JPH045549A - Emission spectrochemical analysis of steel - Google Patents
Emission spectrochemical analysis of steelInfo
- Publication number
- JPH045549A JPH045549A JP10519290A JP10519290A JPH045549A JP H045549 A JPH045549 A JP H045549A JP 10519290 A JP10519290 A JP 10519290A JP 10519290 A JP10519290 A JP 10519290A JP H045549 A JPH045549 A JP H045549A
- Authority
- JP
- Japan
- Prior art keywords
- abnormal value
- pulses
- determined
- size distribution
- inclusions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 28
- 239000010959 steel Substances 0.000 title claims abstract description 28
- 238000004458 analytical method Methods 0.000 title description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 70
- 230000002159 abnormal effect Effects 0.000 claims abstract description 40
- 238000009826 distribution Methods 0.000 claims abstract description 33
- 230000005856 abnormality Effects 0.000 claims abstract description 22
- 230000003595 spectral effect Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 45
- 239000002245 particle Substances 0.000 claims description 28
- 238000004020 luminiscence type Methods 0.000 claims description 8
- 238000004611 spectroscopical analysis Methods 0.000 claims description 7
- 238000007619 statistical method Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 24
- 238000007599 discharging Methods 0.000 abstract description 2
- 238000000611 regression analysis Methods 0.000 abstract 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 35
- 229910052782 aluminium Inorganic materials 0.000 description 31
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 238000012417 linear regression Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011496 digital image analysis Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/66—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
- G01N21/67—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、鉄鋼材料の成分を分析する発光分光分析方
法に係り、特に、鋼中介在物の粒径分布を測定するため
の鋼の発光分光分析方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical emission spectroscopic analysis method for analyzing the components of steel materials, and in particular to an optical emission spectroscopic analysis method for measuring the particle size distribution of inclusions in steel. Concerning spectroscopic analysis methods.
[従来の技術]
鋼へのアルミニウムの添加は、脱酸剤としての機能の他
に、鋼質を決定する上で重要な要素となる。鋼中アルミ
ニウムの形態は、鋼に固溶している酸可溶性アルミニウ
ム(以下、Sol、Ajllという)と、アルミナ系化
合物である酸不溶性アルミニウム(以下、1nso1.
A、Qという)との二つの形態がある。[Prior Art] The addition of aluminum to steel serves as an important factor in determining the quality of the steel, in addition to its function as a deoxidizing agent. The forms of aluminum in steel are acid-soluble aluminum (hereinafter referred to as Sol, Ajll) solid-solved in steel, and acid-insoluble aluminum (hereinafter referred to as 1nso1.
There are two forms: A and Q).
製鋼工程においては各鋼種ごとにSol、Ail量が定
められており、実操業では分析結果に基づきSol、A
11量が規格範囲内に収まるようにアルミニウム添加量
を調整している。添加アルミニウムの大部分は固溶して
Sol、A11になるが、一部はIn5o1.Al1に
なる。In5o1.Ajllが鋼中に多量に存在すると
、これによりアルミナ介在物が生成され、製品に表面疵
などの欠陥が生じやすくなる。In the steelmaking process, the amounts of Sol and Ail are determined for each type of steel, and in actual operations, Sol and Ail are determined based on analysis results.
The amount of aluminum added is adjusted so that the amount of aluminum is within the standard range. Most of the added aluminum dissolves into Sol, A11, but some of it becomes In5o1. Becomes Al1. In5o1. When a large amount of Ajll is present in steel, alumina inclusions are generated, and the product is likely to have defects such as surface scratches.
特に、大粒径のアルミナ介在物が鋼中に多く存在すると
、介在物を起点に割れが生じやすく、また、製品の疲労
特性が著しく低下する。このため、深絞り材などの鋼製
品では、高い清浄度を要求されるので、製鋼工程の各段
階において鋼中のアルミナ介在物の粒度分布を正確に把
握する必要がある。In particular, when a large number of large-grain alumina inclusions are present in steel, cracks are likely to occur starting from the inclusions, and the fatigue properties of the product are significantly reduced. For this reason, steel products such as deep-drawn materials require high cleanliness, so it is necessary to accurately grasp the particle size distribution of alumina inclusions in steel at each stage of the steel manufacturing process.
一般に、鋼中介在物の平均粒径を測定する方法には、サ
ンド分析法および顕微鏡法がある。サンド分析法では、
試料を酸に溶解して残渣中のアルミナ等の介在物を選別
し、これら介在物の粒度分布を測定する。しかしながら
、サンド分析法は複雑な操作が不可欠であり、さらに分
析所要時間が2乃至5日にも及び、実用的でない。Generally, methods for measuring the average particle size of inclusions in steel include sand analysis and microscopy. In the sand analysis method,
A sample is dissolved in acid, inclusions such as alumina in the residue are screened out, and the particle size distribution of these inclusions is measured. However, the Sandoz analysis method requires complicated operations and requires analysis time of 2 to 5 days, making it impractical.
[発明が解決しようとする課題] 顕微鏡法は、JIS規格GO555に規定されている。[Problem to be solved by the invention] The microscopy method is specified in JIS standard GO555.
この方法では、試料を鏡面仕上げしなければならず、試
料作製及び測定に1乃至2日も要するので、分析結果を
迅速に得ることができない。In this method, the sample must be mirror-finished, and it takes one to two days for sample preparation and measurement, making it impossible to obtain analytical results quickly.
近年ではコンピュータ画像解析法が開発され、分析の迅
速化が進んでいるが、研磨疵およびゴミの付着により誤
差を生じやすい。また、コンピュータ画像解析法では介
在物の種類を判別することが困難であるなどの欠点があ
る。In recent years, computer image analysis methods have been developed to speed up analysis, but they are prone to errors due to polishing scratches and adhesion of dust. Furthermore, computer image analysis methods have drawbacks such as difficulty in determining the type of inclusions.
この発明は、かかる事情に鑑みてなされたものであって
、鋼中の介在物の粒度分布を迅速かつ正確に分析するこ
とができる鋼の発光分光分析方法を提供することを目的
とする。The present invention was made in view of the above circumstances, and an object of the present invention is to provide an emission spectroscopic analysis method for steel that can quickly and accurately analyze the particle size distribution of inclusions in steel.
[課題を解決するための手段]
この発明に係る鋼の発光分光分析方法は、試料にパルス
放電し、パルス放電ごとに鉄元素および分析対象元素の
分光スペクトル線の発光強度をそれぞれ検出し、検出し
た発光強度について統計的手法を用いて鉄元素の発光強
度および分析対象元素の発光強度の相関関係を求め、こ
の相関関係から試料中の分析対象元素の異常値パルスご
とに異常度を求め、これら異常度を用いて異常値パルス
をランク付けし、各ランクに属する異常値/くルスの数
を求め、それぞれの異常値パルスの数を指標として分析
対象元素を含む介在物の粒径分布を求めることを特徴と
する。[Means for Solving the Problems] The steel emission spectroscopic analysis method according to the present invention applies a pulse discharge to a sample, detects the emission intensities of the spectroscopic spectral lines of the iron element and the analysis target element for each pulse discharge, and performs detection. The correlation between the emission intensity of the iron element and the emission intensity of the analyte element is determined using a statistical method, and from this correlation, the degree of abnormality is determined for each abnormal value pulse of the analyte element in the sample. Rank the abnormal value pulses using the degree of abnormality, determine the number of abnormal values/curs belonging to each rank, and use the number of each abnormal value pulse as an index to determine the particle size distribution of inclusions containing the target element to be analyzed. It is characterized by
[作用コ
試料中には可溶性アルミニウムと不溶性アルミニウム(
アルミナ介在物)とが共存するか、両者は発光強度に現
れる挙動が異なる。一般に、不溶性アルミニウムの励起
効率が可溶性アルミニウムのそれよりも高くなるために
、PDA法によれば不溶性アルミニウムの多量の存在に
より正誤差を生じる。[The action sample contains soluble aluminum and insoluble aluminum (
(alumina inclusions) coexist, or the two exhibit different behavior in luminescence intensity. In general, the excitation efficiency of insoluble aluminum is higher than that of soluble aluminum, so the presence of a large amount of insoluble aluminum causes a positive error in the PDA method.
この発明に係る鋼の発光分光分析方法においては、試料
にパルス放電すると、多数の異常値パルスが検出される
。これらの異常値パルスにおいては、鉄元素の発光強度
に対して分析対象元素の発光強度が異常に高くなる。In the steel emission spectroscopic analysis method according to the present invention, when a pulse discharge is applied to a sample, a large number of abnormal value pulses are detected. In these abnormal value pulses, the emission intensity of the element to be analyzed becomes abnormally higher than the emission intensity of the iron element.
このようにして検出されたパルス群を回帰法により処理
し、パルス群の下方接線を相関式として求める。さらに
、この下方接線相関式を統計的解析手法により変形し、
上方接線を求める。この上方接線は、異常値パルスを他
の正常値パルスから区分するためのしきい値を与えるも
のであり、上方接線を越えるパルスを異常値パルスと判
定する。The pulse group detected in this manner is processed by a regression method, and the lower tangent line of the pulse group is determined as a correlation equation. Furthermore, this downward tangent correlation equation is transformed using statistical analysis methods,
Find the upper tangent. This upper tangent provides a threshold value for distinguishing abnormal value pulses from other normal value pulses, and a pulse that exceeds the upper tangent is determined to be an abnormal value pulse.
次いで、異常値パルスごとに異常度を求める。Next, the degree of abnormality is determined for each abnormal value pulse.
異常値パルスの異常度は、上方接線からの分析対象元素
の発光強度値の外れ方の異常さ(異常度b / a )
をあられす指数である。すべての異常値パルスの異常度
b / aについてランク付けし、各ランクに属する異
常値パルス数を指標に介在物の粒径分布を求める。この
場合に、介在物の粒径分布か既知の標準試料にパルス放
電して各粒径ごとに異常値パルスを予め検出しておき、
これら異常値パルスを基準値として用いる。これらの基
準値と実測の異常値パルスとの比較において試料中の介
在物の粒径分布を求める。The degree of abnormality of the abnormal value pulse is the degree of abnormality in how the emission intensity value of the target element deviates from the upper tangent (degree of abnormality b/a)
is the hail index. All the abnormal value pulses are ranked in terms of the degree of abnormality b/a, and the particle size distribution of inclusions is determined using the number of abnormal value pulses belonging to each rank as an index. In this case, pulse discharge is performed on a standard sample whose particle size distribution of inclusions is known, and abnormal value pulses are detected in advance for each particle size.
These abnormal value pulses are used as reference values. The particle size distribution of inclusions in the sample is determined by comparing these reference values with the actually measured abnormal value pulses.
[実施例]
以下、添付の図面を参照して本発明の種々の実施例につ
いて具体的に説明する。[Embodiments] Various embodiments of the present invention will be specifically described below with reference to the accompanying drawings.
この実施例においては、連続鋳造鋳片のボトム部および
ミドル部から試料を採取し、各試料を発光分光分析する
ことにより粒径分布を測定する。In this example, samples are taken from the bottom and middle parts of a continuously cast slab, and each sample is analyzed by emission spectroscopy to measure the particle size distribution.
試料と電極との間に5秒間だけ予備放電した後に更に5
秒間パルス放電し、分光スペクトル線を光電子倍増管で
受け、鉄元素およびアルミニウム元素の発光強度をそれ
ぞれ検出する。この場合に、パルス放電の周波数は40
0ヘルツである。After a pre-discharge of 5 seconds between the sample and the electrode, an additional 5
Pulse discharge is performed for seconds, and the spectral lines are received by a photomultiplier tube to detect the emission intensities of iron and aluminum elements, respectively. In this case, the frequency of pulse discharge is 40
It is 0 hertz.
発光分光分析器の光電子倍増管はデータ処理装置の入力
側に接続されている。試料に放電し、得られた鉄元素お
よびアルミニウム元素の発光強度の関係を第1図に示す
。第1図では、便宜的にプロット数を簡略化しているか
、1回の分析において実際には発光プロット群は200
0個のプロット群からなるものである。画面の横軸は鉄
元素の発光強度(画面左から右へ向って強度が大になる
)を示し、縦軸はアルミニウム元素の発光強度(画面下
から上べ向っ−て強度が大になる)を示す。The photomultiplier tube of the emission spectrometer is connected to the input side of the data processing device. FIG. 1 shows the relationship between the luminescence intensities of iron element and aluminum element obtained by discharging the sample. In Figure 1, the number of plots may be simplified for convenience, or there may actually be 200 luminescence plots in one analysis.
It consists of 0 plot groups. The horizontal axis of the screen shows the luminescence intensity of the iron element (intensity increases from left to right on the screen), and the vertical axis shows the luminescence intensity of aluminum element (intensity increases from the bottom of the screen to the top) shows.
データ処理装置のCPUは、統計的解析を実行するため
の各種プログラムを有している。発光プロットの全ての
データがデータ処理装置のメモリ部に一時的にストアさ
れ、各種の統計的解析手法によってデータ解析される。The CPU of the data processing device has various programs for executing statistical analysis. All the data of the luminescence plots are temporarily stored in the memory section of the data processing device, and the data are analyzed using various statistical analysis techniques.
次に、検出データを種々の統計的手法を用いて解析し、
プロット群の回帰線を求める手順について説明する。Next, the detected data is analyzed using various statistical methods,
The procedure for finding a regression line for a group of plots will be explained.
二点回帰法
[I]]元素の発光強度(以下、「鉄強度」という)の
総和を求め、これをパルス数(2000個)で割って鉄
強度の平均値AVを求める。Two-point regression method [I]] Find the sum of the emission intensities of the elements (hereinafter referred to as "iron intensity"), and divide this by the number of pulses (2000) to find the average value AV of the iron intensity.
[n]鉄強度が平均値Av以上の領域に存在し、かつ、
アルミニウム元素の発光強度(以下、「アルミニウム強
度」という)が小さいほうから5番目までのプロットを
抽出し、これら5個の鉄強度の平均値FHおよびアルミ
ニウム強度の平均値AHをそれぞれ求める。[n] Exists in a region where the iron strength is equal to or higher than the average value Av, and
The fifth plots with the lowest emission intensity of the aluminum element (hereinafter referred to as "aluminum intensity") are extracted, and the average value FH of these five iron intensities and the average value AH of the aluminum intensities are determined, respectively.
[m]鉄強度が平均値Av未満の領域に存在し、かつ、
アルミニウム元素の発光強度(以下、「アルミニウム強
度」という)が小さいほうから5番目までのプロットを
抽出し、これら5個の鉄強度の平均値FLおよびアルミ
ニウム強度の平均値ALをそれぞれ求める。[m] Exists in a region where the iron strength is less than the average value Av, and
The fifth plots with the smallest emission intensity of the aluminum element (hereinafter referred to as "aluminum intensity") are extracted, and the average value FL of these five iron intensities and the average value AL of the aluminum intensities are determined, respectively.
[IV]上方領域を代表する平均値(FH,AH)の交
点Pと、下方領域を代表する平均値(FL。[IV] The intersection point P of the average values (FH, AH) representing the upper region and the average value (FL) representing the lower region.
AL)の交点Qと、の二点を通る直線の式を求める。こ
の直線式は、鉄強度および・アルミニウム強度の下方接
線を表わす相関式として下記(1)式のように表現でき
る。Find the equation of the straight line that passes through the intersection Q of AL) and the two points. This linear equation can be expressed as the following equation (1) as a correlation equation representing the downward tangent line of iron strength and aluminum strength.
(Aff )−(Fe)xA、 十B+ ・・・(
1)ただし、(1)はアルミニウム強度、(Fe)は鉄
強度、A1はXY座標上における直線の傾き、B1はX
Y座標上における直線の切片をそれぞれ示す。(Aff)-(Fe)xA, 10B+...(
1) However, (1) is the aluminum strength, (Fe) is the iron strength, A1 is the slope of the straight line on the XY coordinates, and B1 is the X
The intercepts of straight lines on the Y coordinate are shown.
鉄カラム最小二乗回帰法
[I]]元素の発光強度(以下、「鉄強度」という)の
総和を求め、これをパルス数(2000個)で割って鉄
強度の平均値AVを求める。Iron Column Least Squares Regression Method [I]] The sum of the emission intensities of the elements (hereinafter referred to as "iron intensity") is determined, and this is divided by the number of pulses (2000) to determine the average value AV of the iron intensity.
[11]平均値Avを10で割って、カラム幅を求める
。鉄強度が平均値AVを下まわる領域に存在するプロッ
ト群を10個のカラムL1〜LIOに等分割する。[11] Divide the average value Av by 10 to find the column width. The plot group existing in the region where the iron strength is below the average value AV is equally divided into 10 columns L1 to LIO.
[m]]1カラムL、に存在するプロットのうちアルミ
ニウム強度の小さいほうからn番目までのプロットの鉄
強度平均値FVIおよびアルミニウム強度平均値AVI
を求める。[m]] Iron strength average value FVI and aluminum strength average value AVI of the n-th plots from the lowest aluminum strength among the plots existing in 1 column L.
seek.
[IV]第2カラムL2乃至第10カラムLIOについ
ても同様の手順によりそれぞれ鉄強度平均値FV2〜F
VIOおよびアルミニウム強度平均値AV2〜AVIO
を求める。[IV] For the second column L2 to the tenth column LIO, the iron strength average values FV2 to FV are determined by the same procedure, respectively.
VIO and aluminum strength average value AV2 ~ AVIO
seek.
[V]各シカラム代表する平均値(FVI。[V] Average value (FVI) representing each cikaram.
AVI)〜(FVIO,AVIO)に相当する10個の
交点を最小二乗法により一次回帰し、直線の式を求める
。この直線式は、鉄強度およびアルミニウム強度の下方
接線を表わす相関式として下記(2)式のように表現で
きる。10 intersection points corresponding to AVI) to (FVIO, AVIO) are subjected to linear regression using the method of least squares to obtain a straight line equation. This linear equation can be expressed as the following equation (2) as a correlation equation representing the lower tangent line of iron strength and aluminum strength.
(AΩ)−(Fe)XA2 十B2 −= (2)た
たし、A2はXY座標上における直線の傾き、B2はX
Y座標上における直線の切片をそれぞれ示す。(AΩ) - (Fe)
The intercepts of straight lines on the Y coordinate are shown.
回帰収斂相関係数判定法
[1]相関図より鉄強度とアルミニウム強度を最小二乗
法により一次回帰し、下記(3)式を求める。Regression convergence correlation coefficient determination method [1] From the correlation diagram, iron strength and aluminum strength are subjected to linear regression using the least squares method to obtain equation (3) below.
(Ai))−(F e) XA3 +83
− (3)ただし、A、はXY座標上における直線
の傾き、B3はXY座標上における直線の切片をそれぞ
れ示す。この場合に、プロット群の分散の程度を表わす
相関係数は小さい。(Ai)) - (Fe) XA3 +83
- (3) However, A indicates the slope of the straight line on the XY coordinates, and B3 indicates the intercept of the straight line on the XY coordinates. In this case, the correlation coefficient representing the degree of dispersion of the plot group is small.
[II]上記(3)式に対応する直線より上方領域に存
在するプロット群を棄却し、直線を下まわる領域に存在
するプロット群につき鉄強度およびアルミニウム強度を
最小二乗法により一次回帰し、下記(4)式を求める。[II] Discard the plot groups that exist in the area above the straight line corresponding to equation (3) above, perform linear regression on the iron strength and aluminum strength using the least squares method for the plot groups that exist in the area below the straight line, and calculate the following: Find equation (4).
これにより、相関係数が増大する。This increases the correlation coefficient.
(AN ) (F e)XA4’ +B4 −(
4)ただし、(All)はアルミニウム強度、(F e
)は鉄強度、A4はXY座標上における直線の傾き、B
4はXY座標上における直線の切片をそれぞれ示す。(AN) (F e)XA4' +B4 -(
4) However, (All) is aluminum strength, (F e
) is the steel strength, A4 is the slope of the straight line on the XY coordinates, B
4 indicates the intercept of a straight line on the XY coordinates.
[m]上記のように一次回帰と上方棄却の操作を繰り返
すことにより相関係数を増大させ、相関係数か所定値を
越えたところで繰り返し演算を止め、そのときの回帰式
を求める。最終の回帰式を下記(5)式に示す。[m] Increase the correlation coefficient by repeating the linear regression and upward rejection operations as described above, stop the repeated calculations when the correlation coefficient exceeds a predetermined value, and find the regression equation at that time. The final regression equation is shown in equation (5) below.
(Aj))−(Fe)XAs 十B、 −(5)回帰
収斂相関係数判定異常パルス(プロ・ント)棄却法
[I]相関図より鉄強度とアルミニウム強度を最小二乗
法により一次回帰し、下記(6)式を求める。(Aj)) - (Fe) , find the following equation (6).
(IQ)−(Fe)XA6+B6 、、、(6)ただ
し、A6はXY座標上における直線の傾き、B6はXY
座標上における直線の切片をそれぞれ示す。この場合に
、プロット群の分散の程度を表わす相関係数は小さい。(IQ) - (Fe)XA6+B6 , , (6) where A6 is the slope of the straight line on the
Each shows the intercept of a straight line on the coordinates. In this case, the correlation coefficient representing the degree of dispersion of the plot group is small.
[II]上記(6)式に対応する直線より上方領域に存
在するプロット群を棄却し、直線を下まわる領域に存在
するプロット群につき鉄強度およびアルミニウム強度を
最小二乗法により一次回帰し、下記(7)式を求める。[II] Discard the plot groups that exist in the area above the straight line corresponding to the above equation (6), linearly regress the iron strength and aluminum strength using the least squares method for the plot groups that exist in the area below the straight line, and calculate the following: Find equation (7).
これにより、相関係数が増大する。This increases the correlation coefficient.
(AjJ )−(F e)XA7 + 87 −
(7)ただし、A7はXY座標上における直線の傾
き、B7はXY座標上における直線の切片をそれぞれ示
す。(AjJ)-(Fe)XA7+87-
(7) However, A7 indicates the slope of the straight line on the XY coordinates, and B7 indicates the intercept of the straight line on the XY coordinates.
[Inl上記のように一次回帰と上方棄却の操作を繰り
返すことにより相関係数を増大させ、相関係数か所定値
を越えたところで繰り返し演算を止め、そのときの回帰
線を求める。この暫定回帰線から各プロット(残留する
プロット)までの距離dをそれぞれ求め、その標準偏差
σ6を下記(8)式により求める。ただし、Nは残留プ
ロットの数とする。[Inl As described above, the correlation coefficient is increased by repeating the linear regression and upward rejection operations, and when the correlation coefficient exceeds a predetermined value, the repeated calculation is stopped and the regression line at that time is determined. The distance d from this provisional regression line to each plot (remaining plot) is determined, and its standard deviation σ6 is determined using the following equation (8). However, N is the number of residual plots.
σ、−Σd2/ (N−1) ・・・(8)[
IV]標準偏差σ、の2倍を越えるプロットを異常値と
して棄却するか、または、暫定回帰線からの距離dが遠
いほうから10%のプロットを棄却する。異常値を棄却
した後に、再び最小二乗法を用いて一次回帰し、回帰線
を求める。この最終回帰線は下記(9)式で表わされる
。σ, -Σd2/ (N-1) ... (8) [
IV] Plots with more than twice the standard deviation σ are rejected as abnormal values, or plots with a distance d from the provisional regression line that is 10% from the farthest are rejected. After rejecting abnormal values, linear regression is performed again using the least squares method to obtain a regression line. This final regression line is expressed by the following equation (9).
(AN)−(Fe)xA、+B、 −(9)ただし
、A、はXY座標上における最終回帰線の傾き、B9は
XY座標上における最終回帰線の切片をそれぞれ示す。(AN)-(Fe)xA, +B, -(9) where A indicates the slope of the final regression line on the XY coordinates, and B9 indicates the intercept of the final regression line on the XY coordinates.
回帰収斂パルス(プロット)敷料定法
[I]相関図より鉄強度とアルミニウム強度を最小二乗
法により一次回帰し、下記(10)式を求める。Regression Convergence Pulse (Plot) Litter Method [I] From the correlation chart, iron strength and aluminum strength are linearly regressed by the least squares method to obtain the following equation (10).
(A、& )−(F e)XA+o+B+o −(1
0)ただし、AHOはXY座標上における直線の傾き、
BIOはXY座標上における直線の切片をそれぞれ示す
。(A, & )−(F e)XA+o+B+o −(1
0) However, AHO is the slope of the straight line on the XY coordinates,
BIO each indicates a straight line segment on the XY coordinates.
[II]上記(10)式に対応する直線より上方領域に
存在するプロット群を棄却し、直線を下まわる領域に存
在するプロット群につき鉄強度およびアルミニウム強度
を最小二乗法により一次回帰し、下記(11)式を求め
る。[II] Discard the plot groups that exist in the area above the straight line corresponding to the above equation (10), linearly regress the iron strength and aluminum strength using the least squares method for the plot groups that exist in the area below the straight line, and calculate the following: Find equation (11).
(All)−(F e) ×A+++Bz−(11)た
だし、A11はXY座標上における直線の傾き、Bll
はXY座標上における直線の切片をそれぞれ示す。(All)-(F e) ×A+++Bz-(11) However, A11 is the slope of the straight line on the XY coordinates, Bll
indicate the intercept of a straight line on the XY coordinates.
[III]上記のように一次回帰と上方棄却の操作を繰
り返すことにより残留プロット数を減少させ、プロット
数が所定数(例えば100個)より少なくなったところ
で繰り返し演算を止め、そのときの回帰線を求める。こ
の最終回帰線は下記(12)式で表わされる。[III] Reduce the number of residual plots by repeating the linear regression and upward rejection operations as described above, and stop the repeated calculation when the number of plots becomes less than a predetermined number (for example, 100), and then calculate the regression line at that time. seek. This final regression line is expressed by the following equation (12).
(Ai))−(F e)XA12+B12 − (1
2)ただし、A3.はXY座標上における最終回帰線の
傾き、BI2はXY座標上における最終回帰線の切片を
それぞれ示す。(Ai))-(Fe)XA12+B12-(1
2) However, A3. represents the slope of the final regression line on the XY coordinates, and BI2 represents the intercept of the final regression line on the XY coordinates.
回帰収斂パルス(プロット)敷料定異常パルス棄却法
[I]相関図より鉄強度とアルミニウム強度を最小二乗
法により一次回帰し、下記(13)式を求める。Regression Convergence Pulse (Plot) Bedding Constant Abnormal Pulse Rejection Method [I] From the correlation diagram, the iron strength and aluminum strength are linearly regressed by the least squares method to obtain the following equation (13).
(AN )−(F e)XA12+B12 − (1
B)ただし、AI3はXY座棟上における直線の傾き、
BI3はXY座標上における直線の切片をそれぞれ示す
。(AN)-(Fe)XA12+B12-(1
B) However, AI3 is the slope of the straight line on the XY seat ridge,
BI3 indicates the intercept of a straight line on the XY coordinates.
[II]上記(13)式に対応する直線より上方領域に
存在するプロット群を棄却し、直線を下まわる領域に存
在するプロット群につき鉄強度およびアルミニウム強度
を最小二乗法により一次回帰し、下記(14)式を求め
る。[II] Discard the plot groups that exist in the area above the straight line corresponding to the above equation (13), perform linear regression on the iron strength and aluminum strength using the least squares method for the plot groups that exist in the area below the straight line, and calculate the following: Find equation (14).
(AN )−(F e)XA14+B14−(14)た
だし、A14はXY座機上における直線の傾き、B14
はXY座標上における直線の切片をそれぞれ示す。(AN) - (F e) XA14 + B14 - (14) However, A14 is the slope of the straight line on the XY seat machine,
indicate the intercept of a straight line on the XY coordinates.
[I[I]上記のように一次回帰と上方棄却の操作を繰
り返すことにより残留プロット数を減少させ、プロット
数が所定数(例えば100個)より少なくなったところ
で繰り返し演算を止め、そのときの暫定回帰線を求める
。暫定回帰線から各残留プロットまでの距離dをそれぞ
れ求め、上記(8)式を用いて標準偏差σ、を求める。[I [I] Reduce the number of residual plots by repeating the linear regression and upward rejection operations as described above, and stop the iterative calculation when the number of plots becomes less than a predetermined number (for example, 100). Find a provisional regression line. The distance d from the provisional regression line to each residual plot is determined, and the standard deviation σ is determined using the above equation (8).
[IV]標準偏差σ、の2倍を越えるプロットを異常値
として棄却する。異常値棄却後に、残留するプロット群
につき最小二乗法を用いて一次回帰し、最終の回帰線を
求める。この最終回帰線は下記(15)式で表わされる
。[IV] Plots that exceed twice the standard deviation σ are rejected as abnormal values. After rejecting outliers, linear regression is performed on the remaining plot groups using the least squares method to obtain a final regression line. This final regression line is expressed by the following equation (15).
(AII) −(F e) XA15+ Bus −
(15)ただし、AI、はXY座棟上における最終回帰
線の傾き、B15はXY座標上における最終回帰線の切
片をそれぞれ示す。(AII) −(Fe) XA15+ Bus −
(15) However, AI indicates the slope of the final regression line on the XY ridge, and B15 indicates the intercept of the final regression line on the XY coordinates.
上述の六通りの方法のうちのいずれかによりプロット群
の回帰線(下方接線)を求める。Determine the regression line (lower tangent) of the plot group using one of the six methods described above.
次に、上記回帰線(以下、一般式(Ai))−(Fe)
xA+Bを用いて表現する)を用いて、下記の方法によ
りアルミナ介在物の粒径分布を求める場合について説明
する。Next, the above regression line (hereinafter general formula (Ai)) - (Fe)
A case will be described in which the particle size distribution of alumina inclusions is determined by the following method using xA+B).
[I]下記■又は■のいずれか一方の方法により上方領
域に存在する異常値パルスのしきい値を求める。[I] Determine the threshold value of the abnormal value pulse existing in the upper region using either method (1) or (2) below.
■等式(A11)−(Fe)XAXN+Bを求める。(2) Find equation (A11)-(Fe)XAXN+B.
但し、Nは定数とする。However, N is a constant.
上記等式を第1図中の直線Gに示す。各異常値パルスご
とに異常度b / aを求め、異常度b / aにより
各異常値パルスのランク付けをする。異常度b / a
は下記(16)式により求める。The above equation is shown as straight line G in FIG. The degree of abnormality b/a is determined for each abnormal value pulse, and each abnormal value pulse is ranked based on the degree of abnormality b/a. Abnormality level b/a
is determined by the following equation (16).
b/a−[(八Ω) −1(Fe) x AX N+
BlコバFe)ただし、この異常度の計算は、直線Gよ
り上方領域に存在する異常値パルスのみ行なう。b/a-[(8Ω) -1(Fe) x AX N+
However, this calculation of the degree of abnormality is performed only for abnormal value pulses existing in the region above the straight line G.
■等式(AN )= (F e)XAXN十Cを求める
。■ Find the equation (AN)=(F e)XAXN+C.
但し、Nは定数、C−FHXA十Bとする。However, N is a constant, C-FHXA10B.
上記等式を第2図中の直線Hに示す。各異常値パルスご
とに異常度b / aを求め、異常度b / aにより
各異常値パルスのランク付けをする。異常度b / a
は下記(17)式により求める。The above equation is shown as straight line H in FIG. The degree of abnormality b/a is determined for each abnormal value pulse, and each abnormal value pulse is ranked according to the degree of abnormality b/a. Abnormality level b/a
is determined by the following equation (17).
b/a= [(Aff) −f(Pe) X A x
N+ C1]/ (Pe)・・・(17)
ただし、この異常度の計算は、直線Hより上方領域に存
在する異常値パルスのみ行なう。b/a= [(Aff) −f(Pe) X A x
N+C1]/(Pe) (17) However, this degree of abnormality is calculated only for abnormal value pulses that exist in the region above the straight line H.
[n]ランク付けされた異常値パルスを各ランクごとに
集計し、各ランクに属する異常値パルスの数を求める。[n] The ranked abnormal value pulses are totaled for each rank, and the number of abnormal value pulses belonging to each rank is determined.
各ランクは、例えば、粒径が5μm以下、 5〜10
μm 、 10〜15μmのように5μmごとに区分さ
れている。なお、異常度によるランク付けと介在物粒径
分布との相関は、粒径分布が既知である標準試料を用い
て予め求めておき、各ランクに属する異常値パルスの数
がら、介在物の粒径分布を求める。Each rank is, for example, particle size is 5 μm or less, 5 to 10
μm, divided into 5 μm increments such as 10 to 15 μm. The correlation between the ranking based on the degree of abnormality and the particle size distribution of inclusions is determined in advance using a standard sample with a known particle size distribution. Find the diameter distribution.
第3図および第4図は、それぞれ横軸に鋼塊ボトム部お
よび鋼塊ミドル部のアルミナ介在物の粒径をとり、縦軸
に本発明方法の測定による各粒径における介在物量をと
って、介在物粒径分布についてそれぞれ調べた分布図で
ある。In FIGS. 3 and 4, the horizontal axis represents the grain size of alumina inclusions in the bottom part of the steel ingot and the middle part of the steel ingot, and the vertical axis represents the amount of inclusions at each grain size measured by the method of the present invention. , and are distribution charts obtained by examining the particle size distribution of inclusions.
第5図および第6図は、それぞれ横軸に鋼塊ボトム部お
よび鋼塊ミドル部のアルミナ介在物の粒径をとり、縦軸
にサンド分析法の測定による各粒径における介在物量を
とって、介在物粒径分布についてそれぞれ調べた分布図
である。In Figures 5 and 6, the horizontal axis shows the particle size of alumina inclusions in the bottom and middle parts of the steel ingot, and the vertical axis shows the amount of inclusions at each particle size measured by the sand analysis method. , and are distribution charts obtained by examining the particle size distribution of inclusions.
図から明らかなように、本発明方法による分析結果はサ
ンド分析法による結果とよく一致し、本発明方法で鋳塊
の各部の粒径分布測定を正確に行なうことができる。As is clear from the figure, the analysis results obtained by the method of the present invention are in good agreement with the results obtained by the sand analysis method, and the method of the present invention can accurately measure the particle size distribution of each part of the ingot.
上記の異常値パルス異常度判定法を利用する方法によれ
ば、分析開始から終了までの所要時間は約30秒間(2
回分析の場合)であり、試料調整時間を含めても約15
分間と、アルミナ介在物の粒径分布の測定の迅速化の要
請に十分に応えることができる。According to the method using the above abnormal value pulse abnormality degree determination method, the time required from the start to the end of analysis is approximately 30 seconds (2
(in the case of multiple analysis), and it takes approximately 15 minutes including the sample preparation time.
This method can fully meet the demand for faster measurement of the particle size distribution of alumina inclusions.
なお、上記実施例では、アルミナ介在物の粒径分布を測
定する場合について説明したが、この発明はこれのみに
限られることな(、Mn5SiO□、TiO2等の他の
種類の介在物の粒径分布を測定する場合にも用いること
かできる。In addition, although the above example describes the case where the particle size distribution of alumina inclusions is measured, the present invention is not limited to this only (the particle size distribution of other types of inclusions such as Mn5SiO□, TiO2, etc.) is measured. It can also be used to measure distribution.
[発明の効果]
この発明によれば、鋼中の介在物の粒径分布を正確に測
定することができる。また、この発明によれば、分析開
始から終了までの所要時間を短くすることができ、従来
法より迅速に分析結果を得ることかできる。このため、
深絞り鋼のような清浄鋼を精錬する場合に、その品質管
理において特に有効であり、鋼製品の品質向上におおい
に寄与することができる。[Effects of the Invention] According to the present invention, the particle size distribution of inclusions in steel can be accurately measured. Further, according to the present invention, the time required from the start to the end of analysis can be shortened, and analysis results can be obtained more quickly than with conventional methods. For this reason,
It is particularly effective in quality control when refining clean steel such as deep-drawn steel, and can greatly contribute to improving the quality of steel products.
第1図及び第2図はそれぞれ発光パルス群を模式的に示
し、異常値パルス異常度判定法による粒径分布の測定手
順を説明するための図、第3図および第4図はそれぞれ
本発明方法による介在物の粒径分布を示す分布図、第5
図および第6図はそれぞれサンド分析法による介在物の
粒径分布を比較のために示す分布図である。
出願人代理人 弁理士 鈴江武彦
1史丸亀つ91光j気崖、
第
図
命νμ噴鷺どトム、壱陸1)b2咋Y1!怪(1m)第
3図
七A也ベト氏もシ51)石1町比饗L(、pm)第
図
第
図
釧→−ミドルi&陛tへデD老九径(1m)第4図
@屯ミドル!トイY&物蝋怪(Hm)
第
図FIGS. 1 and 2 schematically show a group of light emission pulses, and are diagrams for explaining the procedure for measuring particle size distribution by the abnormal value pulse abnormality determination method, and FIGS. 3 and 4 respectively show the present invention. Distribution diagram showing the particle size distribution of inclusions according to the method, No. 5
Figure 6 and Figure 6 are distribution charts showing the particle size distribution of inclusions by the sand analysis method, respectively, for comparison. Applicant's agent Patent attorney Takehiko Suzue 1 history Marugametsu 91 light j ki cliff, fig. life νμ Fusagido Tom, Ichiriku 1) b2 Kui Y1! Mystery (1m) Figure 3 Seven A and Mr. Beto 51) Stone 1 Town Higa L (, pm) Figure Figure 1 → - Middle i & Majesty t Hede D Old Nine Diameter (1m) Figure 4 @ Tun middle! Toy Y & Monoro Kai (Hm) Figure
Claims (1)
析対象元素の分光スペクトル線の発光強度をそれぞれ検
出し、検出した発光強度について統計的手法を用いて鉄
元素の発光強度および分析対象元素の発光強度の相関関
係を求め、この相関関係から試料中の分析対象元素の異
常値パルスごとに異常度を求め、これら異常度を用いて
異常値パルスをランク付けし、各ランクに属する異常値
パルスの数を求め、それぞれの異常値パルスの数を指標
として分析対象元素を含む介在物の粒径分布を求めるこ
とを特徴とする鋼の発光分光分析方法。A pulse discharge is applied to the sample, and the emission intensities of the spectral lines of the iron element and the target element are detected for each pulse discharge, and the emission intensity of the iron element and the luminescence of the target element are calculated using statistical methods for the detected luminescence intensities. The intensity correlation is determined, and the degree of abnormality is determined for each abnormal value pulse of the target element in the sample from this correlation.The abnormal value pulses are ranked using these abnormality degrees, and the abnormal value pulses belonging to each rank are determined. A method for optical emission spectroscopic analysis of steel, characterized in that the particle size distribution of inclusions containing the target element to be analyzed is determined using the number of abnormal value pulses as an index.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10519290A JPH045549A (en) | 1990-04-23 | 1990-04-23 | Emission spectrochemical analysis of steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10519290A JPH045549A (en) | 1990-04-23 | 1990-04-23 | Emission spectrochemical analysis of steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH045549A true JPH045549A (en) | 1992-01-09 |
Family
ID=14400809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10519290A Pending JPH045549A (en) | 1990-04-23 | 1990-04-23 | Emission spectrochemical analysis of steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH045549A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0869295A2 (en) | 1997-04-02 | 1998-10-07 | Mabuchi Motor Kabushiki Kaisha | Motor assembly with reduction gear |
WO2007132624A1 (en) | 2006-05-17 | 2007-11-22 | Mabuchi Motor Co., Ltd. | Motor with reduction gear and method of manufacturing the same |
-
1990
- 1990-04-23 JP JP10519290A patent/JPH045549A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0869295A2 (en) | 1997-04-02 | 1998-10-07 | Mabuchi Motor Kabushiki Kaisha | Motor assembly with reduction gear |
WO2007132624A1 (en) | 2006-05-17 | 2007-11-22 | Mabuchi Motor Co., Ltd. | Motor with reduction gear and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114841986B (en) | Herbal pieces-quality monitoring analytic system based on machine vision | |
TW455972B (en) | Defect analysis method and process control method | |
JP2941308B2 (en) | Inspection system and electronic device manufacturing method | |
US6741941B2 (en) | Method and apparatus for analyzing defect information | |
US20190285611A1 (en) | Gender and race identification from body fluid traces using spectroscopic analysis | |
CN109409969A (en) | Enterprise tax fraud detection method, electronic equipment and storage medium | |
Roy et al. | IMPERFECTION WITH INSPECTION POLICY AND VARIABLE DEMAND UNDER TRADE-CREDIT: A DETERIORATING INVENTORY MODEL. | |
Asjodi et al. | Spatial analysis of damage evolution in cyclic-loaded reinforced concrete shear walls | |
Mihoilovich et al. | Selection of methods of acceptance inspection in production | |
JPH045549A (en) | Emission spectrochemical analysis of steel | |
Schmidt et al. | An economic evaluation of improvements in process capability for a single-level canning problem | |
Nychka et al. | NDE assessment of TBCs: an interim report of a photo-stimulated luminescence ‘round-robin’test | |
Messerlian et al. | Use of maternal race and weight provides equitable performance in serum screening for open neural tube defects | |
CN114819768B (en) | Condenser lead-out wire welding control system | |
JPH045548A (en) | Emission spectrochemical analysis of steel | |
JPH045552A (en) | Emission spectrochemical analysis of steel | |
JP4439803B2 (en) | Manufacturing data analysis method and program causing computer to execute the method | |
Xie et al. | Detecting vitreous wheat kernels using reflectance and transmittance image analysis | |
JPH045550A (en) | Emission spectrochemical analysis of steel | |
JPH045553A (en) | Emission spectrochemical analysis of steel | |
Wegulo et al. | Near-infrared versus visual sorting of Fusarium-damaged kernels in winter wheat | |
Tobe et al. | A new method for predicting of rock fall from the tunnel face | |
JPH06242003A (en) | Grain size measuring method for alumina in steel | |
JPH045551A (en) | Emission spectrochemical analysis of steel | |
JPH03255343A (en) | Emission spectrochemical analysis method for steel |