JPH0455588B2 - - Google Patents

Info

Publication number
JPH0455588B2
JPH0455588B2 JP61226507A JP22650786A JPH0455588B2 JP H0455588 B2 JPH0455588 B2 JP H0455588B2 JP 61226507 A JP61226507 A JP 61226507A JP 22650786 A JP22650786 A JP 22650786A JP H0455588 B2 JPH0455588 B2 JP H0455588B2
Authority
JP
Japan
Prior art keywords
coating
antireflection article
film
article according
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61226507A
Other languages
Japanese (ja)
Other versions
JPS6381033A (en
Inventor
Naoki Shimoyama
Takashi Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61226507A priority Critical patent/JPS6381033A/en
Publication of JPS6381033A publication Critical patent/JPS6381033A/en
Publication of JPH0455588B2 publication Critical patent/JPH0455588B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐すり傷性、耐摩耗性、耐衝撃性、
耐薬品性、可撓性、耐熱性、耐熱水性、耐光性、
耐候性、染色性、反射防止性などに優れ、眼鏡用
レンズ、カメラ用レンズ、CRT用フイルターな
どの光学用に適した反射防止物品およびその製造
方法に関するものである。 〔従来の技術〕 プラスチツク成形品、とりわけプラスチツクレ
ンズに代表される成形体は、極めて優れた耐衝撃
性および透明性を有し、かつ軽量であり、染色も
容易であることから近年大巾に需要が増えてい
る。しかし、プラスチツクは無機ガラスに比べて
表面硬度が低く傷が付き易いという欠点を有して
いる。 また、無機ガラス物品や透明プラスチツク成形
品などの透明基材を通して物を見る場合、反射光
が強く、反射像が明瞭であることはわずらわし
く、例えば眼鏡用レンズではゴースト、フレアな
どと呼ばれる反射像を生じて眼に不快感を与えた
りする。そこで従来より反射防止のために、屈折
率が基材と異なる物質を、真空蒸着法などにより
基材上に被膜形成される方法が行なわれた。この
場合反射防止効果をもつとも高からしめるために
は基材を被覆する物質の厚みの選択が重要である
ことが知られている(光学技術コンタクトVol9.
No.8、17〜23、(1971))。例えば、単層被膜にお
いては、基材より低屈折率の物質を光学的膜厚が
光波長の1/4ないしはそ奇数倍になるように選択
すると極小の反射率すなわち極大の透過率を与え
ることが知られている。こで光学的膜厚とは被膜
形成材料の屈折率と該被膜の膜厚の積で与えられ
るものである。 さらに特開昭52−16586号公報には、プラスチ
ツク成型品にオルガノポリシロキサン系樹脂層を
設け、その上に金属及び/または無機セラミツク
物層を設けることが提案されている。 〔発明が解決しようとする問題点〕 しかしながら、オルガノポリシロキサン系樹脂
からなる被膜上への無機酸化物からなる被膜の被
覆は、十分に強固な密着力が得られないために被
膜の剥離、表面硬度の低下、さらには発生した傷
が太く、深いなどの多くの欠点があり、実用耐久
性に乏しいという問題点があつた。 〔問題点を解決するための手段〕 本発明者らは、かかる従来技術の問題点を解決
するために鋭意検討した結果、下記の構成を有す
る。 すなわち、本発明は、 「透明基材の表面に下記AおよびB被膜がこの
順で積層されてなる2層構造を有することを特徴
とする反射防止物品。 A 屈折率が1.47〜1.65であり、膜厚が100〜
20000nmであり、かつ被膜構成成分として無
機酸化物微粒子を5〜80重量%を含む有機物ポ
リマーからなる被膜。 B SiO2からなる被膜」 に関する。 ここで透明基材とは下式により求められる曇価
が80%以下の透明性を有する透明基材であつて、
必要に応じ、染料などで着色されているもの、模
様状に彩色されているものもこれに含めることが
できる。また透明基材の上に、たとえば耐擦傷性
などを付与するために被覆材によつて被覆された
ものも下式により求められる曇価が80%以下であ
れば本発明の透明基材に含めることができる。 曇価(パーセント)=拡散光線透過率/全光線透過率
×100 本発明の意図するところの光線反射率の低下お
よび光線透過率の向上効果をより有効に発揮させ
るためにはできるだけ透明性のあるものが好まし
い。さらに本発明における光線反射率の低下を基
材の一方の面のみで十分である場合には、その反
対面が不透明なもので覆われた基材であつても、
本発明で言うところの透明基材として使用でき
る。この場合には、曇価としては反対面における
不透明物質を除去したもので定義されなければな
らない。 このような透明基材としてはガラス、プラスチ
ツク物品などの成型物、シート、フイルムなどが
挙げられる。 本発明はこれら透明基材の表面にまず前記のA
被膜を設けてなるものであるが、ここでA被膜と
しては屈折率が1.47〜1.65であり、膜厚は100〜
20000nmであることが必要である。すなわち、
屈折率が1.47に満たない場合には反射防止効果が
乏しく、さらに、1.45以下になると反射が増加す
る状態にまでなる。一方、屈折率が1.65を越える
と透明基材との屈折率差が生じやすく、反射干渉
縞が認められるようになり、商品価値の低いもの
となる。また、膜厚が100nmに満たない場合に
はA被膜を設ける目的である表面硬度の向上、耐
熱性、耐薬品性などの向上が期待されない。ま
た、20000nmを越えると耐衝撃性などの低下が
認められ、好ましくない。 これらの特性を有するA被膜を構成する成分と
しては無機酸化物微粒子が被膜中に5〜80重量%
含まれることが必要である。すなわち、5重量%
未満ではSiO2被膜との十分に強固な接着強度が
得られず、80重量%を越えると透明基材との接着
性不良、A被膜にクラツク発生、耐衝撃性低下な
どの問題がある。また、ここで使用される無機酸
化物微粒子とは、塗膜状態で透明性を損わないも
のであればよくに限定されないが、作業性、透明
性付与の点から特に好ましい例としてはコロイド
状に分散したゾルが挙げられる。さらに具体的な
例としてはシリカゾル、チタニアゾル、ジルコニ
アゾル、酸化アンチモンゾル、アルミナゾルなど
が挙げられる。中でもとくに表面硬度、汗に対す
る耐久性、光沢向上の観点から、酸化アンチモン
ゾル、チタニアゾルの使用が好ましい。 無機酸化物微粒子としては、平均粒子径1〜
200mμのものが通常は使用されるが、好ましく
は5〜100mμの粒子径のものが使用される。平
均粒子径が200mμを越えるものは、生成被膜の
透明性を低下させ、濁りの大きなものとなり、厚
膜化が困難となる。また微粒子の分散性を改良す
るために各種の界面活性材やアミンを添加しても
何ら問題はない。さらには2種以上の無機酸化物
微粒子を併用して使用することも何ら問題はな
い。 本発明におけるA被膜中には前記の無機酸化物
微粒子以外に有機物からなるポリマーが含まれて
なるものであるが、ここで有機物ポリマーとして
は透明性を有し、無機酸化物微粒子を均一に分散
させて透明被膜を形成し得るものであれば特に限
定されないが、被膜の硬度、耐薬品性などの観点
から熱効果性樹脂が好ましく使用される。 これらの熱硬化性樹脂の好ましい具体例として
は、多官能アクリル基を有するモノマー、オリゴ
マー、あるいはプレポリマー、メラミン樹脂、エ
ポキシ樹脂、ポリウレタン樹脂がある。ポリウレ
タン樹脂には脂肪族、脂環式ないしは芳香族イソ
シアネート、およびこれらとポリオールからなる
ウレタン形成性組成物が含まれる。さらに、上記
の化合物に2重結合を導入することにより、ラジ
カル硬化を可能にした各種変性樹脂も含まれる。
さらには通気置換されたケイ素系化合物から得ら
れるオルガノポリシロキサン系化合物も好適に用
いられる。 上記のケイ素系化合物は、一般式 R1 aR2 bSiX4-(a+b) であらわされる化合物ないしはその加水分解生成
物である。ここでR1、R2は各々アルキル基、ア
ルケニル基、アリール基、またはハロゲン基、エ
ポキシ基、グリシドキシ基、アミノ基、メルカプ
ト基、メタクリルオキシ基ないしシアノ基を有す
る炭化水素基であり、同種であつても、異種であ
つてもよい。Xはアルコキシ、アルコキシアルコ
キシ、フエノキシないしアセトキシ基から選ばれ
た加水分解可能な置換基、a、bは各々0、1ま
たは2であり、かつa+bが1または2である。 上記においてエポキシ基、グリシドキシ基を含
有する場合は、被膜を分散染料などで染色、また
は着色することが容易に可能であり、高付加価値
なものとなる。 上記の組成物は通常揮発性溶媒に希釈して液状
組成物として塗布される。溶媒として用いられる
ものは、特に限定されないが、使用にあたつては
被塗布物の表面性状を損わぬことが要求され、さ
らには組成物の安定性、基材に対するぬれ性、揮
発性などをも考慮して決められるべきである。ま
た溶媒は1種のみならず2種以上の混合物として
用いることも可能である。 さらには、これらのコーテイング組成物中に
は、塗布時におけるフローを向上させる目的で各
種の界面活性材を使用することも可能であり、と
くにジメチルポリシロキサンとアルキレンオキシ
ドとのブロツクまたはグラフト共重合体、さらに
はフツ素系界面活性材などが有効である。 さらに耐候性を向上させる目的で紫外線吸収
剤、または耐熱劣化向上法として酸化防止剤を添
加することも可能である。 塗布方法としては通常のコーテイング作業で用
いられる方法が適用可能であるが、たとえば浸漬
塗布、流し塗り法、スピンコート法などが好まし
い。このようにして塗布されたコーテイング組成
物は加熱乾燥、または硬化される。 加熱方法としては熱風、赤外線などで行なうこ
とが可能である。また加熱温度は適用される基材
および使用されるコーテイング組成物によつて決
定されるべきであるが、通常は室温から250℃、
より好ましくは35〜200℃が使用される。これよ
り低温では硬化または乾燥が不充分になりやす
く、またこれり高温になると熱分解、亀裂発生な
どが起り、さらには黄変なの問題を生じやすくな
る。 本発明におけるA被膜の塗布にあたつては、塗
布されるべき表面は清浄化されていることが好ま
しく、清浄化に際しては界面活性剤による汚れ除
去、さらには有機溶剤による脱脂、フレオンによ
る蒸気洗浄などが適用される。また、密着性、耐
久性の向上を目的として各種の前処理を施すこと
も有効な手段である。特に好ましく用いられる方
法としては、濃度にもよるが酸、アルカリなどに
よる薬品処理である。 本発明におけるA被膜中には、被膜性能、透明
性などを大幅に低下させない範囲で無機酸化物微
粒子以外の無機化合物などを添加することができ
る。これらの添加物の併用によつて基材との付着
性、耐薬品性、表面硬度、耐久性、染色性などの
諸物性を向上させることができる。 前記の添加可能な無機材料としては以下の一般
式[]で表わされる金属アルコキシドおよび/
またはその加水分解物、更には金属キレート化合
物が挙げられる。 M(OR)n [] (ここでRはアルキル基、アシル基、アルコキシ
アルキル基であり、mは金属Mの電荷数と同じ値
である。Mとしてはケイ素、チタン、ジルコン、
アンチモン、タンタル、ゲルマニウム、アルミニ
ウムである。) 本発明のA被膜中に含まれる有機物ポリマーを
熱硬化性樹脂で形成せしめる場合には、硬化促
進、低温硬化などを可能とする目的で各種の硬化
剤が使用可能である。硬化剤としては各種エポキ
シ樹脂硬化剤、あるいは各種有機ケイ素樹脂硬化
剤などが適用される。 これらの硬化剤の具体的な例としては、各種の
有機酸およびそれらの酸無水物、窒素含有有機化
合物、各種金属錯化合物あるいは金属アルコキシ
ド、さらにはアルカリ金属の有機カルボン酸塩、
炭酸塩などの各種塩、さらには、過酸化物、アゾ
ビスイソブチニトリルなどのラジカル重合開始剤
などが挙げられる。これらの硬化剤は2種以上混
合して使用することも可能である。これらの硬化
剤の中でも本発明の目的には、塗料の安定性、コ
ーテイング後の塗膜の着色防止などの点から、特
に下記に示すアルミニウムキレート化合物が有用
である。 ここでいうアルミニウムキレート化合物とは、
一般式AlXoY3-oで示されるアルミニウムキレー
ト化合物である。 (但し式中、XはOL(Lは低級アルキル基)、Y
は一般式M1COCH2COM2(M1、M2はいずれも低
級アルキル基)で示される化合物に由来する配位
子、および一般式M3COCH2COOM4(M3、M4
いずれも低級アルキル基)で示される化合物に由
来する配位子から選ばれる少なくとも1つであ
り、nは0、1または2である。) 本発明の硬化剤として特に有用な一般式AlXo
Y3-oで示されるアルミニウムキレート化合物の
うちでは、組成物への溶解性、安定性、硬化触媒
として効果などの観点からして、アルミニウムア
セチルアセトネート、アルミニウムビスエチルア
セトアセテートモノアセチルアセトネート、アル
ミニウム−ジ−n−ブトキシド−モノエチルアセ
トアセテート、アルミニウム−ジ−iso−プロポ
キシド−モノメチルアセトアセテートなどが好ま
しい。これらは2種以上を混合して使用すること
も可能である。 B被膜の形成に際しては前もつて、活性化ガス
処理、薬品処理などを施してもよい。 また、B被膜であるSiO2の形成方法としては
A被膜との付着強度、膜密度向上の観点から真空
雰囲気下での形成手段が好ましく、真空蒸着法、
スパツタリング法、イオンプレーテイング法など
が特に好ましい。 一方前記のA被膜の前処理である活性化ガスに
よる表面処理は真空蒸着、スパツタリング、イオ
ンプレーテイングなどと分けて行なうことも可能
であるが同一チヤンバー内で行なわれることが生
産性向上ばかりでなく密着性をより一段と向上さ
せるのに有効である。かかる活性化ガス処理を適
用する場合には、処理条件としてはA被膜の組成
物、硬化条件、膜厚、染色の有無などによつてそ
れぞれ最適化されるべきであり、実験的に定めら
れるべきものである。 SiO2からなるB被膜の膜圧は目的とする反射
防止の要求性能、たとえば表面硬度、反射防止
性、耐薬品性などによつて決定されるが、特に反
射防止性を最大限に付与するという観点からは適
用波長λでの光学的膜圧がλ/4に設定されるこ
とが望ましい。 また本発明の好ましい実施態様としては、A被
膜を有する透明基材をあらかじめ分散染料などを
用いて染色したのち、前記のB被膜を設けて着色
した反射防止物品が挙げられる。 本発明における反射防止物品はそれ自体で実用
的には十分な性能を有するものであるが、さらに
反射防止効果を高める目的から本発明被膜上にさ
らに単層または多層の反射防止膜を設けることも
可能である。 〔実施例〕 以下に実施例を挙げて説明するが、本発明はこ
れらに限定されるものではない。 実施例1〜3、比較例1〜3 (1) 被コーテイング透明基材の調製 テトラブロモビスフエノールAのエチレンオ
キサイド2モル付加体に1モルのアクリル酸を
エステル化により結合させた水酸基含有化合物
1モルに対し、ヘキサメチレンジイソシアネー
トを0.9モル付加させた多官能アクリレートモ
ノマーを含むモノマー70部とスチレン30部をイ
ソプロピルパーオキサイドを重合開始剤として
キヤスト重合した基材を低温プラズマ処理を行
ない、表面処理された基材を得た。得られた樹
脂の屈折率は1.6であつた。 (2) コーテイング組成物の調製 (a) γ−グリシドキシプロピルトリメトキシシ
ラン加水分解物の調製 回転子を備えた反応器中にγ−グリシドキ
シプロピルトリメトキシシラン95.3gを仕込
み、液温を10℃に保ち、マグネツクスターラ
ーで撹拌しながら0.01規定塩酸水溶液21.8g
を徐々に滴下する。滴下終了後冷却をやめ
て、γ−グリシドキシプロピルトリメトキシ
シランの加水分解を得た。 (b) 塗料の調製 前記シラン加水分解物に、メタノール216
g、ジメチルホルムアミド216g、フツ素系
界面活性剤0.5g、ビスフエノールA型エポ
キシ樹脂(シエル化学社製 商品名 エピコ
ート827)67.5gを添加混合し、さらにコロ
イド状五酸化アンチモンゾル(日産化学社製
商品名 アンチモンゾルA−2550 平均粒
子径 60mμ)270g、アルミニウムアセチ
ルアセトネート13.5gを添加し、充分撹拌し
た後、コーテイング組成物とした。 (3) A被膜を有するプラスチツク成形体の作製 前記(1)によつて得られた被コーテイング樹脂
に前記(2)で調製したコーテイング組成物を引き
上げ速度10cm/分の条件で被コーテイング樹脂
に浸漬塗布し、次いで82℃/12分の予備硬化を
行ないさらに93℃/4時間加熱してA被膜を有
するプラスチツク成形体を得た。 A被膜の屈折率は1.58、膜圧は2300nmであ
つた。 (4) 反射防止物品の作製 前記(3)によつて得られたA被膜を有する透明
基材の上にB被膜であるところのSiO2を真空
蒸着法でそれぞれ光学的膜厚を第1表に示す膜
厚に設定して、被覆させた。 なお、比較例とて透明基材のみ(比較例1)、
A被膜のみ(比較例2)および実施例1におい
てA被膜に含まれる無機酸化物微粒子を除いた
以外はすべて同様に行なつたもの(比較例3)
についても以下の性能評価を行なつた。 (5) 性能評価 得られた反射防止物品の性能は下記の方法に
従つて試験を行なつた。結果は第1表に示す。 (イ) スチールウール硬度 #0000のスチールウールで塗面をこすり、
傷つき具合を判定する。判定基準は、 A…強く摩擦しても傷がつかない。 B…かなり強く摩擦すると少し傷がつく。 C…弱い摩擦でも傷がつく。 (ロ) 密着性 塗膜面に1mm間隔の基材に達するゴバン目
を塗膜の上から鋼ナイフで100個入れて、セ
ロハン粘着テープ(商品名“セロテープ”ニ
チバン株式会社製)を強くはりつけ、90度方
向に急速にはがし、塗膜剥離の有無を調べ
た。 (ハ) 外観 得られた物品を肉眼にてその透明性、クラ
ツクの有無などを観察した。 (ニ) 全光線透過率 可視光域全体での光線透過率を測定した。
[Industrial Application Field] The present invention has excellent scratch resistance, abrasion resistance, impact resistance,
Chemical resistance, flexibility, heat resistance, hot water resistance, light resistance,
The present invention relates to an antireflection article that has excellent weather resistance, stainability, and antireflection properties and is suitable for optical applications such as eyeglass lenses, camera lenses, and CRT filters, and a method for manufacturing the same. [Prior Art] Plastic molded products, especially molded products such as plastic lenses, have been in great demand in recent years because they have extremely excellent impact resistance and transparency, are lightweight, and can be easily dyed. is increasing. However, plastic has the disadvantage that its surface hardness is lower than that of inorganic glass and it is easily scratched. Furthermore, when viewing objects through a transparent substrate such as an inorganic glass article or a transparent plastic molded article, the reflected light is strong and it is troublesome for the reflected image to be clear. For example, in eyeglass lenses, reflected images called ghosts and flares can occur. This can cause eye discomfort. Therefore, in order to prevent reflection, a method has heretofore been used in which a film of a material having a refractive index different from that of the base material is formed on the base material by vacuum evaporation or the like. In this case, it is known that the selection of the thickness of the material coating the base material is important in order to have a high antireflection effect (Optical Technology Contact Vol. 9).
No. 8, 17-23, (1971)). For example, in a single-layer film, if a material with a lower refractive index than the base material is selected so that the optical film thickness is 1/4 or an odd multiple of the wavelength of light, minimum reflectance, that is, maximum transmittance can be obtained. It has been known. The optical film thickness here is given by the product of the refractive index of the film forming material and the film thickness of the film. Further, JP-A-52-16586 proposes providing an organopolysiloxane resin layer on a plastic molded product, and providing a metal and/or inorganic ceramic material layer thereon. [Problems to be Solved by the Invention] However, coating a film made of an inorganic oxide on a film made of an organopolysiloxane resin does not provide a sufficiently strong adhesion, resulting in peeling of the film and surface problems. It has many drawbacks, such as a decrease in hardness and the scratches that occur are thick and deep, resulting in poor practical durability. [Means for Solving the Problems] The present inventors have conducted intensive studies to solve the problems of the prior art, and as a result, have the following configuration. That is, the present invention provides an antireflection article characterized by having a two-layer structure in which the following coatings A and B are laminated in this order on the surface of a transparent base material. A has a refractive index of 1.47 to 1.65, Film thickness is 100~
20,000 nm, and a coating made of an organic polymer containing 5 to 80% by weight of inorganic oxide fine particles as a coating component. B: A film made of SiO 2 . Here, the transparent base material is a transparent base material whose haze value calculated by the following formula is 80% or less, and
If necessary, this may include those colored with dyes or the like, and those colored in patterns. In addition, transparent substrates coated with a coating material to impart scratch resistance, etc., are also included in the transparent substrates of the present invention if the haze value determined by the following formula is 80% or less. be able to. Haze value (percentage) = Diffuse light transmittance/Total light transmittance x 100 In order to more effectively exhibit the effect of reducing light reflectance and improving light transmittance as intended by the present invention, it is necessary to make the material as transparent as possible. Preferably. Furthermore, in the case where the reduction in light reflectance in the present invention is sufficient on only one side of the base material, even if the opposite side is covered with an opaque material,
It can be used as a transparent substrate as referred to in the present invention. In this case, the haze value must be defined without the opaque material on the opposite side. Examples of such transparent substrates include molded articles such as glass and plastic articles, sheets, and films. The present invention first applies the above-mentioned A to the surface of these transparent substrates.
The A coating has a refractive index of 1.47 to 1.65, and a film thickness of 100 to 1.65.
It needs to be 20000nm. That is,
If the refractive index is less than 1.47, the antireflection effect will be poor, and if it is less than 1.45, reflection will increase. On the other hand, if the refractive index exceeds 1.65, a difference in refractive index with the transparent base material is likely to occur, reflection interference fringes will be observed, and the commercial value will be low. Further, if the film thickness is less than 100 nm, the improvement in surface hardness, heat resistance, chemical resistance, etc., which is the purpose of providing the A coating, cannot be expected. Moreover, if it exceeds 20,000 nm, a decrease in impact resistance etc. is observed, which is not preferable. As a component constituting the A film having these characteristics, inorganic oxide fine particles are contained in the film in an amount of 5 to 80% by weight.
It is necessary to include. i.e. 5% by weight
If it is less than 80% by weight, it will not be possible to obtain a sufficiently strong adhesive strength with the SiO 2 coating, and if it exceeds 80% by weight, there will be problems such as poor adhesion to the transparent substrate, cracks in the A coating, and decreased impact resistance. In addition, the inorganic oxide fine particles used here are not limited as long as they do not impair transparency in the coating state, but from the viewpoint of workability and transparency, particularly preferred examples include colloidal particles. Examples include sol dispersed in More specific examples include silica sol, titania sol, zirconia sol, antimony oxide sol, and alumina sol. Among these, antimony oxide sol and titania sol are particularly preferred from the viewpoint of surface hardness, durability against perspiration, and improvement in gloss. The inorganic oxide fine particles have an average particle diameter of 1 to
A particle size of 200 mμ is usually used, but preferably a particle size of 5 to 100 mμ is used. If the average particle size exceeds 200 mμ, the resulting film will have reduced transparency and become highly cloudy, making it difficult to thicken the film. Further, there is no problem in adding various surfactants and amines to improve the dispersibility of the fine particles. Furthermore, there is no problem in using two or more types of inorganic oxide fine particles in combination. Coating A in the present invention contains a polymer made of an organic substance in addition to the above-mentioned inorganic oxide fine particles, and the organic polymer has transparency and uniformly disperses the inorganic oxide fine particles. Although there are no particular limitations on the resin as long as it can be used to form a transparent film, heat-effect resins are preferably used from the viewpoint of the hardness and chemical resistance of the film. Preferred specific examples of these thermosetting resins include monomers, oligomers, or prepolymers having polyfunctional acrylic groups, melamine resins, epoxy resins, and polyurethane resins. Polyurethane resins include aliphatic, alicyclic or aromatic isocyanates, and urethane-forming compositions comprising these and polyols. Furthermore, it also includes various modified resins that have been made capable of radical curing by introducing double bonds into the above-mentioned compounds.
Furthermore, organopolysiloxane compounds obtained from aeration-substituted silicon compounds are also preferably used. The above silicon-based compound is a compound represented by the general formula R 1 a R 2 b SiX 4-(a+b) or a hydrolysis product thereof. Here, R 1 and R 2 are each an alkyl group, an alkenyl group, an aryl group, or a hydrocarbon group having a halogen group, an epoxy group, a glycidoxy group, an amino group, a mercapto group, a methacryloxy group or a cyano group, and are of the same type. They may be of different species. X is a hydrolyzable substituent selected from alkoxy, alkoxyalkoxy, phenoxy to acetoxy groups, a and b are each 0, 1 or 2, and a+b is 1 or 2. In the case where an epoxy group or a glycidoxy group is contained in the above, the coating can be easily dyed or colored with a disperse dye or the like, resulting in a high added value. The above compositions are usually diluted in volatile solvents and applied as liquid compositions. The solvent used as a solvent is not particularly limited, but when used, it is required that it does not impair the surface properties of the object to be coated, and in addition, the stability of the composition, wettability to the substrate, volatility, etc. The decision should also be taken into consideration. Moreover, it is also possible to use not only one type of solvent but also a mixture of two or more types. Furthermore, various surfactants can be used in these coating compositions for the purpose of improving flow during application, especially block or graft copolymers of dimethylpolysiloxane and alkylene oxide. , and fluorine-based surfactants are also effective. Furthermore, it is also possible to add an ultraviolet absorber for the purpose of improving weather resistance, or an antioxidant to improve heat deterioration resistance. As the coating method, methods used in ordinary coating operations can be applied, but for example, dip coating, flow coating, spin coating, etc. are preferable. The coating composition thus applied is dried or cured by heating. As a heating method, hot air, infrared rays, etc. can be used. The heating temperature should be determined depending on the substrate to be applied and the coating composition used, but it is usually from room temperature to 250℃,
More preferably, a temperature of 35 to 200°C is used. If the temperature is lower than this, curing or drying tends to be insufficient, and if the temperature is higher than this, thermal decomposition, cracking, etc. occur, and furthermore, problems such as yellowing are likely to occur. When applying the A film in the present invention, it is preferable that the surface to be applied is cleaned, and cleaning involves removing dirt with a surfactant, degreasing with an organic solvent, and steam cleaning with Freon. etc. apply. Furthermore, it is also an effective means to perform various pretreatments for the purpose of improving adhesion and durability. A particularly preferably used method is chemical treatment with acid, alkali, etc., depending on the concentration. In the present invention, inorganic compounds other than inorganic oxide fine particles can be added to the A coating within a range that does not significantly reduce coating performance, transparency, etc. By using these additives in combination, various physical properties such as adhesion to the substrate, chemical resistance, surface hardness, durability, and dyeability can be improved. The inorganic materials that can be added include metal alkoxides and/or metal alkoxides represented by the following general formula [].
or its hydrolyzate, and further metal chelate compounds. M(OR) n [] (Here, R is an alkyl group, an acyl group, or an alkoxyalkyl group, and m is the same value as the number of charges of the metal M. M is silicon, titanium, zircon,
They are antimony, tantalum, germanium, and aluminum. ) When the organic polymer contained in Coating A of the present invention is formed from a thermosetting resin, various curing agents can be used for the purpose of accelerating curing, enabling low-temperature curing, etc. As the curing agent, various epoxy resin curing agents or various organosilicon resin curing agents can be used. Specific examples of these curing agents include various organic acids and their acid anhydrides, nitrogen-containing organic compounds, various metal complex compounds or metal alkoxides, and organic carboxylates of alkali metals.
Examples include various salts such as carbonates, and radical polymerization initiators such as peroxides and azobisisobutynitrile. It is also possible to use a mixture of two or more of these curing agents. Among these curing agents, the aluminum chelate compounds shown below are particularly useful for the purpose of the present invention from the viewpoints of stability of the coating material, prevention of discoloration of the coating film after coating, and the like. The aluminum chelate compound mentioned here is
It is an aluminum chelate compound represented by the general formula AlX o Y 3-o . (However, in the formula, X is OL (L is a lower alkyl group), Y
is a ligand derived from a compound represented by the general formula M 1 COCH 2 COM 2 (M 1 and M 2 are both lower alkyl groups), and a ligand derived from the compound represented by the general formula M 3 COCH 2 COOM 4 (M 3 and M 4 are both lower alkyl groups). is at least one ligand derived from a compound represented by a lower alkyl group), and n is 0, 1 or 2. ) The general formula AlX o is particularly useful as a curing agent in the present invention.
Among the aluminum chelate compounds represented by Y 3-o , aluminum acetylacetonate, aluminum bisethylacetoacetate monoacetylacetonate, aluminum bisethylacetoacetate monoacetylacetonate, Preferred examples include aluminum di-n-butoxide monoethylacetoacetate and aluminum di-iso-propoxide monomethylacetoacetate. It is also possible to use a mixture of two or more of these. Before forming the B coating, activated gas treatment, chemical treatment, etc. may be performed. In addition, as a method for forming SiO 2 which is the B film, from the viewpoint of adhesion strength with the A film and improvement of film density, forming means in a vacuum atmosphere is preferable, such as vacuum evaporation method,
Particularly preferred are sputtering method and ion plating method. On the other hand, the surface treatment with activated gas, which is the pretreatment for the A coating, can be performed separately from vacuum evaporation, sputtering, ion plating, etc., but it is better to perform them in the same chamber, as well as improve productivity. This is effective in further improving adhesion. When applying such activated gas treatment, the treatment conditions should be optimized depending on the composition of the A coating, curing conditions, film thickness, presence or absence of dyeing, etc., and should be determined experimentally. It is something. The thickness of the B coating made of SiO 2 is determined by the desired anti-reflection performance, such as surface hardness, anti-reflection properties, chemical resistance, etc. From this point of view, it is desirable that the optical film thickness at the applied wavelength λ be set to λ/4. Further, a preferred embodiment of the present invention includes an antireflection article in which a transparent base material having a coating A is dyed in advance using a disperse dye or the like, and then the above-mentioned coating B is provided and colored. Although the antireflection article of the present invention has sufficient performance for practical use by itself, a single layer or multilayer antireflection coating may be further provided on the coating of the present invention for the purpose of further enhancing the antireflection effect. It is possible. [Examples] Examples will be described below, but the present invention is not limited thereto. Examples 1 to 3, Comparative Examples 1 to 3 (1) Preparation of transparent substrate to be coated Hydroxyl group-containing compound 1 in which 1 mole of acrylic acid is bonded to 2 moles of ethylene oxide adduct of tetrabromobisphenol A by esterification 70 parts of a monomer containing a polyfunctional acrylate monomer to which 0.9 mol of hexamethylene diisocyanate has been added and 30 parts of styrene were cast-polymerized using isopropyl peroxide as a polymerization initiator, and a base material was subjected to low-temperature plasma treatment to obtain a surface-treated material. A base material was obtained. The refractive index of the obtained resin was 1.6. (2) Preparation of coating composition (a) Preparation of γ-glycidoxypropyltrimethoxysilane hydrolyzate 95.3 g of γ-glycidoxypropyltrimethoxysilane was charged into a reactor equipped with a rotor, and the liquid temperature was 21.8g of 0.01N hydrochloric acid aqueous solution while keeping at 10℃ and stirring with a magnetic stirrer.
Gradually drip. After the dropwise addition was completed, cooling was stopped to obtain hydrolysis of γ-glycidoxypropyltrimethoxysilane. (b) Preparation of paint Add methanol 216 to the silane hydrolyzate.
g, dimethylformamide 216 g, fluorine-based surfactant 0.5 g, bisphenol A type epoxy resin (manufactured by Ciel Chemical Co., Ltd., trade name: Epicoat 827) 67.5 g, and further colloidal antimony pentoxide sol (manufactured by Nissan Chemical Co., Ltd.). 270 g of antimony sol A-2550 (trade name, average particle size 60 mμ) and 13.5 g of aluminum acetylacetonate were added and stirred sufficiently to obtain a coating composition. (3) Preparation of plastic molded article having A coating The coating composition prepared in (2) above was immersed in the resin to be coated obtained in (1) above at a pulling rate of 10 cm/min. The resin was coated, then precured at 82°C for 12 minutes, and further heated at 93°C for 4 hours to obtain a plastic molded article having a coating A. The refractive index of the A film was 1.58, and the film thickness was 2300 nm. (4) Preparation of antireflection article SiO 2 , which is the B coating, was deposited on the transparent substrate having the A coating obtained in (3) above by vacuum evaporation, and the optical film thicknesses are shown in Table 1. The film thickness was set as shown in . In addition, as a comparative example, only a transparent base material (comparative example 1),
Only the A coating (Comparative Example 2) and the same procedure as in Example 1 except that the inorganic oxide fine particles contained in the A coating were removed (Comparative Example 3)
We also conducted the following performance evaluations. (5) Performance evaluation The performance of the obtained antireflection article was tested according to the following method. The results are shown in Table 1. (a) Rub the painted surface with steel wool with a hardness of #0000.
Assess the degree of injury. The criteria for evaluation are: A: No scratches even with strong friction. B... If you rub it quite strongly, it will get a little scratched. C...Even weak friction can cause damage. (B) Adhesion: Using a steel knife, insert 100 gongs that reach the base material at 1 mm intervals on the coating surface, and firmly adhere cellophane adhesive tape (trade name "Cello Tape" manufactured by Nichiban Co., Ltd.). It was rapidly peeled off in a 90 degree direction and the presence or absence of paint film peeling was examined. (c) Appearance The obtained article was visually observed for its transparency, presence or absence of cracks, etc. (d) Total light transmittance The light transmittance in the entire visible light range was measured.

〔発明の効果〕〔Effect of the invention〕

本発明によつて得られる反射防止物品には以下
のような効果がある。 (1) 高い反射防止効果がある。 (2) 高い表面硬度を有する。 (3) 密着性、汗などに対する耐久性が高い。
The antireflection article obtained by the present invention has the following effects. (1) High anti-reflection effect. (2) Has high surface hardness. (3) High adhesion and durability against sweat, etc.

Claims (1)

【特許請求の範囲】 1 透明基材の表面に下記AおよびB被膜がこの
順で積層されてなる2層構造を有することを特徴
とする反射防止物品。 A 屈折率が1.47〜1.65であり、膜厚が100〜
20000nmであり、かつ被膜構成成分として無
機酸化物微粒子を5〜80重量%を含む有機物ポ
リマーからなる被膜。 B SiO2からなる被膜。 2 A被膜の形成成分である有機物ポリマーが熱
硬化性樹脂であることを特徴とする特許請求の範
囲第1項記載の反射防止物品。 3 B被膜が真空蒸着膜であることを特徴とする
特許請求の範囲第1項記載の反射防止物品。 4 A被膜中に含まれる無機酸化物微粒子が酸化
アンチモン、チタニア、ジルコニア、酸化アルミ
ニウムから選ばれる1種以上であることを特徴と
する特許請求の範囲第1項記載の反射防止物品。 5 透明基材の表面に加熱することによつて屈折
率が1.47〜1.65、膜厚が100〜20000nmであり、
かつ被膜構成成分として無機酸化物微粒子を5〜
80重量%含む有機物ポリマーからなるA被膜を形
成し得るコーテイング組成物を塗布し、さらにそ
の上にSiO2からなるB被膜を真空雰囲気下で設
けることを特徴とする反射防止物品の製造方法。 6 A被膜の形成成分である有機物ポリマーが熱
硬化性樹脂であることを特徴とする特許請求の範
囲第5項記載の反射防止物品の製造方法。 6 B被膜が真空蒸着法、スパツタリング法、イ
オンプレーテイング法のいずれかの方法で形成さ
れてなることを特徴とする特許請求の範囲第5項
記載の反射防止物品の製造方法。
[Scope of Claims] 1. An antireflection article characterized by having a two-layer structure in which the following coatings A and B are laminated in this order on the surface of a transparent base material. A The refractive index is 1.47 to 1.65, and the film thickness is 100 to
20,000 nm, and a coating made of an organic polymer containing 5 to 80% by weight of inorganic oxide fine particles as a coating component. B A film made of SiO 2 . 2. The antireflection article according to claim 1, wherein the organic polymer that is a forming component of the A coating is a thermosetting resin. 3. The antireflection article according to claim 1, wherein the B coating is a vacuum-deposited film. 4. The antireflection article according to claim 1, wherein the inorganic oxide fine particles contained in the A coating are one or more selected from antimony oxide, titania, zirconia, and aluminum oxide. 5 By heating the surface of a transparent substrate, the refractive index is 1.47 to 1.65 and the film thickness is 100 to 20000 nm,
and 5 to 5 inorganic oxide fine particles as a coating component.
A method for producing an antireflection article, comprising applying a coating composition capable of forming a coating A consisting of an organic polymer containing 80% by weight, and further providing a coating B consisting of SiO 2 thereon in a vacuum atmosphere. 6. The method for producing an antireflection article according to claim 5, wherein the organic polymer that is a forming component of the A coating is a thermosetting resin. 6. The method for manufacturing an antireflection article according to claim 5, wherein the B coating is formed by any one of a vacuum deposition method, a sputtering method, and an ion plating method.
JP61226507A 1986-09-25 1986-09-25 Antireflection article and manufacture thereof Granted JPS6381033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61226507A JPS6381033A (en) 1986-09-25 1986-09-25 Antireflection article and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61226507A JPS6381033A (en) 1986-09-25 1986-09-25 Antireflection article and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6381033A JPS6381033A (en) 1988-04-11
JPH0455588B2 true JPH0455588B2 (en) 1992-09-03

Family

ID=16846204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61226507A Granted JPS6381033A (en) 1986-09-25 1986-09-25 Antireflection article and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6381033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848369A (en) * 1994-08-01 1996-02-20 Toppan Printing Co Ltd Transparent gas barrier material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298301A (en) * 1988-05-27 1989-12-01 Hitachi Ltd Antireflection film
JPH0240601A (en) * 1988-08-01 1990-02-09 Nitto Denko Corp Antireflection sheet
US5496641A (en) * 1991-06-13 1996-03-05 Nippon Sheet Glass Co., Ltd. Plastic lens
JPH0519102A (en) * 1991-07-15 1993-01-29 Shin Etsu Chem Co Ltd Hard coating agent and plastic optical product
TW528878B (en) * 2000-10-04 2003-04-21 Eastman Kodak Co Method of making an antireflection polymeric material
CA2408113C (en) * 2001-10-25 2005-10-04 Hoya Corporation Optical element having antireflection film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106261A (en) * 1979-01-15 1980-08-14 Dow Corning Composition made of dispersed body of colloid silica and colloid titania
JPS5674202A (en) * 1979-11-21 1981-06-19 Toray Ind Inc Optical element
JPS59100401A (en) * 1982-11-30 1984-06-09 Seiko Epson Corp Spectacle lens
JPS6029702A (en) * 1983-07-29 1985-02-15 Seiko Epson Corp Plastic lens
JPS6045201A (en) * 1983-08-23 1985-03-11 Seiko Epson Corp Plastic lens
JPS6068319A (en) * 1983-08-23 1985-04-18 Toray Ind Inc Production of antireflection lens
JPS6088901A (en) * 1983-10-20 1985-05-18 Seiko Epson Corp Plastic lens
JPS60221702A (en) * 1985-01-23 1985-11-06 Toray Ind Inc Molding having transparent coating layer
JPS60242401A (en) * 1984-04-20 1985-12-02 Toray Ind Inc Preparation of reflection preventing film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106261A (en) * 1979-01-15 1980-08-14 Dow Corning Composition made of dispersed body of colloid silica and colloid titania
JPS5674202A (en) * 1979-11-21 1981-06-19 Toray Ind Inc Optical element
JPS59100401A (en) * 1982-11-30 1984-06-09 Seiko Epson Corp Spectacle lens
JPS6029702A (en) * 1983-07-29 1985-02-15 Seiko Epson Corp Plastic lens
JPS6045201A (en) * 1983-08-23 1985-03-11 Seiko Epson Corp Plastic lens
JPS6068319A (en) * 1983-08-23 1985-04-18 Toray Ind Inc Production of antireflection lens
JPS6088901A (en) * 1983-10-20 1985-05-18 Seiko Epson Corp Plastic lens
JPS60242401A (en) * 1984-04-20 1985-12-02 Toray Ind Inc Preparation of reflection preventing film
JPS60221702A (en) * 1985-01-23 1985-11-06 Toray Ind Inc Molding having transparent coating layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848369A (en) * 1994-08-01 1996-02-20 Toppan Printing Co Ltd Transparent gas barrier material

Also Published As

Publication number Publication date
JPS6381033A (en) 1988-04-11

Similar Documents

Publication Publication Date Title
CA1324539C (en) Anti-reflection optical article and process of producing the same
CN100476456C (en) Optical article comprising a multilayer anti-reflective coating and method for production thereof
EP1090968B1 (en) Coating composition and method for preparing the same, and scuff-resistant plastic lense
JPS60221702A (en) Molding having transparent coating layer
JPS5846301A (en) Transparent material having antireflection film
JPS58126502A (en) Antireflection plastic optical parts
JPH0335236A (en) Photochromic article
JPH0455588B2 (en)
JPS63309901A (en) Spectacles lens made of plastic
JPS6289902A (en) Transparent molding
CA2097665C (en) Coating composition and lens coated therewith
JPH10292135A (en) Coating composition, its production, and laminate using the same
JPS6385701A (en) Antireflection article and its production
EP0763581A2 (en) Primer composition and optical material
JP2594042B2 (en) Anti-reflective coating
JPH10120444A (en) Composition for surface modifying membrane, surface modifying membrane, filter for displaying device and displaying device
JPS63280790A (en) Antistatic article
JP2684364B2 (en) High refractive index coating film
JP2696829B2 (en) High refractive index coating film and method of manufacturing the same
JPH01275130A (en) Low reflection transparent molded piece
JP3064605B2 (en) Synthetic resin lens
JPS6193402A (en) Dyed optical article having antireflective property
JPH07119386B2 (en) Coating composition
JPS6191601A (en) Production of reflection preventive transparent material
JP2003292896A (en) Coating composition and laminate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees