JPH045506B2 - - Google Patents

Info

Publication number
JPH045506B2
JPH045506B2 JP18617482A JP18617482A JPH045506B2 JP H045506 B2 JPH045506 B2 JP H045506B2 JP 18617482 A JP18617482 A JP 18617482A JP 18617482 A JP18617482 A JP 18617482A JP H045506 B2 JPH045506 B2 JP H045506B2
Authority
JP
Japan
Prior art keywords
slab
spring
drive shaft
spherical seat
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18617482A
Other languages
Japanese (ja)
Other versions
JPS5976563A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57186174A priority Critical patent/JPS5976563A/en
Publication of JPS5976563A publication Critical patent/JPS5976563A/en
Publication of JPH045506B2 publication Critical patent/JPH045506B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Description

【発明の詳細な説明】 〔発明の技術分野〕 回転ボウルとその駆動部とがスラブによつて隔
離されている核燃料再処理用遠心分離機に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a centrifugal separator for nuclear fuel reprocessing in which a rotating bowl and a driving section thereof are separated by a slab.

〔発明の技術的背景〕[Technical background of the invention]

核燃料再処理用遠心分離機としては、使用済該
燃料の硝酸溶液中から不溶性核分裂生成物等の固
体微粒子を分離除去する遠心清澄機や、清澄後の
前記溶液中のウランやプルトニウムと核分裂生成
物を分離するための液々抽出を行う遠心抽出機が
ある。
Centrifugal separators for nuclear fuel reprocessing include centrifugal clarifiers that separate and remove solid particles such as insoluble fission products from the nitric acid solution of spent fuel, and uranium, plutonium, and fission products in the solution after clarification. There is a centrifugal extractor that performs liquid-liquid extraction to separate.

上記のような遠心分離機はきわめて高放射性の
物質を取扱うものであるから、処理液と接する回
転ボウル部とそれを駆動するモータ、軸受等を含
む駆動部とは、コンクリート、鉛等から成る放射
線遮蔽スラブによつて隔離されている。
Since the centrifugal separator described above handles extremely highly radioactive materials, the rotating bowl part that comes into contact with the processing liquid and the driving part that includes the motor, bearings, etc. that drive it are radioactive materials made of concrete, lead, etc. Isolated by shielding slabs.

すなわち、第1図において遠心抽出機につき例
示したように、放射線遮蔽スラブ1の上方には、
後に詳細を説明する駆動部2が、また下方には後
に詳細を説明する接液部3がそれぞれ設けてあり
両者間は放射線遮蔽スラブ1によつて隔離されて
いる。
That is, as illustrated for the centrifugal extractor in FIG. 1, above the radiation shielding slab 1,
A drive section 2, which will be explained in detail later, is provided below, and a liquid contact section 3, which will be explained in detail later, is provided below, and both are isolated by a radiation shielding slab 1.

駆動部2の筐体4は内フランジ5aを有し、下
面をスラブ1上面に固定された下方部材5と、そ
の上面に固着され上面にモータ6をそなえた上方
部材7とにより形成されている。
The housing 4 of the drive unit 2 has an inner flange 5a, and is formed by a lower member 5 whose lower surface is fixed to the upper surface of the slab 1, and an upper member 7 which is fixed to the upper surface and has a motor 6 on its upper surface. .

モータ6からスラブ1を貫通してスラブ下方に
突出し回転ボウル8を吊下支持した駆動軸9は、
次の如くして首振り可能且つ回転自在に支持され
ている。すなわち、内フランジ5a上面には上開
きの球面座10が取付けてあり、駆動軸に係合し
たボールベアリング11を支持する軸受筒12は
前記球面座10の凹球面10aと12aい係合摺
接する凸球面12aを有している。
A drive shaft 9 extends from the motor 6 through the slab 1 and protrudes below the slab to suspend and support the rotating bowl 8.
It is swingably and rotatably supported as follows. That is, an upwardly-opening spherical seat 10 is attached to the upper surface of the inner flange 5a, and a bearing sleeve 12 that supports a ball bearing 11 engaged with the drive shaft engages and slides with the concave spherical surface 10a of the spherical seat 10 by 12a. It has a convex spherical surface 12a.

なお、球面座10の上部のフランジ10bと軸
受筒12上部のフランジ12bとの間は、ダンパ
ー13を介して連結されている。また、軸受筒1
2下端には、球面座10下部筒10cに可動摺動
に装着され、ばね14により軸受筒中心に向つて
ばね力を印加した支持部材15が係合されてい
る。なお、図中15aは支持部材15外端のばね
押えを示し、ばね14は引張ばねとし、一端をば
ね押え15に固定したものとする。
The flange 10b at the top of the spherical seat 10 and the flange 12b at the top of the bearing sleeve 12 are connected via a damper 13. In addition, bearing tube 1
A support member 15 is engaged with the lower end of 2, which is movably slidably attached to the lower cylinder 10c of the spherical seat 10 and has a spring force applied toward the center of the bearing cylinder by a spring 14. In the figure, reference numeral 15a indicates a spring holder at the outer end of the support member 15, and the spring 14 is assumed to be a tension spring, with one end fixed to the spring holder 15.

接液部3は駆動軸9の下端に設けられ固定部1
6内で回転する回転ボウル8を有し、回転ボウル
8内には混合室81,82、相分離室83,84
が形成されている。なお85,86は回転部に設
けられた水溶液入口、水溶液出口、87,88は
内部固定部に設けられた溶媒入口、溶媒出口を示
す。
The liquid contact part 3 is provided at the lower end of the drive shaft 9 and the fixed part 1
6 has a rotating bowl 8 that rotates within the rotating bowl 8, and the rotating bowl 8 includes mixing chambers 81, 82 and phase separation chambers 83, 84.
is formed. Note that 85 and 86 indicate an aqueous solution inlet and an aqueous solution outlet provided in the rotating part, and 87 and 88 indicate a solvent inlet and a solvent outlet provided in the internal fixed part.

溶接部3における抽出分離は原液であるU、
Pu核分裂生成物硝酸液の水溶液を水溶液入口8
5から回転ボウル8内に導入し、又例えばTBP、
ドデカンで成る溶媒を溶媒入口87から同様導入
する。水溶液は混合室81に回転ボウル8の外径
側から供給され、相分離室84から順次U、Pu
を吸収した溶媒と撹拌混合され他の相分離室83
に導入される。ここで更にU、Paを吸収した溶
媒は静止した取出口から溶媒出口88を通り回転
ボウル8外に排出される。一方相分離室83で
U、Puが少くなくなつた水溶液は順次送られ混
合室82で導入された溶媒とともに撹拌され、相
分離室84でU、Puを更に減少させ、回転ボウ
ル8の上部端板開口の水溶液出口86から排出さ
れる。
The extraction and separation in the welding zone 3 involves the extraction and separation of the undiluted solution U,
Aqueous solution of Pu fission product nitric acid solution at aqueous solution inlet 8
5 into the rotating bowl 8, and also, for example, TBP,
A solvent consisting of dodecane is likewise introduced through the solvent inlet 87. The aqueous solution is supplied to the mixing chamber 81 from the outer diameter side of the rotating bowl 8, and from the phase separation chamber 84, U, Pu,
is stirred and mixed with the absorbed solvent in another phase separation chamber 83.
will be introduced in Here, the solvent that has further absorbed U and Pa is discharged from the stationary outlet to the outside of the rotating bowl 8 through the solvent outlet 88. On the other hand, the aqueous solution whose U and Pu content have decreased in the phase separation chamber 83 is sent one after another and is stirred together with the solvent introduced in the mixing chamber 82, and is further reduced in U and Pu in the phase separation chamber 84. It is discharged from the aqueous solution outlet 86 in the plate opening.

〔背景技術の問題点〕[Problems with background technology]

上記従来の遠心分離機において、軸受筒12を
球面座10により支持し、首振りを可能としてい
るのは、調心性を持たせることと、駆動軸9系の
固有振動数に配慮することを目的としている。上
述の如くすることによりダンパー13、ばね14
の定数を任意に設定して、いわゆる剛性モードの
共振点を通過させる。この共振点は回転数を低く
するとエネルギーも小さくダンパー13、ばね1
4の定数を適当に選択することによつて振動振幅
を小さくすることができる。さらに回転数を上げ
ると回転軸の弾性変形による共振点にぶつかる。
この共振点は回転数が高いためダンパー13、ば
ね14で十分にエネルギを吸収することができず
振動振幅が大きくなり、同時に軸受荷重も大きく
なりボールベアリング11の耐荷重を超えること
が考えられる。以上の点より通常は定格運転回転
数を剛体モードの共振点以上でかつ弾性変形モー
ドの共振点以下に選定することが好しくこの方法
をとつている。
In the above-mentioned conventional centrifugal separator, the bearing cylinder 12 is supported by the spherical seat 10 to enable oscillation, in order to provide alignment and to take into consideration the natural frequency of the drive shaft 9 system. It is said that By doing as described above, the damper 13 and the spring 14
The constant of is arbitrarily set to pass through the so-called resonance point of the rigid mode. At this resonance point, when the rotation speed is low, the energy is small and the damper 13 and spring 1
By appropriately selecting the constant of 4, the vibration amplitude can be reduced. If the rotational speed is further increased, a resonance point due to elastic deformation of the rotating shaft will be reached.
Since the rotational speed at this resonance point is high, the damper 13 and the spring 14 cannot sufficiently absorb the energy, and the vibration amplitude becomes large.At the same time, the bearing load also becomes large, possibly exceeding the load capacity of the ball bearing 11. From the above points, it is usually preferable to select the rated operating speed to be higher than the resonance point of the rigid body mode and lower than the resonance point of the elastic deformation mode, and this method is adopted.

しかし乍ら、上記従来の遠心分離機にあつては
地震等の振動、回転ボウル8不平衡量の増大等に
よつて、前記駆動軸の首ふり量が大きくなると駆
動軸が静止部に接触し大きな事故を発生するおそ
れがあつた。
However, in the case of the above-mentioned conventional centrifuge, when the amount of swing of the drive shaft increases due to vibrations such as earthquakes, an increase in the amount of unbalance of the rotating bowl 8, etc., the drive shaft comes into contact with a stationary part, causing a large amount of vibration. There was a risk of an accident occurring.

〔発明の目的〕[Purpose of the invention]

この発明は上述した従来装置の欠点を改良した
もので、地震等の振動あるいは回転ボウルの不平
衡量の増大等によつて駆動軸の首振り量が大きく
なつた場合においても駆動軸が静止部に接触する
ことのない核燃料再処理用遠心分離機を提供する
ことを目的とする。
This invention improves the drawbacks of the conventional device described above, and allows the drive shaft to remain in the stationary part even when the amount of swing of the drive shaft increases due to vibrations such as earthquakes or an increase in the unbalance of the rotating bowl. The purpose is to provide a centrifugal separator for nuclear fuel reprocessing that does not involve contact.

〔発明の概要〕[Summary of the invention]

放射線遮蔽スラブ上方に駆動部が、また下方に
接液部がそれぞれ設けられ駆動部から垂下し前記
スラブを貫通し、下端に回転ボウルを設え、前記
スラブに固定した球面座に支持された軸受筒に可
回動に支持された駆動軸を有するものにおいて、
上記軸受筒のバネ取付位置の最大変形Cが次の関
係を満すバネあるいはダンパを前記軸受筒と球面
座支持部との間に設け駆動軸の変位量を制限し
た。
A bearing cylinder is provided with a driving part above the radiation shielding slab and a wetted part below the radiation shielding slab, hangs down from the driving part, passes through the slab, has a rotating bowl at its lower end, and is supported by a spherical seat fixed to the slab. In one having a drive shaft rotatably supported on,
A spring or damper whose maximum deformation C at the spring mounting position of the bearing cylinder satisfies the following relationship is provided between the bearing cylinder and the spherical seat support to limit the amount of displacement of the drive shaft.

ここで、球面座の回転中心とスラブ底部までの
距離L1、スラブと回転軸との半径隙間C1、球面
座の回転中心とバネあるいはダンパ取付位置まで
の距離L2とすれば、 C<C1・L2/L1 〔発明の効果〕 前記軸受筒のバネ取付位置の最大変形量を制限
したバネあるいはダンパを用いることにより、地
震時の振動あるいは回転ボウルの不平衡量の増大
等によつて駆動軸の首振り量が大きくなつた場合
においても駆動軸がスラブ下部(駆動軸と静止部
の最小隙間)に接触、破壊することのない安定し
た回転性能を得る。
Here, if the distance L 1 is between the rotation center of the spherical seat and the bottom of the slab, the radial clearance C 1 between the slab and the rotating shaft, and the distance L 2 between the rotation center of the spherical seat and the spring or damper mounting position, then C< C 1・L 2 /L 1 [Effect of the invention] By using a spring or damper that limits the maximum amount of deformation at the spring mounting position of the bearing cylinder, vibrations caused by earthquakes or an increase in the unbalance of the rotating bowl can be prevented. As a result, even when the amount of swing of the drive shaft increases, stable rotational performance is obtained in which the drive shaft does not come into contact with the lower part of the slab (minimum gap between the drive shaft and the stationary part) and break.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明をモデル化した図で、要部を駆
動軸9を対称軸として片側を省略して示してあ
る。第2図は放射線遮蔽スラブ1と駆動軸9およ
び軸受筒を支持するバネ、ダンパを示した。
FIG. 2 is a model of the present invention, in which essential parts are shown with one side omitted with the drive shaft 9 as the axis of symmetry. FIG. 2 shows the radiation shielding slab 1, the drive shaft 9, and the spring and damper that support the bearing sleeve.

スラブ1を貫通して下方に突出した駆動軸9は
ボールベアリング11に係合し、軸受筒部の球面
座12により首振り可能かつ回転自在に支持され
ている。また、軸受筒の上部フランジ12bには
ダンパ13が下部にはバネ14が連絡され、駆動
軸の振動を吸収している。
A drive shaft 9 that protrudes downward through the slab 1 engages with a ball bearing 11, and is swingably and rotatably supported by a spherical seat 12 of a bearing cylinder. Further, a damper 13 is connected to the upper flange 12b of the bearing cylinder, and a spring 14 is connected to the lower part thereof, to absorb vibrations of the drive shaft.

ここで、下部バネ位置の軸受筒の変位量をC、
スラブ1と駆動軸との半径隙間をC1、球面座の
回転中心とスラブ底部までの距離をL1および球
面座の回転中心とバネ取付位置までの距離をL2
とした場合、駆動軸と各々の関係は C・L1=C1・C2(剛体一次の場合) である。
Here, the amount of displacement of the bearing cylinder at the lower spring position is C,
C 1 is the radial clearance between slab 1 and the drive shaft, L 1 is the distance between the rotation center of the spherical seat and the bottom of the slab, and L 2 is the distance between the rotation center of the spherical seat and the spring mounting position.
In this case, the relationship between the drive shaft and each one is C·L 1 =C 1 ·C 2 (in the case of a linear rigid body).

そこで、駆動軸が回転中に地震あるいは回転ボ
ウル8の不平衡量の増大等によつて剛体一次の振
動振幅が増加した場合において、上記C、C1
L1、L2の関係を C<C1・L2/L1 とすることにより、駆動軸9はスラブ1の底部に
接触することがない。
Therefore, when the first-order vibration amplitude of the rigid body increases due to an earthquake or an increase in the unbalance of the rotating bowl 8 while the drive shaft is rotating, the above C, C 1 ,
By setting the relationship between L 1 and L 2 as C<C 1 ·L 2 /L 1 , the drive shaft 9 does not come into contact with the bottom of the slab 1.

よつて上記の関係を満すバネおよびダンパを取
付けることによつて、安定した回転性能が確保で
き、耐震性の優れた遠心分離機とすることが可能
となる。
Therefore, by installing a spring and a damper that satisfy the above relationship, stable rotational performance can be ensured, and a centrifugal separator with excellent earthquake resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の核燃料再処理用遠心分離機を示
す縦断面図、第2図は本発明に係る一実施例の要
部をモデル化して示す断面図である。 1……放射線遮蔽スラブ、2……駆動部、3…
…接液部、8……回転ボウル、9……駆動軸、1
0……球面座、10a……凹球面、10b……フ
ランジ、12……軸受筒、12a……凸球面、1
2b……フランジ、13……ダンパ、14……バ
ネ、15……支持部材、15a……バネ押え、1
1……ボールベアリング。
FIG. 1 is a vertical sectional view showing a conventional centrifuge for reprocessing nuclear fuel, and FIG. 2 is a sectional view showing a model of the main parts of an embodiment of the present invention. 1... Radiation shielding slab, 2... Drive section, 3...
...Wetted part, 8...Rotating bowl, 9...Drive shaft, 1
0... Spherical seat, 10a... Concave spherical surface, 10b... Flange, 12... Bearing tube, 12a... Convex spherical surface, 1
2b...flange, 13...damper, 14...spring, 15...support member, 15a...spring holder, 1
1...Ball bearing.

Claims (1)

【特許請求の範囲】[Claims] 1 スラブ上方に駆動部がまた下方に接液部がそ
れぞれ設けられ、駆動部から垂下し前記スラブを
貫通し下端に回転ボウルを設え、前記スラブに固
定した球面座に支持された軸受筒に可回動に支持
された駆動軸を有するものにおいて、前記球面座
の中心とスラブ底部までの距離L1、スラブと回
転軸との半径隙間C1、球面座の中心とバネある
いはダンパ取付位置までの距離L2としたとき最
大変形CがC<C1・L2/L1の関係を満すバネあ
るいはダンパを前記軸受筒と球面座支持部との間
に設けたことを特徴とする核燃料再処理用遠心分
離機。
1. A driving part is provided above the slab, and a wetted part is provided below, and a rotary bowl is provided at the lower end of the slab, hanging from the driving part and passing through the slab. In a drive shaft that is rotatably supported, the distance L 1 between the center of the spherical seat and the bottom of the slab, the radial clearance C 1 between the slab and the rotating shaft, and the distance between the center of the spherical seat and the spring or damper mounting position. A nuclear fuel recycler characterized in that a spring or a damper is provided between the bearing tube and the spherical seat support so that the maximum deformation C satisfies the relationship C<C 1 ·L 2 /L 1 when the distance is L 2. Processing centrifuge.
JP57186174A 1982-10-25 1982-10-25 Centrifugal separator for retreating nuclear fuel Granted JPS5976563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186174A JPS5976563A (en) 1982-10-25 1982-10-25 Centrifugal separator for retreating nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186174A JPS5976563A (en) 1982-10-25 1982-10-25 Centrifugal separator for retreating nuclear fuel

Publications (2)

Publication Number Publication Date
JPS5976563A JPS5976563A (en) 1984-05-01
JPH045506B2 true JPH045506B2 (en) 1992-01-31

Family

ID=16183680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186174A Granted JPS5976563A (en) 1982-10-25 1982-10-25 Centrifugal separator for retreating nuclear fuel

Country Status (1)

Country Link
JP (1) JPS5976563A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620051B1 (en) * 1987-09-04 1991-08-16 Sgn Soc Gen Tech Nouvelle PENDULUM-TYPE ROTATING MACHINES COMPRISING AT LEAST ONE DAMPING DEVICE

Also Published As

Publication number Publication date
JPS5976563A (en) 1984-05-01

Similar Documents

Publication Publication Date Title
JPH0369579B2 (en)
US5571070A (en) Rotor sleeve for a centrifugal separator
JP3008030B2 (en) centrifuge
JP3757197B2 (en) Centrifugal extractor
JPH045506B2 (en)
JPH0337983B2 (en)
JPS5916558A (en) Centrifugal separator for reprocessing of nuclear fuel
JPS5946153A (en) Centrifugal separator for reprocessing of nuclear fuel
JPS5946154A (en) Centrifugal separator for reprocessing of nuclear fuel
JPS58223453A (en) Centrifugal separator for reprocessing nuclear fuel
CN106895103A (en) A kind of High-speed centrifugal extraction machine vibration damping and vibration isolation system
JPS5946152A (en) Centrifugal separator
JPH01236957A (en) Centrifugal separator
JPH04277047A (en) Solid-liquid separating apparatus
JPS58114756A (en) Centrifugal separator
JPS5919566A (en) Centrifugal separator
JPS58223454A (en) Centrifugal separator for retreating nuclear fuel
JPH045507B2 (en)
JPH0324261B2 (en)
JPS58124553A (en) Centrifugal separator
JP2000042448A (en) Centrifugal separator
JPH0437397B2 (en)
JPS641185B2 (en)
JPH04310254A (en) Solid-liquid centrifugal separator
JPS58124554A (en) Centrifugal separator for retreating nuclear fuel