thereto, the temperature was raised, and the mixture was dehydrated at 150 to 155°C. Amidation was performed.
The mixture was then cooled to 130°C, 12 parts (0.2 mol) of urea was added, and ammonia removal reaction was carried out at 125-130°C for 2 hours. Next, this was cooled to 60°C and diluted with water to make a 50% aqueous solution. Next, 8.1 parts (0.1 mol) of 37% formalin was added, and the system was diluted with 70% sulfuric acid.
The pH was adjusted to 5.0, and the reaction was carried out at 60 to 65°C for 4 hours. After the reaction, neutralize with a 28% caustic soda aqueous solution, and the product pH =
It was set to 7.2. The product obtained was a resin liquid with a concentration of 47.9% and a viscosity of 36 cp. This is called resin liquid F. Example 7 58.5 parts (0.4 mol) of triethylenetetramine and tetrahydrophthalic anhydride according to Example 1
30.4 parts (0.2 mol) of urea and 12 parts (0.2 mol) of urea were added at the same time, the temperature was raised, and dehydration amidation and deammonization reactions were simultaneously carried out at 150 to 155°C for 5 hours. then
The mixture was cooled to 130°C, 12 parts (0.2 mol) of urea was added, and ammonia removal reaction was carried out at 125-130°C for 2 hours. This was diluted by adding water to make an aqueous solution with a concentration of 50%. Next, 8.1 parts (0.1 mol) of 37% formalin was added, and the pH of the system was adjusted to 5.0 with 70% sulfuric acid.
This was reacted at 60-65°C for 4 hours. Thereafter, it was cooled and neutralized with a 28% caustic soda aqueous solution to produce a product. A resin liquid with a product pH of 7.42 and a viscosity of 32 cp was obtained. This is called resin liquid G. Example 8 Triethylenetetramine 58.5 as in Example 5
(0.4 mol) and 12 parts (0.2 mol) of urea.
Deammonification reaction was carried out at 145-150°C for 4 hours.
Also in a separate container tetrahydrophthalic anhydride 60.8
(0.4 mol) and 15.2 parts (0.2 mol) of propylene glycol were mixed and heated at 140 to 150°C for 2 hours to obtain a polyester. The entire amount of this polyester is placed in a container that has undergone the above-mentioned deammonification reaction,
Dehydration and deammonia reactions were carried out by heating at an internal temperature of 150 to 155°C for 4 hours. Then cooled to 130℃,
12 parts (0.2 mol) of urea was added and deammonization reaction was carried out at 125-130°C for 2 hours. then add water
8.1 parts (0.1 mol) of 37% formalin as a 50% aqueous solution
and adjust the pH to 5.1 with 70% sulfuric acid to 60-65.
The reaction was carried out at ℃ for 4 hours, cooled and neutralized with a 28% caustic soda aqueous solution to obtain a product. A resin liquid with a product pH of 7.51 and a viscosity of 47 cp was obtained. This is called resin liquid H. Comparative Example 1 According to Example 1, all the same raw materials were used except that 29.6 parts (0.2 mol) of phthalic anhydride was used instead of hexahydrophthalic anhydride in Example 1.
Synthesized under the same conditions, final product PH = 7.2, viscosity
A resin liquid of 44 cp was obtained. This is called resin liquid. Comparative Example 2 Synthesis was performed according to Example 1 using the same raw materials and under the same conditions except that 29.2 parts (0.2 mol) of adipic acid was used instead of hexahydrophthalic anhydride in Example 1, and the final product PH = 7.01, viscosity 66cp
A resin liquid was obtained. This is called resin liquid J. Comparative Example 3 According to Example 5, 58.5 parts of adipic acid (0.4
mol) and 12.4 parts (0.2 mol) of ethylene glycol
The mixture was then heated at 160 to 180°C for 3 hours to undergo dehydration and esterification to obtain a polyester having carboxyl groups at the terminals. Further, 12.0 parts (0.2 mol) of urea was added thereto, and 58.5 parts (0.4 mol) of triethylenetetramine was added while stirring at 110 to 120°C. This at 150℃
Deammonification and dehydration amidation reactions were carried out for 5 hours. This was cooled to 130°C, 12.0 parts (0.2 mol) of urea was added, and ammonia removal reaction was carried out at a temperature of 120 to 130°C for 2 hours. After that, water was added to make a 50% aqueous solution. Next, 8.1 parts (0.1 mol) of 37% formalin was added, the pH of the system was adjusted to 4.8 with 70% sulfuric acid, the temperature was raised to 60°C, and the mixture was reacted for 4 hours. Thereafter, it was cooled and neutralized with a 28% caustic soda aqueous solution to produce a product.
A resin liquid with a product pH of 7.25 and a viscosity of 96 cp was obtained. This is called resin liquid K. Application example Paper coating using the thermosetting resin aqueous solutions obtained in Examples 1 to 8 and Comparative Examples 1 to 3 and violet resin 613 (Sumitomo Chemical Co., Ltd., melamine/formalin resin) according to the formulation shown in Table 1. The composition was prepared.

【表】 調整した紙用塗工組成物は、総固形分が60%、
PHが約8.5となるように各々水と10%苛性ソーダ
水溶液にて調整した後、ワイヤーロツドを用いて
米坪量80g/m2の上質紙上に、塗工量が14g/m2
となるように片面塗布した。塗布後直ちに120℃
にて30秒間熱風乾燥せしめ、次いで20℃、65%
RHにて16時間調湿した後、温度60℃、線圧60
Kg/cmの条件にて2回スーパーカレンダー処理し
て、塗工紙を得た。こうして得た塗工紙を、耐水
性、インキ受理性、ホルムアルデヒド定量の試験
に供した。試験結果を実施例1〜8として第二表
に示した。 なお試験方法は下記のとおりである。 〇 耐水性 (イ) ウエツトラブ法 コート面上にイオン交換水を約0.1ml滴下し、
指先で7回摩擦し、溶出分を黒紙に移行させて溶
出量を肉眼で判定した。 判定基準は次のように行つた。 耐水性(劣)1〜5(優) (ロ) ウエツトピツク法 RI試験機を使用し、コート面を給水ロールで
湿潤させた後印刷し、紙むけ状態を肉眼で観察し
て耐水性(劣)1〜5(優)の判定を行つた。 〇 インキ受理性 (イ) A法 RI試験機(明製作所)を使用して塗工面を給
水ロールにて湿潤させた後に印刷し、インキの受
理性を観察した。 インキ受理性(劣)1〜5(優)とする。 (ロ) B法 RI試験機を使用して、インキに水を練り込み
ながら印刷し、インキ受理性を観察した。 インキ受理性(劣)1〜5(優)とする。 〇 ホルムアルデヒドの定量 JIS−L1041−1976液相抽出法(2)アセチルアセ
トン法(A法)に準じコート紙試料2.5gを採取
し、定量した。
[Table] The prepared paper coating composition had a total solid content of 60%,
After adjusting the pH to approximately 8.5 with water and a 10% caustic soda aqueous solution, use a wire rod to coat high-quality paper with a weight of 80 g/m 2 at a coating weight of 14 g/m 2
It was coated on one side so that 120℃ immediately after application
Dry with hot air for 30 seconds at 20℃, 65%
After 16 hours of humidity control at RH, temperature 60℃, linear pressure 60
A coated paper was obtained by supercalendering twice under the condition of kg/cm. The coated paper thus obtained was subjected to tests for water resistance, ink receptivity, and formaldehyde quantification. The test results are shown in Table 2 as Examples 1 to 8. The test method is as follows. 〇 Water resistance (a) Wet rub method Drop approximately 0.1ml of ion exchange water onto the coated surface,
The sample was rubbed 7 times with a fingertip, the eluate was transferred to black paper, and the eluate amount was determined visually. The judgment criteria were as follows. Water resistance (poor) 1 to 5 (excellent) (b) Wet pick method Using an RI tester, the coated surface is moistened with a water supply roll, then printed, and the peeling condition is observed with the naked eye to determine water resistance (poor). A rating of 1 to 5 (excellent) was made. 〇 Ink receptivity (a) Method A Using an RI tester (Mei Seisakusho), the coated surface was moistened with a water supply roll and printed, and the ink receptivity was observed. Ink receptivity (poor): 1 to 5 (excellent). (b) Method B Using an RI tester, printing was carried out while mixing water into the ink, and the ink receptivity was observed. Ink receptivity (poor): 1 to 5 (excellent). 〇 Quantification of formaldehyde 2.5 g of coated paper sample was collected and quantified according to JIS-L1041-1976 liquid phase extraction method (2) acetylacetone method (method A).

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (a) ポリアルキレンポリアミン、 (b) (イ) 脂環式二塩基性カルボン酸および/また
は (ロ) 脂環式二塩基性カルボン酸とグリコール類
との反応で得られる遊離カルボキシル基を有
する反応生成物、 (c) 尿素類、および (d) ホルムアルデヒド を反応せしめることを特徴とする熱硬化性樹脂の
製造方法。
[Scope of Claims] 1. (a) polyalkylene polyamine, (b) (a) alicyclic dibasic carboxylic acid and/or (b) alicyclic dibasic carboxylic acid obtained by reaction with glycols. 1. A method for producing a thermosetting resin, which comprises reacting a reaction product having a free carboxyl group, (c) ureas, and (d) formaldehyde.
JP24240685A 1985-10-28 1985-10-29 Production of thermosetting resin Granted JPS62101621A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP24240685A JPS62101621A (en) 1985-10-29 1985-10-29 Production of thermosetting resin
DE8686308345T DE3686547T2 (en) 1985-10-28 1986-10-27 PRODUCTION OF UREA POLYAMINE RESIN FOR PAPER CLOTHING COMPOSITIONS.
EP86308345A EP0220960B1 (en) 1985-10-28 1986-10-27 Production of urea-polyamine resins for paper coating compositions
CA000521520A CA1278898C (en) 1985-10-28 1986-10-27 Process for producing resin for paper coating
FI864343A FI92596C (en) 1985-10-28 1986-10-27 A method of making a resin for coating paper
AU64470/86A AU591526B2 (en) 1985-10-28 1986-10-28 Process for producing resin for paper coating
US07/586,339 US5034501A (en) 1985-10-28 1990-09-18 Process for producing resin for paper coating
US07/700,944 US5114758A (en) 1985-10-28 1991-03-13 Process for producing resin for paper coating
US07/748,723 US5158611A (en) 1985-10-28 1991-08-22 Paper coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24240685A JPS62101621A (en) 1985-10-29 1985-10-29 Production of thermosetting resin

Publications (2)

Publication Number Publication Date
JPS62101621A JPS62101621A (en) 1987-05-12
JPH0455603B2 true JPH0455603B2 (en) 1992-09-03

Family

ID=17088662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24240685A Granted JPS62101621A (en) 1985-10-28 1985-10-29 Production of thermosetting resin

Country Status (1)

Country Link
JP (1) JPS62101621A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628929A (en) * 1979-08-17 1981-03-23 Koichi Honma Anchor of underwater-driven type
JPS5932597A (en) * 1982-08-18 1984-02-22 株式会社日立製作所 Discriminator for kind and airframe fixed position of aircraft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628929A (en) * 1979-08-17 1981-03-23 Koichi Honma Anchor of underwater-driven type
JPS5932597A (en) * 1982-08-18 1984-02-22 株式会社日立製作所 Discriminator for kind and airframe fixed position of aircraft

Also Published As

Publication number Publication date
JPS62101621A (en) 1987-05-12

Similar Documents

Publication Publication Date Title
EP0220960B1 (en) Production of urea-polyamine resins for paper coating compositions
KR100505997B1 (en) Water-soluble resins and paper coating compositions containing them
CA1150870A (en) Process for producing aqueous solution of thermosetting resin
JPS6142931B2 (en)
JPH0455603B2 (en)
KR100345840B1 (en) Paper Coating Composition
JPH0357138B2 (en)
JPH0735428B2 (en) Resin manufacturing method
JPS6259732B2 (en)
JPH068347B2 (en) Method for producing resin for paper coating
JPS62125093A (en) Paper coating composition
US4444943A (en) Coating compositions for providing water and blister resistance to ink-receptive paper
JPS62104995A (en) Paper coating composition
JPH0326214B2 (en)
JPH064956B2 (en) Coating composition for paper
JPS61152731A (en) Production of paper-coating resin
JPH0461891B2 (en)
JPS5840322A (en) Production of aqueous solution of thermosetting resin
JPH0131771B2 (en)
JP3351096B2 (en) Coating composition for paper
JP2003129397A (en) Wet paper strength enhancer composition and paper
JPH01132896A (en) Production of paper coating resin additive
JPS6055028A (en) Production of aqueous solution of thermosetting resin
JPH02102226A (en) Preparation of resin for paper coating and composition for paper coating
JPS5993728A (en) Preparation of paper coating resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees