JPH0455086B2 - - Google Patents

Info

Publication number
JPH0455086B2
JPH0455086B2 JP59123921A JP12392184A JPH0455086B2 JP H0455086 B2 JPH0455086 B2 JP H0455086B2 JP 59123921 A JP59123921 A JP 59123921A JP 12392184 A JP12392184 A JP 12392184A JP H0455086 B2 JPH0455086 B2 JP H0455086B2
Authority
JP
Japan
Prior art keywords
groove
mold
tread
plane
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59123921A
Other languages
Japanese (ja)
Other versions
JPS613711A (en
Inventor
Akira Tamura
Osamu Inoe
Hidetoshi Sakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP59123921A priority Critical patent/JPS613711A/en
Publication of JPS613711A publication Critical patent/JPS613711A/en
Priority to US07/059,226 priority patent/US4769203A/en
Publication of JPH0455086B2 publication Critical patent/JPH0455086B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (技術分野) 空気入りタイヤ、なかでもいわゆるORタイヤ
の代表例とする超大型の重荷重用タイヤの有利な
製造に関連してこの明細書で述べる技術内容は、
該タイヤの加硫成形工程におけるモールドの適用
に工夫を加えることにより、同一モールドによる
異種パターントレツドを、有利かつ簡便に得るこ
とについての開発成果を提案することにある。
[Detailed Description of the Invention] (Technical Field) The technical content described in this specification in connection with the advantageous production of pneumatic tires, especially extra-large heavy-duty tires as a representative example of so-called OR tires, is as follows:
The object of the present invention is to propose the development results of advantageously and easily obtaining different pattern treads using the same mold by adding ingenuity to the application of the mold in the vulcanization molding process of the tire.

(問題点) 上に述べた重荷重用タイヤのうち、とくに土
木、建設工事用機械類の自走用車輪の如き使途に
供される超大型タイヤつまり、ORタイヤは同じ
く重荷重用のバス・トラツクに使用されるTBタ
イヤに比べるとはるかに生産量は少いので、その
要求性能や用途は種々に相異なるにも拘らず、そ
れらに応じたきめ細い対応が経済的に困難であ
り、画一的とも云うべき、少い種類のトレツドパ
ターンで生産され、その結果しばしば要求性能上
の不満足が余儀なくされた。
(Problem) Among the heavy-duty tires mentioned above, ultra-large tires that are used as self-propelled wheels for civil engineering and construction machinery, in other words, OR tires, are also used for heavy-duty buses and trucks. Since the production volume is much smaller than the TB tires used, it is economically difficult to provide detailed support to meet the various requirements for performance and uses, and it is difficult to provide uniformity. Needless to say, they were produced with a small variety of tread patterns, which often resulted in unsatisfactory performance requirements.

(従来技術と欠点) 従来一般にタイヤ用モールドは、それによつて
つくられるタイヤのサイズおよびトレツドパター
ンの1種類と対応し、せいぜいサイブの要否ない
し変更程度の些細な選択をなし得るにすぎないと
ころ、ORタイヤのような超大型タイヤのモール
ドは一基当り数千万円にも上るため、このような
タイヤにつき、種々多岐にわたる使途に応じて相
異なる要求性能を満たそうとして、多品種のトレ
ツドパターンを準備するには、非常に莫大な費用
が嵩んでしまう。
(Prior Art and Disadvantages) Conventionally, tire molds generally correspond to one type of tire size and tread pattern to be made, and at most only a trivial selection such as the necessity or change of the size can be made. However, the molds for ultra-large tires such as OR tires can cost tens of millions of yen per unit, so in order to meet the different performance requirements for such tires in a wide variety of uses, a wide variety of products are being manufactured. Preparing a tread pattern requires a very large amount of expense.

(発明の目的) 汎用性に富むトレツドパターンでの空気入りタ
イヤの加硫成形に供されるモールドを、該トレツ
ドパターンの有効、適切な変更を可能とする使用
によつて、使途に対応した要求性能の、過大投資
を必要としない充足を実現すべき、空気入りタイ
ヤの加硫成形方法を与えることが、この発明の目
的である。
(Objective of the invention) To adapt a mold used for vulcanization molding of pneumatic tires with a highly versatile tread pattern to various uses by making it possible to effectively and appropriately change the tread pattern. It is an object of the present invention to provide a method for vulcanization and molding of a pneumatic tire, which satisfies the required performance without requiring excessive investment.

(発明の構成) 上記目的はこの発明に従い、次に述べる事項を
骨子とする手順にて、有利に達成される。
(Structure of the Invention) According to the present invention, the above object is advantageously achieved by a procedure mainly based on the matters described below.

すなわちこの発明は空気入りタイヤの加硫成形
に当つて、該タイヤの回転中心と直交する平面に
て接合する分割面で分離され、互いに対をなす一
組のモールドを用い、対をなすモールドのうち一
方を、他方のモールドに対するひとつの型合わせ
接合位置から周方向にずらせて、別な型合わせ接
合位置に移した加硫成形を可能とすることによ
り、一組のモールドで異なるトレツドパターンを
空気入りタイヤに付与することを特徴とする、空
気入りタイヤの加硫成形方法。
That is, in the vulcanization molding of a pneumatic tire, this invention uses a pair of molds that are separated by a dividing surface that joins in a plane perpendicular to the center of rotation of the tire, and that form a pair of molds. By making it possible to perform vulcanization molding by shifting one mold in the circumferential direction from one mold-matching joint position to another mold-matching joint position, it is possible to create different tread patterns with one set of molds. A method for vulcanization and molding of a pneumatic tire, characterized in that it is applied to a pneumatic tire.

ここに実施の態様としては、接合位置の一つ
が、モールドの分割面を含む平面と交差する向き
の横溝およびこれによつて区分される陸部を有す
るトレツドパターンの形成に与るものであるこ
と、横溝と陸部が、トレツドの中央円周上でそれ
ぞれトレツド幅の3〜20%および15〜35%に相当
する幅を有するものとすること、接合位置の相互
離隔が、横溝の幅より大きく、陸部の幅よりは小
さいものとすること、陸部が、横溝の溝壁の、分
割面を含む平面に対する交差域付近にて、該溝壁
を該平面と滑らかに連ねる円弧状輪郭をもつ微小
な膨出部をそなえること、円弧状輪郭の曲率半径
が、横溝の幅に対し10%以上に相当するものであ
ること、横溝が、その溝底の、分割面を含む平面
に対する交差域付近にて該溝底を該平面と滑らか
に連ねる円弧状輪郭の微小な隆起部をそなえるこ
と、円弧状輪郭の曲率半径が溝深さの10%以上に
当るものであること、およびトレツドパターン
が、トレツドの両側端を連結してのびる横溝によ
つて区分されたラグタイプパターンであることが
好適である。
In this embodiment, one of the bonding positions participates in the formation of a tread pattern having horizontal grooves in a direction that intersects a plane including the dividing plane of the mold and a land portion divided by the horizontal grooves. The lateral groove and the land portion shall have widths corresponding to 3 to 20% and 15 to 35% of the tread width, respectively, on the central circumference of the tread, and the mutual separation of the joint positions shall be greater than the width of the lateral groove. The width of the land portion shall be larger than the width of the land portion, and the land portion shall have an arcuate profile that smoothly connects the groove wall with the plane near the intersection area of the groove wall of the lateral groove with the plane including the dividing surface. The radius of curvature of the arc-shaped profile is equivalent to 10% or more of the width of the lateral groove. A minute ridge with an arcuate profile that smoothly connects the groove bottom with the flat surface is provided in the vicinity, the radius of curvature of the arcuate profile is equal to or more than 10% of the groove depth, and a tread pattern. Preferably, the tread has a lug-type pattern separated by transverse grooves extending connecting both ends of the tread.

さて空気入りタイヤの加硫成形に関して、該タ
イヤの回転軸心と直交する平面で接合する分割面
にて分離され互いに対をなす一組のモールドは一
般にフルモールドと呼ばれ、これに対しタイヤの
外周に沿う間隔をおいて分割された複数のセグメ
ントを組合わせて用いる、割りモールドと区別さ
れる。
Now, regarding vulcanization molding of pneumatic tires, a pair of molds that are separated by a splitting surface that joins on a plane perpendicular to the rotational axis of the tire and form a pair is generally called a full mold. It is distinguished from a split mold, which uses a combination of multiple segments divided at intervals along the outer periphery.

フルモールドの1例を第1図に示したように通
常タイヤの中央円周面Pを分割面Sとして、該面
Sにおける接合によつて内部空洞に成形用のキヤ
ビテイCを形成する型半部UおよびLの一組と、
それぞれの内周に適合するビード型環Mおよびブ
ラダーBとよりなり、この例においてキヤビテイ
Cは、ラグ形成のための深い凹みRが横溝の底を
形成する型内面Fに切込まれている。なお図中
H,H′は位置合わせ孔、Tは位置合わせほぞで
ある。
As shown in Fig. 1, an example of a full mold is a mold half that uses the central circumferential surface P of a normal tire as a dividing surface S, and forms a molding cavity C in the internal cavity by joining at this surface S. A pair of U and L,
Consisting of a bead-shaped ring M and a bladder B that fit on their respective inner peripheries, the cavity C in this example has a deep recess R for forming lugs cut into the mold inner surface F forming the bottom of the transverse groove. In the figure, H and H' are positioning holes, and T is a positioning tenon.

第1図に示したひとつの接合位置における型内
面Fの投影を第2図aに示し、また同図bにて上
記接合位置からつくろうとするタイヤの外周に沿
つて間隔をおく、第2の接合位置における同様な
投影を示す。
The projection of the inner surface F of the mold at one joining position shown in FIG. 1 is shown in FIG. A similar projection at the joint location is shown.

このような選択において、横溝がタイヤの両ト
レツド端にわたつて一連りをなしてラグを区分す
る型式のラグタイプパターンのタイヤといま一
つ、横溝がタイヤの中央円周で行止まりとなつた
段違いラグを区分する他形式ラグタイプパターン
のタイヤとが得られるのは明らかである。
This selection is different from tires with lug-type patterns in which the lateral grooves run in a series across both tread ends of the tire to separate the lugs, and the lateral grooves end at the center circumference of the tire. It is clear that other types of tires with different lug type patterns may be obtained.

これらの横溝とこれによつて区分されるこの例
でのラグつまり陸部は、それぞれつくろうとする
タイヤのトレツド幅Wtに対し、3〜20%、15〜
35%において、前者が後者よりも小さい幅Wg
Wlとすることが好ましく、ここに幅Wg,Wlは何
れもタイヤの中央周面上での値を基準とする。
These lateral grooves and the lugs, or land areas in this example, that are divided by them have a width of 3 to 20% and 15 to 15 % , respectively, of the tread width Wt of the tire to be manufactured.
At 35%, the former is smaller than the latter in width W g ,
It is preferable to set the width to W l , and the widths W g and W l are both based on the value on the center circumferential surface of the tire.

第2図bに示したような、タイヤの左右におけ
る横溝のくいちがい配列においては、該横溝の行
止り端にてその溝壁および溝底が、タイヤの分割
面Sにて形成される陸部の中央端壁に対し90°に
近い角度で交差することになり、その結果製品タ
イヤの横溝の入隅コーナ部に応力集中を結果する
うれいがある。
In the staggered arrangement of the lateral grooves on the left and right sides of the tire as shown in FIG. It intersects with the center end wall at an angle close to 90°, which may result in stress concentration at the inner corner of the lateral groove of the product tire.

これらの点に対しては、まず製品タイヤの陸部
が、横溝の溝壁の分割面Sを含む平面に対する交
差域付近にて、該溝壁を該平面と滑らかに連ねる
円弧状輪郭をもつ膨出部を形成するようなチヤン
フアーch1,ch2を、キヤビテイCに設ける。チヤ
ンフアch1,ch2の円弧状輪郭の曲率半径r1,r2
は、それぞれ横溝のタイヤ中央周面上における基
準幅Wgに対し、10%程度またはそれ以上とする
のが良い。一方横溝の溝底の、分割面Sを含む平
面に対する交差域付近にて、該溝底を該平面と滑
らかに連ねる円弧状輪郭をもつ微小な隆起部を形
成するようなチヤンフアch3をキヤビテイCに設
ける。チヤンフアch3の円弧状輪郭の曲率半径r3
(第1図参照)は、タイヤ中央周面上で予定する
基準の溝深さDの10%程度又はそれ以上とする
が、第1図のように、該部分にて底揚げをした、
いわゆるプラツトフオームを形成する浅いくぼみ
hを、キヤビテイCの内面に形成するとなお良
い。
Regarding these points, first, in the vicinity of the intersection area of the land portion of the product tire with the plane containing the dividing plane S of the groove wall of the lateral groove, a bulge having an arcuate profile that smoothly connects the groove wall with the plane. Chamfers ch 1 and ch 2 forming protrusions are provided in the cavity C. Radius of curvature of the arcuate contour of Qianhua ch 1 , ch 2 r 1 , r 2
is preferably about 10% or more of the standard width W g of the lateral groove on the tire center circumferential surface. On the other hand, in the vicinity of the intersection area of the groove bottom of the lateral groove with the plane containing the dividing surface S, a channel ch 3 is formed in the cavity C so as to form a minute bulge having an arcuate profile that smoothly connects the groove bottom with the plane. Provided for. Radius of curvature of the arcuate profile of Qianhua ch 3 r 3
(See Figure 1) should be about 10% or more of the standard groove depth D planned on the tire center circumferential surface, but as shown in Figure 1, if the bottom is raised in this area,
It is even better if a shallow recess h forming a so-called platform is formed on the inner surface of the cavity C.

すなわちこのようにして第2図bに示したモー
ルド半部U,Lの接合位置において形成される製
品タイヤの横溝がその行止り端にてラグの中央端
面に対し溝壁および溝底とも丸味をもつたコーナ
ーを介し連なるため、鋭い入隅部に懸念される応
力集中のうれいがなくなり、また第2図aの接合
位置における成形製品では、溝底および溝壁に微
小なナイフエツジが形成されるのみとなつて何ら
格別の支障を生じない。
That is, in this way, the lateral groove of the product tire formed at the joining position of the mold halves U and L shown in FIG. Since they are connected through rounded corners, stress concentration, which is a concern with sharp corners, is eliminated, and in the molded product at the joining position shown in Figure 2 a, minute knife edges are formed on the groove bottom and groove wall. It does not cause any particular trouble.

以上はラグタイプパターンにおけるこの発明の
適用につき主として述べたが、第3図aに示すよ
うな、ブロツクタイプパターンタイヤにつき、矢
筈状入れ違い配列ブロツクB,B′の配列ピツチ
pに対して1/2の円周間隔をへだてるようなモー
ルドの設定位置においては同図bのように大小2
種の矢筈状交互配列B″,Bへの、また同じく
1/4の円周間隔をへだてるようなモールドの他の
設定位置においては第3図cに示すような、セン
ターリブJのような、異形のパターンが得られ
る。最後に述べたセンターリブサイドブロツク複
合パターンにおいてセンターリブJに切込み形成
される横溝の行止り端には、第1図、第2図につ
きのべたと同様な膨出部、隆起部を応用すること
がのぞましい。
The above has mainly described the application of the present invention to a lug type pattern, but for a block type pattern tire as shown in FIG. At the setting position of the mold that separates the circumferential interval of
In other settings of the mold, such as in the alternating herringbone arrangement of seeds B'', B, and also in other positions of the mold separated by 1/4 circumferential intervals, such as the center rib J, as shown in Fig. 3c. In the last-mentioned center rib side block composite pattern, the end of the horizontal groove cut into the center rib J has a similar bulge as shown in FIGS. 1 and 2. It is desirable to apply protrusions and protrusions.

この発明は上述のラグ又はブロツクタイプパタ
ーンでの適用のみならず、たとえば第4図のよう
なリブ−ラグタイプないしは第5図の如きリブタ
イプトレツドパターンについても同図a→bのよ
うな、センターリブJ′,J″のジグザグ配列の変更
にも利用でき、この場合の配列変更は偏摩耗に影
響を与えるので、上市パターンを決定するための
検討段階における外観上の適否判定を、偏摩耗低
減にあわせ行うときにも、この発明の適用は有利
である。
The present invention is applicable not only to the lug or block type pattern described above, but also to the rib-lug type as shown in FIG. 4 or the rib-type tread pattern as shown in FIG. It can also be used to change the zigzag arrangement of ribs J′, J″. In this case, changing the arrangement will affect uneven wear, so the appearance suitability judgment at the examination stage to determine the commercial pattern should be used to reduce uneven wear. The application of the present invention is also advantageous when it is carried out in accordance with the schedule.

この発明においてモールドの設定位置相互間隔
は、これをxmmとすると、このxの値に応じて、
さきに述べたような異種パターンを同一モールド
によつて容易に得られるが、ここでpにて配列ラ
グ又はブロツクのピツチ長さ、nを整数とすると
上記の相互間隔がX+np(mm)になると、再び同
一パターンがあらわれるのは、当然のことであつ
て、この発明は製品タイヤだけとは限らず、その
検討の段階において設定位置の変更にともなわれ
る、偏摩耗の軽減度合いを把握するために試験用
タイヤの製造に適用しても著しい便益が与えられ
る。
In this invention, the distance between the set positions of the mold is defined as x mm, depending on the value of x.
Different patterns as mentioned earlier can be easily obtained using the same mold, but where p is the pitch length of the array lag or block, and n is an integer, the above mutual spacing becomes X + np (mm). , it is natural that the same pattern appears again, and this invention is not limited to production tires, but is useful for grasping the degree of reduction in uneven wear caused by changing the setting position at the stage of consideration. It also provides significant benefits when applied to the production of test tires.

さて第1図、第2図に従い、サイズ14.00R25
のORタイヤに、この発明を適用した事例につい
て説明する。
Now, according to Figures 1 and 2, size 14.00R25
An example of applying this invention to an OR tire will be explained.

この場合トレツド幅Wtは320mmであり、横溝の
溝幅Wgは中央周面上における標準値40mm、また
ラグ幅Wlは同じく100mmなので、トレツド幅に対
しそれぞれほぼ13%、ほぼ31%であり、同様にし
て仮想される溝深さDは40mmであり、ここに中央
周面に振分けで40mm幅にわたるプラツトフオーム
の高さを25mmとして、曲率半径r1,r2さらにはr3
もまた、何れも5mm、そして設定各位置の円周に
沿うへだたりを60mmとして一連横溝型式(第2図
a)パターンAと、横溝が中央周面上で行き止り
になる交互横溝型式(第2図b)のパターンBと
を形成した。
In this case, the tread width W t is 320 mm, the groove width W g of the horizontal groove is the standard value on the center circumferential surface of 40 mm, and the lug width W l is also 100 mm, so they are approximately 13% and 31% of the tread width, respectively. Similarly, the groove depth D is assumed to be 40 mm, and the height of the platform spread over a width of 40 mm on the central peripheral surface is assumed to be 25 mm, and the radii of curvature r 1 , r 2 and further r 3
Both patterns are 5 mm, and the distance along the circumference at each setting position is 60 mm. Pattern A is a series of horizontal grooves (Fig. 2a), and pattern A is an alternate horizontal groove type in which the horizontal grooves end at the center circumference (Fig. 2a). A pattern B shown in FIG. 2b) was formed.

両パターンともORタイヤとくに悪路向けに適
合するのが両者の比較では、 パターン A アいわゆるトラクシヨンパターンとして、 イトラクシヨン性能にすぐれ、かつ ウ 泥ねい地、それも起伏(坂道)の多い地区
で、パターンBに比しはるかにすべり難い、 パターンB ア. いわゆるロツク(rock)パターンにて、
耐カツト、耐摩性に優れるほか、 イ. 固い路面、石の多い場合にパターンAに生
じ勝ちなラグ欠け、摩耗とくに偏摩耗が少い、 ことが、認められた。
In comparing both patterns, both patterns are suitable for OR tires, especially for rough roads.Pattern A is a so-called traction pattern with excellent traction performance, and C is suitable for muddy terrain, especially in areas with many ups and downs (slopes). Pattern B is far less slippery than Pattern B. In a so-called rock pattern,
In addition to being excellent in cut resistance and abrasion resistance, a. It was observed that there was less lug chipping and wear, especially uneven wear, which tend to occur with pattern A on hard roads and with lots of stones.

次にサイズ33.25R35R33につき、第3図のa
→bまたa→cに示す各パターンの選択にて、基
本的には悪路向けの要求性能をほぼ満足して、b
ではより強いトラクシヨン、またcではa,bに
比しより良路に近い固い路面に適合しかつ耐振
動、耐摩耗性にすぐれることが認められた。
Next, for size 33.25R35R33, a in Figure 3
→ b Also, by selecting each pattern shown in a → c, basically the required performance for rough roads is almost satisfied, and b
It was found that the c-type has stronger traction, and the c-type is more suitable for hard road surfaces that are closer to good roads than the a and b types, and has excellent vibration resistance and wear resistance.

(発明の効果) この発明によれば、トレツドパターンの基本形
からの変更、調整に際してモールドの新製を要せ
ず一組みのモールドの分割面における接合に際
し、単に2以上の互いに離隔した型合わせ接合位
置の選択にて容易に基本形との間に異なる異形パ
ターンでの加硫成形が行えるので、モールドの費
用削減と、モールドの脱着のために必要な取替工
数の著い削減さらには数尠いモールドの多岐使用
を行うため、保管スペース費用についても大幅削
減が期待され得る。
(Effects of the Invention) According to the present invention, when changing or adjusting the basic shape of a tread pattern, it is not necessary to make a new mold, and when joining a set of molds at the dividing plane, two or more molds are simply aligned at a distance from each other. Vulcanization molding can be easily performed in irregular patterns that are different from the basic shape by selecting the joining position, which reduces mold costs and significantly reduces the number of replacement man-hours required for attaching and detaching the mold. Due to the wide use of small molds, storage space costs can also be expected to be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はモールド断面図、第2図a,bは互い
に異なるキヤビテイの各接合位置におけるモール
ド内面図であり、第3図a,b,cは別な実施例
についてのトレツドパターン変更の手順を示した
タイヤについての正面図であり、第4図、第5図
も同様な別例の正面図である。 P……中央周面、U,V……一組のモールド、
S……分割面、H……接合位置の選択孔、T……
ほぞ。
FIG. 1 is a sectional view of the mold, FIGS. 2 a and b are internal views of the mold at respective joining positions of different cavities, and FIGS. 3 a, b, and c are procedures for changing the tread pattern for another embodiment. Fig. 4 and Fig. 5 are also front views of similar different examples. P...Central peripheral surface, U, V...a set of molds,
S...Dividing surface, H...Selection hole for joining position, T...
Tenon.

Claims (1)

【特許請求の範囲】 1 空気入りタイヤの加硫成形に当つて、該タイ
ヤの回転中心と直交する平面にて接合する分割面
で分離され、互いに対をなす一組のモールドを用
い、対をなすモールドのうち一方を、他方のモー
ルドに対するひとつの型合わせ接合位置から周方
向にずらせて、別な型合わせ接合位置に移した加
硫成形を可能とすることにより、一組のモールド
で異なるトレツドパターンを空気入りタイヤに付
与することを特徴とする、空気入りタイヤの加硫
成形方法。 2 接合位置の一つが、モールドの分割面を含む
平面と交差する向きの横溝およびこれによつて区
分される陸部を有するトレツドパターンの形成に
与るものである、特許請求の範囲第1項に記載の
方法。 3 横溝と陸部が、トレツドの中央円周上でそれ
ぞれトレツド幅の3〜20%および15〜35%に相当
する幅を有するものとする、特許請求の範囲第2
項に記載の方法。 4 一つの型合わせ接合位置と別な型合わせ接合
位置とについて、トレツドの中央円周上で測つた
隔りが、横溝の幅より大きく、陸部の幅より小さ
いものとする、特許請求の範囲第2項又は第3項
に記載の方法。 5 陸部が横溝の溝壁の、分割面を含む平面に対
する交差域付近にて、該溝壁を該平面と滑らかに
連ねる円弧状輪郭をもつ微小な膨出部をそなえ
る、特許請求の範囲第4項に記載の方法。 6 円弧状輪郭の曲率半径が、横溝の幅に対し10
%以上に相当するものである、特許請求の範囲第
5項に記載の方法。 7 横溝が、その溝底の、分割面を含む平面に対
する交差付近にて該溝底を該平面と滑らかに連ね
る円弧状輪郭の微小な隆起部を具える、特許請求
の範囲第4項〜第6項のうちの何れか1に記載の
方法。 8 円弧状輪郭の曲率半径が溝深さの10%以上に
当たるものである、特許請求の範囲第7項に記載
の方法。 9 トレツドパターンが、トレツドの両側端を連
結してのびる横溝によつて区分されたラグタイプ
パターンである、特許請求の範囲第2項に記載の
方法。
[Scope of Claims] 1. In vulcanization molding of pneumatic tires, a pair of molds is used, which are separated by a dividing surface that joins in a plane orthogonal to the rotation center of the tire, and are paired with each other. By making it possible to carry out vulcanization molding in which one of the two molds is shifted circumferentially from one mold joining position to the other mold and moved to another mold joining position, different training can be performed with one set of molds. A method for vulcanizing and molding a pneumatic tire, characterized by imparting a pneumatic tire with a dot pattern. 2. Claim 1, wherein one of the bonding positions participates in the formation of a tread pattern having horizontal grooves in a direction intersecting a plane including the dividing plane of the mold, and a land portion divided by the horizontal grooves. The method described in section. 3. Claim 2, wherein the lateral groove and the land portion have widths corresponding to 3 to 20% and 15 to 35% of the tread width, respectively, on the central circumference of the tread.
The method described in section. 4. Claims in which the distance measured on the central circumference of the tread between one mold-matching joint position and another mold-matching joint position is greater than the width of the transverse groove and smaller than the width of the land portion. The method according to paragraph 2 or 3. 5. Claim No. 5, wherein the land portion is provided with a minute bulge having an arcuate profile that smoothly connects the groove wall with the plane in the vicinity of the intersection area of the groove wall of the horizontal groove with the plane including the dividing surface. The method described in Section 4. 6 The radius of curvature of the arcuate profile is 10 relative to the width of the horizontal groove.
% or more, the method according to claim 5. 7. Claims 4 to 7, wherein the lateral groove has a minute protuberance with an arcuate profile that smoothly connects the groove bottom with the plane including the dividing plane near the intersection of the groove bottom with the plane including the dividing plane. The method described in any one of Item 6. 8. The method according to claim 7, wherein the radius of curvature of the arcuate profile corresponds to 10% or more of the groove depth. 9. The method according to claim 2, wherein the tread pattern is a lug type pattern separated by transverse grooves extending connecting both ends of the tread.
JP59123921A 1984-06-18 1984-06-18 Vulcanization molding method of pneumatic tire Granted JPS613711A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59123921A JPS613711A (en) 1984-06-18 1984-06-18 Vulcanization molding method of pneumatic tire
US07/059,226 US4769203A (en) 1984-06-18 1987-06-05 Method of manufacturing pneumatic tires by vulcanization building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123921A JPS613711A (en) 1984-06-18 1984-06-18 Vulcanization molding method of pneumatic tire

Publications (2)

Publication Number Publication Date
JPS613711A JPS613711A (en) 1986-01-09
JPH0455086B2 true JPH0455086B2 (en) 1992-09-02

Family

ID=14872631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123921A Granted JPS613711A (en) 1984-06-18 1984-06-18 Vulcanization molding method of pneumatic tire

Country Status (1)

Country Link
JP (1) JPS613711A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702982B2 (en) * 1999-08-04 2011-06-15 株式会社ブリヂストン Pneumatic tire manufacturing equipment
BRPI0822855A2 (en) 2008-06-27 2015-06-30 Michelin Rech Tech Tire Curing Mold
BRPI0822857B1 (en) * 2008-06-30 2019-09-24 Compagnie Generale Des Etablissements Michelin TIRE CURE TEMPLATE

Also Published As

Publication number Publication date
JPS613711A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
AU2017248325B2 (en) Truck tire tread and truck tire
CN100572109C (en) Air-inflation tyre
US8276629B2 (en) Tread comprising dual orientation incisions
US7017634B2 (en) Tire tread including hollowed zones
AU632081B2 (en) Tread for pneumatic tire intended for winter driving
US5783002A (en) Tire tread including incisions
US20060144492A1 (en) Tire tread having a tread block with an undercut design
JPH05155202A (en) Precure tread for tire and manufacture thereof and regenerated tire using the same
JPH0728002Y2 (en) Radial tire
JPS6160308A (en) Tyre for heavy vehicle
JPH06171316A (en) Pneumatic radial tire for heavy load
JPH09272312A (en) Pneumatic tire for heavy load
JP4104982B2 (en) Directional tread pattern for winter tires
JPH023902U (en)
EP3507106A1 (en) Heavy truck tire tread and heavy truck tire
AU770357B2 (en) Profile for motor vehicle tyre tread with high load capacity
JPS629041B2 (en)
US7464738B2 (en) Tyre for a vehicle wheel including zigzag circumferential grooves and blind transverse cuts
JPH0455086B2 (en)
US20180170115A1 (en) Pneumatic tire, a tread band, and a tread block comprising a sipe, and a lamella plate for the manufacture thereof
US4769203A (en) Method of manufacturing pneumatic tires by vulcanization building
JPH03128706A (en) Pneumatic radial tire
CN210174550U (en) SUV all terrain tire
JPH0335601Y2 (en)
US20220118797A1 (en) Tread for an Agricultural Vehicle