JPH0455256B2 - - Google Patents

Info

Publication number
JPH0455256B2
JPH0455256B2 JP61247991A JP24799186A JPH0455256B2 JP H0455256 B2 JPH0455256 B2 JP H0455256B2 JP 61247991 A JP61247991 A JP 61247991A JP 24799186 A JP24799186 A JP 24799186A JP H0455256 B2 JPH0455256 B2 JP H0455256B2
Authority
JP
Japan
Prior art keywords
pyroelectric infrared
pyroelectric
infrared detection
area
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61247991A
Other languages
Japanese (ja)
Other versions
JPS63101718A (en
Inventor
Noboru Masuda
Kenji Tomaki
Tetsuo Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP61247991A priority Critical patent/JPS63101718A/en
Publication of JPS63101718A publication Critical patent/JPS63101718A/en
Publication of JPH0455256B2 publication Critical patent/JPH0455256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば防犯の目的に、人体から放射
される熱線、すなわち赤外線の検出によりこれを
発見するために用いる赤外線検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an infrared detection device used for detecting heat rays emitted from a human body, that is, infrared rays, for the purpose of crime prevention, for example.

〈従来の技術〉 一般に、赤外線を検出する赤外線センサは、半
導体の光電効果を利用した量子形と、熱電効果や
焦電効果を利用した熱形の2種類に大別される。
<Prior Art> Infrared sensors that detect infrared rays are generally classified into two types: quantum type sensors that utilize the photoelectric effect of semiconductors, and thermal type sensors that utilize the thermoelectric effect or pyroelectric effect.

量子形は、非常に高感度であるが応答波長領域
が狭く、赤外線の検出のためには冷却を必要とす
るため、限定された使用にとどまつている。一
方、熱形は検出感度は低いが安価であり、常温で
動作して波長依存性がないなどの特徴を有してい
る。このため、最近では、熱形の赤外線センサ、
特に、焦電形赤外線センサが各種の分野で使用さ
れている。
Although the quantum type has very high sensitivity, its response wavelength range is narrow and cooling is required for infrared detection, so its use remains limited. On the other hand, thermal type sensors have low detection sensitivity but are inexpensive, operate at room temperature, and have no wavelength dependence. For this reason, recently thermal infrared sensors,
In particular, pyroelectric infrared sensors are used in various fields.

焦電形赤外線センサは、焦電性結晶に温度変化
を与えたとき、焦電性結晶表面に自発分極の変化
によつて電荷が発生するという焦電効果を利用し
て温度を検出する一種の温度センサであり、人体
検出、炎検出及び及び温度検出等に使用されてい
る。
A pyroelectric infrared sensor is a type of infrared sensor that detects temperature by utilizing the pyroelectric effect, in which when a temperature change is applied to a pyroelectric crystal, a charge is generated on the surface of the pyroelectric crystal due to a change in spontaneous polarization. It is a temperature sensor and is used for human body detection, flame detection, temperature detection, etc.

ところで、焦電形赤外線センサは、焦電性結晶
表面に発生する電荷により温度変化を検出すると
いう上記動作原理からも明らかなように、インピ
ーダンスが高く、外来雑音の影響を受けやすいと
いう欠点を有している。そこで、この種の焦電形
赤外線センサを用いた焦電形赤外線検出装置で
は、焦電形赤外線センサの取付部の周辺に集光ミ
ラーを配置して赤外線の発生源から発せられる赤
外線を焦電形赤外線センサに集光し、S/N比を
高くするように工夫している。
By the way, pyroelectric infrared sensors have the drawbacks of high impedance and susceptibility to external noise, as is clear from the above operating principle of detecting temperature changes using charges generated on the surface of a pyroelectric crystal. are doing. Therefore, in a pyroelectric infrared detection device using this type of pyroelectric infrared sensor, a condensing mirror is placed around the mounting part of the pyroelectric infrared sensor, and the infrared rays emitted from the infrared source are The light is focused on a shaped infrared sensor to increase the S/N ratio.

従来使用されている上記焦電形赤外線検出装置
は、凹状反射面で形成した集光ミラーに対向して
配置した焦電形赤外線センサに反射光を集光させ
るように構成していた。
The conventionally used pyroelectric infrared detection device is configured to focus reflected light on a pyroelectric infrared sensor placed opposite a condensing mirror formed of a concave reflective surface.

ところが、上記のように、焦電形赤外線センサ
を集光ミラーに対向させて配置していたために、
装置全体が大形になり、また集光ミラーとするた
めミラーを凹状反射面に形成しなけれはならず製
作が容易でなかつた。
However, as mentioned above, because the pyroelectric infrared sensor was placed opposite the condensing mirror,
The entire device is large in size, and the mirror must be formed into a concave reflective surface to serve as a condensing mirror, making it difficult to manufacture.

このため、改良形として第8図a及び第8図b
に示すように、筐体11の上面12の開口13に
位置する焦電形赤外線センサ14に反射光が投影
するように、前記筐体11の上面12に垂直にか
つ焦電形赤外線センサ14を中心にして取付けた
ミラー片15を有する焦電形赤外線検出装置10
が考えられた。この焦電形赤外線検出装置10に
おける焦電形赤外線センサ14の焦電形検出素子
14a,14bは、第9図に示す回路図のように
同種の分極が直接接続され、その差分出力が電界
効果トランジスタ(FET)によるエミツタホロ
ワのインピーダンス変換回路から出力される。な
お、R1,R2は抵抗である。第9図では焦電形
赤外線検出素子14a,14bの同極同士が直接
に接続されているが、異分極を接続した並列接続
でも良い。
For this reason, as an improved version, Fig. 8a and Fig. 8b
, the pyroelectric infrared sensor 14 is mounted perpendicularly to the upper surface 12 of the housing 11 so that the reflected light is projected onto the pyroelectric infrared sensor 14 located in the opening 13 of the upper surface 12 of the housing 11. Pyroelectric infrared detection device 10 having a mirror piece 15 mounted at the center
was considered. The pyroelectric detection elements 14a and 14b of the pyroelectric infrared sensor 14 in this pyroelectric infrared detection device 10 are directly connected with the same type of polarization as shown in the circuit diagram shown in FIG. It is output from an emitter follower impedance conversion circuit using a transistor (FET). Note that R1 and R2 are resistors. In FIG. 9, the pyroelectric infrared detecting elements 14a and 14b with the same polarity are directly connected to each other, but they may be connected in parallel with different polarizations.

この構成において、動作を第10図の動作説明
図及び第11図の波形図を用いて説明する。熱線
すなわち赤外線を放射している人体が、比較的遠
方から領域()に到来すると、一方の焦電形赤
外線検出素子14aとこの素子から間隔dをおい
て配置されている他方の焦電形赤外線検出素子1
4bの両方に赤外線が入射するので、差動出力は
極めて小さい。次に、領域()すなわち遮蔽及
び反射領域において、ミラー片15は、焦電形赤
外線検出素子14bに対しては赤外線を遮蔽し、
焦電形赤外線検出素子14aに対しては赤外線を
反射し投影させて入射させる作用をするので、単
に赤外線を遮蔽した場合に得られる差動出力レベ
ルの約2倍程度の大きい差動出力を得る。領域
()では、焦電形赤外線検出素子14aが赤外
線を検出し、人体がミラー片15による遮蔽領域
に入つているため、焦電形赤外線検出素子14b
は赤外線を検出せず、差動出力が得られる。さら
に人体が領域()にきたときはミラー片15の
影響を受けずに両方の焦電形赤外線検出素子14
a,bが検出するが、差動出力は小さい。領域
()では、焦電形赤外線検出素子14bが赤外
線を検出し、人体がミラー片15による遮蔽領域
に入つているため、焦電形赤外線検出素子14a
は赤外線を検出せず、差動出力が現れる。また、
領域()の遮蔽及び反射領域ではミラー片15
は焦電形赤外線検出素子14bに対しては赤外線
を反射して入射させる作用をし、焦電形赤外線検
出素子14aに対しては赤外線を遮蔽して、大き
い差動出力を得る。領域()では両方の焦電形
赤外線検出素子14a,14bが赤外線を検出
し、差動出力は小さい。従つて、このときの焦電
形赤外線検出素子14a,14bの出力とFET
出力の状態は第11図a,bに示すようになり、
領域(),(),(),()においてFETに
出力が現れ、人体が領域()から()までに
移動しなくとも、少なくとも領域()から
()まで又は領域()から()までに移動
するだけで赤外線を検出することができる。
In this configuration, the operation will be explained using the operation explanatory diagram in FIG. 10 and the waveform diagram in FIG. 11. When a human body emitting heat rays, that is, infrared rays, arrives at the area () from a relatively far distance, one pyroelectric infrared detection element 14a and another pyroelectric infrared detection element 14a placed at a distance d from this element are detected. Detection element 1
Since infrared rays are incident on both of 4b, the differential output is extremely small. Next, in the region (), that is, the shielding and reflecting region, the mirror piece 15 shields infrared rays from the pyroelectric infrared detection element 14b,
Since the pyroelectric infrared detection element 14a has the effect of reflecting and projecting infrared rays and making them incident, a differential output level approximately twice as high as that obtained when infrared rays are simply shielded is obtained. . In region (), the pyroelectric infrared detection element 14a detects infrared rays, and since the human body is in the area shielded by the mirror piece 15, the pyroelectric infrared detection element 14b detects the infrared rays.
does not detect infrared rays and provides differential output. Furthermore, when a human body comes to the area (), both pyroelectric infrared detection elements 14 are detected without being affected by the mirror piece 15.
a and b are detected, but the differential output is small. In region (), the pyroelectric infrared detection element 14b detects infrared rays, and since the human body is in the area shielded by the mirror piece 15, the pyroelectric infrared detection element 14a detects infrared rays.
does not detect infrared rays and differential output appears. Also,
Mirror piece 15 in the shielding and reflection area of area ()
acts to reflect infrared rays and make them incident on the pyroelectric infrared detection element 14b, and blocks infrared rays from the pyroelectric infrared detection element 14a to obtain a large differential output. In region (), both pyroelectric infrared detection elements 14a and 14b detect infrared rays, and the differential output is small. Therefore, at this time, the output of the pyroelectric infrared detection elements 14a, 14b and the FET
The output status is as shown in Figure 11a and b,
Outputs appear in the FET in areas (), (), (), (), and even if the human body does not move from area () to (), it will at least move from area () to () or from area () to (). Infrared rays can be detected simply by moving to

また、第12図のように上記ミラー片15を赤
外線センサ14の周囲に適当な間隔に複数個配置
すれば、より狭い領域で人体の通過を検出するこ
とができる。
Furthermore, by arranging a plurality of mirror pieces 15 at appropriate intervals around the infrared sensor 14 as shown in FIG. 12, passage of a human body can be detected in a narrower area.

〈発明が解決しようとする問題点〉 このようにミラー片を焦電形赤外線検出素子を
中心にして略放射状に配置することにより顕著な
利点を有するが、ミラー片が筐体に固定されてい
るので、焦電形赤外線検出素子の差動出力の生ず
る検出領域を容易には増やすことができなかつ
た。そのため、検出領域内での手や腕の細かな動
きに対して検出することができなかつた。
<Problems to be Solved by the Invention> As described above, arranging the mirror pieces approximately radially around the pyroelectric infrared detection element has a remarkable advantage, but the mirror pieces are fixed to the housing. Therefore, it has not been possible to easily increase the detection area in which the differential output of the pyroelectric infrared detection element occurs. Therefore, it was not possible to detect minute movements of the hand or arm within the detection area.

〈問題点を解決するための手段〉 本発明は上記問題点を解決するためになされた
もので、一対の焦電形赤外線検出素子を中心にし
て単一の又は複数のミラー片を配設した焦電形赤
外線検出装置において、前記一対の焦電形検出素
子に入射する赤外線の一部を遮る補助体を配置し
たことを特徴とする焦電形赤外線検出装置であ
る。
<Means for Solving the Problems> The present invention has been made to solve the above problems, and includes a single mirror piece or a plurality of mirror pieces arranged around a pair of pyroelectric infrared detecting elements. The pyroelectric infrared detection device is characterized in that an auxiliary body is disposed to block part of the infrared rays incident on the pair of pyroelectric detection elements.

〈実施例〉 以下、本発明の焦電形赤外線検出装置の実施例
を図面を用いて詳細に説明する。
<Example> Hereinafter, an example of the pyroelectric infrared detection device of the present invention will be described in detail using the drawings.

第1図に於て、焦電形赤外線検出装置1は、樹
脂製円筒形筐体2の上面3中央に開口4を有し、
その開口4には筐体2内に収容され、一対の焦電
形赤外線検出素子51a,51bを備えた焦電形
赤外線センサ5を配置する。なお、赤外線検出素
子51a,51bは露出して作図してあるが、実
際は赤外線センサ5の内部に収容され、熱線は光
学フイルタを通して入射される。筐体2の上面3
には鏡面加工した6枚のミラー片6が前記一対の
焦電形赤外線検出素子51a,51bの周囲に適
当な間隔、例えば60度ごとに配置し取付けられて
いる。そして、前記焦電形赤外線センサ5とミラ
ー片6との間で、かつ前記焦電形赤外線検出素子
51a,51bを2分する平面に、赤外線を遮蔽
する物質からなる細い棒状の部材としての補助体
7を配置する。補助体7は図示のように、赤外線
センサ5の上に取付けてもよいが、赤外線センサ
を横断して筐体2に固定してもよい。何れの場合
も、赤外線センサの入射面に接近して配設する。
In FIG. 1, a pyroelectric infrared detection device 1 has an opening 4 in the center of the upper surface 3 of a resin cylindrical housing 2.
A pyroelectric infrared sensor 5 is disposed in the opening 4, which is housed in the housing 2 and includes a pair of pyroelectric infrared detection elements 51a and 51b. Although the infrared detecting elements 51a and 51b are shown exposed in the drawing, they are actually housed inside the infrared sensor 5, and the heat rays enter through an optical filter. Top surface 3 of housing 2
Six mirror-finished mirror pieces 6 are mounted around the pair of pyroelectric infrared detecting elements 51a and 51b at appropriate intervals, for example, every 60 degrees. Between the pyroelectric infrared sensor 5 and the mirror piece 6, and on a plane that bisects the pyroelectric infrared detection elements 51a and 51b, an auxiliary thin rod-shaped member made of a substance that shields infrared rays is provided. Place body 7. The auxiliary body 7 may be attached on top of the infrared sensor 5 as shown, but it may also be fixed to the housing 2 across the infrared sensor. In either case, it is disposed close to the incident surface of the infrared sensor.

この補助体7を配置した実施例について第2図
の動作図、第3図a,bの波形図により動作を説
明する。この補助体7の配置により第2図に示す
ように焦電形赤外線検出素子51a,51bが前
記補助体7を見込む範囲が新たな遮蔽領域とな
る。
The operation of the embodiment in which this auxiliary body 7 is arranged will be explained with reference to the operation diagram in FIG. 2 and the waveform diagrams in FIGS. 3a and 3b. With this arrangement of the auxiliary body 7, the range in which the pyroelectric infrared detection elements 51a and 51b view the auxiliary body 7 becomes a new shielding area, as shown in FIG.

領域では、発熱源からの赤外線は焦電形赤外
線検出素子51a,51bにより検出され、その
為、FETの差動出力は小さくなる。次に新たに
生じた遮蔽領域の領域では、赤外線は第1の焦
電形赤外線検出素子51aによつてのみ検出さ
れ、第2の焦電形赤外線検出素子51bには補助
体7によつて赤外線が遮蔽され検出しないので、
FETに差動出力が現れる。領域では赤外線は
焦電形赤外線検出素子51a,51bの両方によ
り検出され、FETに差動出力は小さくなる。さ
らに発熱源が進んで、遮蔽及び反射領域の領域
にくると、第2の焦電形赤外線検出素子51bに
はミラー片6により遮蔽されて赤外線が入射しな
いが、第1の焦電形赤外線検出素子51aには直
接の赤外線とミラー片6により反射された赤外線
とが入射するので、赤外線検出素子51bが単に
遮蔽された場合に比較し約2倍の大きな出力が現
れる。領域の遮蔽領域では赤外線が直接に第1
の焦電形赤外線検出素子51aに入射し、第2の
焦電形赤外線検出素子51bにはミラー片6によ
り遮蔽されて入力しない。このときFETに出力
が現れる。領域では赤外線はミラー片6及び補
助体7によつて遮蔽されないで第1、第2の焦電
形赤外線検出素子51a,51bに入射し、検出
されたためFETの差動出力は小さくなる。さら
に領域の遮蔽領域では、第2の焦電形赤外線検
出素子51aへの赤外線はミラー片6により遮蔽
されて入射しないで、第2の焦電形赤外線検出素
子51bのみに検出され、FETに差動出力が現
れる。領域の遮蔽及び反射領域では第1の焦電
形赤外線検出素子51aにはミラー片6により遮
蔽され赤外線が入射せず、第2の焦電形赤外線検
出素子51bには直接の赤外線とミラー片6によ
り反射された赤外線とが入射するので、FETに
大きな出力が現れる。領域では焦電形赤外線検
出素子51a,51bの両方により赤外線が検出
され、FETに差動出力が現れない。領域の遮
蔽領域では赤外線は第2の焦電形赤外線検出素子
51bによつてのみ検出され、第1の焦電形赤外
線検出素子51aでは補助体7によつて赤外線が
遮蔽され検出されないのでFETに差動出力が現
れる。さらに領域では赤外線は焦電形赤外線
検出素子51a,51bにより検出され、その
FETの差動出力は小さくなる。
In this region, the infrared rays from the heat source are detected by the pyroelectric infrared detection elements 51a and 51b, and therefore the differential output of the FET becomes small. Next, in the newly generated shielding area, infrared rays are detected only by the first pyroelectric infrared detection element 51a, and infrared rays are detected by the auxiliary body 7 to the second pyroelectric infrared detection element 51b. is blocked and not detected,
Differential output appears on the FET. In this region, infrared rays are detected by both the pyroelectric infrared detection elements 51a and 51b, and the differential output to the FET becomes small. When the heat generation source further advances and comes to the shielding and reflection area, the second pyroelectric infrared detection element 51b is shielded by the mirror piece 6 and no infrared rays enter it, but the first pyroelectric infrared detection element 51b is blocked by the mirror piece 6. Since the direct infrared rays and the infrared rays reflected by the mirror piece 6 are incident on the element 51a, an output approximately twice as large as that in the case where the infrared detecting element 51b is simply shielded appears. In the shielded area of the area, the infrared rays are directly
The light enters the second pyroelectric infrared detection element 51a, and is not input to the second pyroelectric infrared detection element 51b because it is blocked by the mirror piece 6. At this time, an output appears at the FET. In this region, the infrared rays are not blocked by the mirror piece 6 and the auxiliary body 7 and are incident on the first and second pyroelectric infrared detection elements 51a and 51b, where they are detected, so that the differential output of the FET becomes small. Furthermore, in the shielded region, the infrared rays to the second pyroelectric infrared detection element 51a are blocked by the mirror piece 6 and are not incident, but are detected only by the second pyroelectric infrared detection element 51b, and there is no difference in the FET. A dynamic force appears. In the shielding and reflection region, the first pyroelectric infrared detection element 51a is shielded by the mirror piece 6 and no infrared rays are incident on it, and the second pyroelectric infrared detection element 51b receives direct infrared rays and mirror piece 6. Since the infrared rays reflected by the FET are incident, a large output appears in the FET. In this region, infrared rays are detected by both the pyroelectric infrared detection elements 51a and 51b, and no differential output appears in the FET. In the shielded area, the infrared rays are detected only by the second pyroelectric infrared detection element 51b, and the infrared rays are not detected by the first pyroelectric infrared detection element 51a because they are blocked by the auxiliary body 7, so that the infrared rays are not detected by the FET. Differential output appears. Furthermore, infrared rays are detected by pyroelectric infrared detection elements 51a and 51b in the area.
The differential output of the FET becomes smaller.

第2の実施例を第4図の動作説明図に示す。第
2の実施例は、ミラー片6の位置が焦電形赤外線
検出素子51a,51bの関係において若干ずれ
ており、ミラー片6により反射した赤外線がいず
れか一方の焦電形赤外線検出素子(第4図では第
1の焦電形赤外線検出素子51b)にのみ入射
し、他方には入射しないような場合でも、第1及
び第2の焦電形赤外線検出素子51a,51b間
に配置した補助体7によつて、容易に新たな遮蔽
領域S1を作り出すことができる。
The second embodiment is shown in the operation explanatory diagram of FIG. In the second embodiment, the position of the mirror piece 6 is slightly shifted in relation to the pyroelectric infrared detecting elements 51a and 51b, and the infrared rays reflected by the mirror piece 6 are transmitted to one of the pyroelectric infrared detecting elements (the second embodiment). In FIG. 4, even if the light is incident only on the first pyroelectric infrared detecting element 51b and not on the other, the auxiliary body placed between the first and second pyroelectric infrared detecting elements 51a and 51b 7, a new shielding area S1 can be easily created.

この新たな遮蔽領域S1の作用は第1の実施例
と同様であり、この遮蔽領域S1を発熱源が横断
することにより、この領域に関しても第1の実施
例と同様の動作で赤外線を検出することができ
る。
The action of this new shielding area S1 is the same as in the first embodiment, and when the heat source crosses this shielding area S1, infrared rays are detected in this area as well in the same manner as in the first embodiment. be able to.

第3の実施例を第5図に示す。第3の実施例
は、赤外線が補助体7に当たつて反射して第2の
焦電形赤外線検出素子51b(又は第1の焦電形
赤外線検出素子51a)に入射する遮蔽及び反射
検出領域内RSの一部に補助体7を配置すること
によつても、その領域内の一部に新たな遮蔽領域
S3を作ることができる。
A third embodiment is shown in FIG. The third embodiment is a shielding and reflection detection area where infrared rays hit the auxiliary body 7, are reflected, and enter the second pyroelectric infrared detection element 51b (or the first pyroelectric infrared detection element 51a). By arranging the auxiliary body 7 in a part of the inner RS, a new shielding area S3 can be created in a part of the area.

また、補助体7を焦電形赤外線検出素子51
a,51bの間ではなく、第4の実施例として第
6図に示すようにミラー片6の前方に補助体7を
配置することによつて同様に新たな遮蔽領域S3
を作ることができる。
In addition, the auxiliary body 7 is replaced by a pyroelectric infrared detection element 51.
Similarly, by arranging the auxiliary body 7 in front of the mirror piece 6 as shown in FIG. 6 as a fourth embodiment, instead of between a and 51b, a new shielding area S3 is created.
can be made.

これら第3及び第4の実施例における新たな遮
蔽領域S3は遮蔽及び反射検出領域RS内に遮蔽領
域を設けたもので、手や腕等の人体の一部の動き
に対し出力を発生させることができる。
The new shielding area S3 in these third and fourth embodiments is a shielding area provided within the shielding and reflection detection area RS, and generates an output in response to the movement of a part of the human body such as a hand or arm. Can be done.

第5の実施例を第7図に示す。第5の実施例
は、補助体7を、焦電形赤外線センサ5及びミラ
ー片6の間に位置するのではなく、それらから離
して配置して新たな遮蔽領域S1を作つている。
A fifth embodiment is shown in FIG. In the fifth embodiment, the auxiliary body 7 is not located between the pyroelectric infrared sensor 5 and the mirror piece 6, but is placed apart from them to create a new shielding area S1.

第5の実施例の新たな遮蔽領域S1の作用は第
1の実施例と同様であり、この遮蔽領域S1を発
熱源が横断することにより、この領域に関しても
第1の実施例と同様の動作で赤外線を検出するこ
とができる。
The operation of the new shielding area S1 of the fifth embodiment is the same as that of the first embodiment, and since the heat source crosses this shielding area S1, the operation of this area is similar to that of the first embodiment. can detect infrared rays.

このように、第1〜第5の実施例にみるよう
に、補助体7の位置は焦電形赤外線検出素子51
a,51bとミラー片6との間又は焦電形赤外線
検出素子51a,51bと発熱源との間であつて
もよく任意の所に構成できる。
In this way, as seen in the first to fifth embodiments, the position of the auxiliary body 7 is similar to that of the pyroelectric infrared detection element 51.
51b and the mirror piece 6, or between the pyroelectric infrared detecting elements 51a, 51b and the heat generation source, it can be configured anywhere.

〈発明の効果〉 本発明の焦電形赤外線検出装置は以上詳細に述
べた通りであり、以下に示す効果を生じるもので
ある。つまり、一対の焦電形赤外線検出素子を中
心にして複数のミラー片を配設した焦電形赤外線
検出装置に、前記一対の焦電形検出素子に入射す
る赤外線の一部を遮るように補助体を配設したの
で、差動出力の生ずる検出領域を比較的簡単に増
やすことができる。そして、補助体を設けるだけ
で良いので、遮蔽領域を容易に変更することがで
きる。また、ミラー片による遮蔽及び反射検出領
域内に細かな遮蔽領域を比較的簡単に増設するこ
とができ、またそのことによつて前記反射検出領
域内での手や腕の細かな動きを感度良く検出する
ことができる。
<Effects of the Invention> The pyroelectric infrared detection device of the present invention has been described in detail above, and produces the following effects. In other words, a pyroelectric infrared detection device has a plurality of mirror pieces arranged around a pair of pyroelectric infrared detection elements. Since the detection area where the differential output is generated can be relatively easily increased. Furthermore, since it is sufficient to simply provide an auxiliary body, the shielding area can be easily changed. In addition, it is possible to relatively easily add a small shielding area within the shielding and reflection detection area by the mirror piece, and this makes it possible to detect minute movements of the hand or arm within the reflection detection area with high sensitivity. can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは本発明の焦電形赤外線検出
装置の一実施例を示す平面図、正面断面図及び側
面断面図、第2図は第1の実施例の動作説明図、
第3図aは焦電形赤外線検出素子の出力を示す波
形図、第3図bはFETの出力を示す波形図、第
4図は第2の実施例の動作説明図、第5図は第3
の実施例の動作説明図、第6図は第4の実施例の
動作説明図、第7図は第5の実施例の動作説明
図、第8図a,bは従来の焦電形赤外線装置の一
例の正面図、正面断面図、第9図は焦電形赤外線
検出装置に適用する電気回路図、第10図は従来
の動作説明図、第11図a,bは赤外線センサの
素子とFETとの出力を示す波形図、第12図は
従来の焦電形赤外線検出装置の他の平面図であ
る。 図中の1は焦電形赤外線検出装置、2は筐体、
3は上面、4は開口、5は焦電形赤外線センサ、
51a,51bは焦電形赤外線検出素子、6はミ
ラー片、7は補助体である。
1a, b, and c are a plan view, a front sectional view, and a side sectional view showing one embodiment of the pyroelectric infrared detection device of the present invention; FIG. 2 is an explanatory diagram of the operation of the first embodiment;
FIG. 3a is a waveform diagram showing the output of the pyroelectric infrared detection element, FIG. 3b is a waveform diagram showing the output of the FET, FIG. 4 is an explanatory diagram of the operation of the second embodiment, and FIG. 3
Fig. 6 is an explanatory diagram of the operation of the fourth embodiment, Fig. 7 is an explanatory diagram of the operation of the fifth embodiment, and Figs. 8a and b are conventional pyroelectric infrared devices. A front view and a front sectional view of an example, Fig. 9 is an electric circuit diagram applied to a pyroelectric infrared detection device, Fig. 10 is a conventional operation explanatory diagram, and Figs. 11a and b are infrared sensor elements and FETs. FIG. 12 is another plan view of a conventional pyroelectric infrared detection device. In the figure, 1 is a pyroelectric infrared detector, 2 is a housing,
3 is the top surface, 4 is the opening, 5 is the pyroelectric infrared sensor,
51a and 51b are pyroelectric infrared detection elements, 6 is a mirror piece, and 7 is an auxiliary body.

Claims (1)

【特許請求の範囲】 1 一対の焦電形赤外線検出素子を中心にして複
数のミラー片を配設した焦電形赤外線検出装置に
おいて、 前記一対の焦電形検出素子に入射する赤外線の
一部を遮る補助体を配置したことを特徴とする焦
電形赤外線検出装置。
[Claims] 1. In a pyroelectric infrared detection device in which a plurality of mirror pieces are arranged around a pair of pyroelectric infrared detection elements, a portion of the infrared rays incident on the pair of pyroelectric detection elements A pyroelectric infrared detection device characterized in that an auxiliary body is arranged to block the pyroelectric infrared detection device.
JP61247991A 1986-10-17 1986-10-17 Pyroelectric type infrared-rays detector Granted JPS63101718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247991A JPS63101718A (en) 1986-10-17 1986-10-17 Pyroelectric type infrared-rays detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247991A JPS63101718A (en) 1986-10-17 1986-10-17 Pyroelectric type infrared-rays detector

Publications (2)

Publication Number Publication Date
JPS63101718A JPS63101718A (en) 1988-05-06
JPH0455256B2 true JPH0455256B2 (en) 1992-09-02

Family

ID=17171566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247991A Granted JPS63101718A (en) 1986-10-17 1986-10-17 Pyroelectric type infrared-rays detector

Country Status (1)

Country Link
JP (1) JPS63101718A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450730Y1 (en) * 2008-09-10 2010-10-26 (주) 케이엠티 Passive Infrared Detector

Also Published As

Publication number Publication date
JPS63101718A (en) 1988-05-06

Similar Documents

Publication Publication Date Title
KR910005245B1 (en) Ultrared rays detector
JPH0455256B2 (en)
JPH0249124A (en) Thermopile
JPS637611B2 (en)
JP2642963B2 (en) Infrared detector
JPH08145787A (en) Pyroelectric infrared sensor
JPH0439545Y2 (en)
JPH0547053B2 (en)
JPH0455259B2 (en)
JPH0436420Y2 (en)
JPH0436416Y2 (en)
JPH0224523A (en) Pyroelectric type infrared-ray detector
JPH07104202B2 (en) Pyroelectric infrared sensor
JPH055464Y2 (en)
JPH0436417Y2 (en)
JPH0438308Y2 (en)
JPH0572968B2 (en)
JPS634652B2 (en)
JPS62187277A (en) Pyroelectric infrared detector
JPH011920A (en) Pyroelectric infrared detector
JPH0519789Y2 (en)
JPH116762A (en) Power collection type infrared sensor
JPS6098381A (en) Object detector
JPH011919A (en) Pyroelectric infrared detector
JPS63195531A (en) Pyroelectric type infrared detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term