JPH0455012A - Plate thickness control method for rolling mill - Google Patents

Plate thickness control method for rolling mill

Info

Publication number
JPH0455012A
JPH0455012A JP2167991A JP16799190A JPH0455012A JP H0455012 A JPH0455012 A JP H0455012A JP 2167991 A JP2167991 A JP 2167991A JP 16799190 A JP16799190 A JP 16799190A JP H0455012 A JPH0455012 A JP H0455012A
Authority
JP
Japan
Prior art keywords
plate thickness
rolling
rolling mill
signal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2167991A
Other languages
Japanese (ja)
Inventor
Sadayuki Mitsuyoshi
三吉 貞行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2167991A priority Critical patent/JPH0455012A/en
Publication of JPH0455012A publication Critical patent/JPH0455012A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control

Abstract

PURPOSE:To roll the material to be rolled with stable plate thickness by inputting directly a signal to a BISRA AGC, in the case the corresponding substantial frequency is approximate to the frequency corresponding to a periodical load fluctuation caused by eccentricity of a backup roll, and also, a plate thickness fluctuation has amplitude exceeding a reference value. CONSTITUTION:With regard to a steel plate S which is run in the direction as indicated with an arrow, plate thickness is detected by a plate thickness gauge 26 of the entry of a rolling mill, its detecting signal is inputted to a frequency analysing device 28, and whether there is specific periodicity in a fluctuation of plate thickness detected by the analysing device concerned 28 or not is analysed. As a result of analysis by the analysing device 28, in the case specific periodicity is recognized in a fluctuation of plate thickness of the steel plate S, a changeover switch 18 is switched automatically to a (b) side, a rolling load signal is allowed to make a detour from a band pass filter, inputted directly to a BISRA AGC 22, and in the same way, the roll rolling reduction is adjusted, and rolling of the steel plate S is executed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、圧延機の板厚制御方法、特にバックアップロ
ールが偏心している場合でも常に安定した板厚で圧延を
行うことができる圧延機の板厚制御方法に関する。
The present invention relates to a method for controlling a plate thickness in a rolling mill, and particularly to a method for controlling a plate thickness in a rolling mill, which allows rolling with a stable plate thickness at all times even when a backup roll is eccentric.

【従来の技術】[Conventional technology]

圧延機の板厚制御方法としては、通常BISRA  A
GC(Autonat+c  Gauge  Cont
rol)と呼ばれる、圧延荷重偏差を用いて圧下位置を
制御する方法が一般に用いられている。 上記BISRA  AGCは、圧延機出側に設置して板
厚計の検出値を用いて制御を行うフィードバックAGC
に比べて応答が早いという長所をもっている。ところが
、圧延機のバックアップロールに偏心が存在する場合は
、該偏心に起因する圧延荷重変動がBISRA  AG
Cの外乱となるため、板厚制御性能が低下するという欠
点をもっている。その対策として、実測した圧延荷重か
らバックアップロールの偏心に起因して周期的に変動す
る荷重変動分を取り除く補正を行った圧延荷重信号をB
ISRA  AGCへの入力信号として用いることによ
り、被圧延材の板厚を一定に制御する方法が取られてい
る。
BISRA A is usually used as a method for controlling plate thickness in rolling mills.
GC (Autonat+c Gauge Cont.
A method called ``roll'' that controls the rolling position using rolling load deviation is generally used. The above BISRA AGC is a feedback AGC installed on the exit side of the rolling mill and controlled using the detected value of the plate thickness gauge.
It has the advantage of faster response than . However, if there is eccentricity in the backup roll of the rolling mill, rolling load fluctuations due to the eccentricity will cause BISRA AG
This has the disadvantage that the plate thickness control performance deteriorates because it causes a disturbance of C. As a countermeasure, the rolling load signal is corrected to remove the periodic load fluctuation caused by the eccentricity of the backup roll from the actually measured rolling load.
A method has been adopted in which the thickness of the material to be rolled is controlled to be constant by using it as an input signal to ISRA AGC.

【発明が達成しようとする課題】[Problem to be achieved by the invention]

しかしながら、バックアップロールの偏心に起因する荷
重変動分を除去した補正後の圧延荷重信号をBISRA
  AGCの入力信号として用いる前述の方法では、圧
延機入側における被圧延材の板厚変動が実質上周期的に
変化し、その周波数がバックアップロールの信心に起因
する荷重変動に対応する周波数に近い場合には、B’l
5RA  AGCか圧延機入側の板厚変動に対して有効
に機能しなくなり、板厚精度が低下するという問題があ
る。 本発明は、前記問題点を解決するべくなされたもので、
バックアップロールが傷心している場合でも常に安定し
た板厚で圧延を行うことができる圧延機の板厚制御方法
を提供することを課題とする。
However, BISRA uses a corrected rolling load signal that removes the load fluctuation caused by the eccentricity of the backup roll.
In the above-mentioned method used as an input signal for AGC, the thickness fluctuation of the rolled material at the entrance side of the rolling mill changes substantially periodically, and the frequency is close to the frequency corresponding to the load fluctuation caused by the trust of the backup roll. In case, B'l
There is a problem that the 5RA AGC does not function effectively against changes in plate thickness on the entry side of the rolling mill, resulting in a decrease in plate thickness accuracy. The present invention was made to solve the above problems, and
It is an object of the present invention to provide a method for controlling plate thickness in a rolling mill that can always perform rolling with a stable plate thickness even when a backup roll is damaged.

【課題を達成するための手段】[Means to achieve the task]

本発明は、実測した圧延荷重に基づく圧延荷重信号を、
バックアップロールの偏心に起因する周期的荷重変動成
分を取り除くためのバンドパスフィルタを介してBIS
RA  AGCに入力し、被圧延材の板厚を制御する圧
延機の板厚制御方法において、圧延機入側で被圧延材の
板厚変動を周波数解析すると共に、その解析結果から、
被圧延材の板厚が実質上周期的に変動し、その板厚変動
に対応する実質上の周波数が、前記バックアップロール
の偏心に起因する周期的荷重変動に対応する周波数に近
似し、且つ該板厚変動が基準値を超える振幅を有してい
る場合には、信号を前記BISRA  AGCに直接入
力することにより、前記課題を達成したものである。
The present invention provides a rolling load signal based on the actually measured rolling load,
BIS through a bandpass filter to remove periodic load fluctuation components caused by eccentricity of the backup roll.
In a rolling mill plate thickness control method in which the thickness of the rolled material is controlled by inputting it to the RA AGC, frequency analysis is performed on the variation in the thickness of the rolled material at the entry side of the rolling mill, and from the analysis results,
The plate thickness of the material to be rolled varies substantially periodically, and the substantial frequency corresponding to the plate thickness variation is close to the frequency corresponding to the periodic load variation due to the eccentricity of the backup roll, and The above problem is achieved by directly inputting a signal to the BISRA AGC when the plate thickness variation has an amplitude exceeding the reference value.

【作用及び効果】[Action and effect]

本発明においては、圧延機入側における被圧延材の板厚
変動を周波数解析し、該板厚変動に対応する実質上の周
波数がバックアップロールの偏心に起因する荷重変動に
対応する周波数と近似し、且つ該板厚変動がある程度以
上の振幅をもっている場合には、実測した圧延荷重変動
に基づく圧延荷重信号からバックアップロールの偏心に
起因する変動成分を取り除く機能を使用せず、本来の上
記圧延荷重変動に基づく圧延荷重信号をBISRA  
AGCに入力して被圧延材の板厚の制御を行うようにし
た。 その結果、バンドパスフィルタを用いることによる前記
欠点を解消でき、被圧延材に上記のような実質上周期的
に変化する板厚変動が存在する場合でも、該被圧延材を
安定した板厚で圧延することが可能となった。
In the present invention, frequency analysis is performed on plate thickness variations of the rolled material at the entrance side of the rolling mill, and the actual frequency corresponding to the plate thickness variations is approximated to the frequency corresponding to load variations due to eccentricity of the backup roll. , and if the plate thickness fluctuation has an amplitude above a certain level, the function to remove the fluctuation component caused by the eccentricity of the backup roll from the rolling load signal based on the actually measured rolling load fluctuation is not used, and the original rolling load is BISRA rolling load signal based on fluctuations
The thickness of the material to be rolled is controlled by inputting it to the AGC. As a result, the above-mentioned drawbacks caused by using a band-pass filter can be eliminated, and even if the material to be rolled has thickness fluctuations that change substantially periodically as described above, the material to be rolled can be kept at a stable thickness. It became possible to roll it.

【実施例】【Example】

以下、図面を参照して、本発明の実施例を詳細に説明す
る。 第1図は、本発明の一実施例に適用する圧延機を示す概
略構成図である。 上記圧延機は、図中Sで示す鋼板(被圧延材)を圧延す
るための上下一対のワークロール1oと、該両ワークロ
ール10のそれぞれに接するバックアップロール12と
を饋えている。又、上方に位!するバックアップロール
12には圧延荷重計14が付設され、下方に位1するバ
ックアップロール12にはロール圧下量を調整するため
の油圧シリンダ16が設!されている。 上記圧延荷重計14からは、通常切換スイッチ18を介
して(切換スイッチ18はa側に接続)測定信号をバン
ドパスフィルタ20、B I 5RAAGC22及び油
圧圧下制御系24へと順次入力可能になされており、更
に該油圧圧下制御系24から上記油圧シリンダ16に対
してロール圧下量を制御する信号を出力するようになさ
れている。 上記バンドパスフィルタ20は、前記圧延荷重計14に
より実測され圧延荷重(変動)に基づく圧延FIf!信
号から、バックアップロール12の傷心に起因する周期
的荷重変動に対応する周波数成分を除去する機能を僅え
ている。 又、上記切換スイッチ18をbに切換えると上記圧延荷
重計14による測定信号を、バンドパスフィルタ20を
介することなく 、 IE接B I 5RAAGC22
に入力可能になされている。 更に、圧延機入側には板厚計26が配設されており、該
板厚計26による検出信号は周波数解析装置28に入力
され、その解析結果に基づいて前記切換スイッチ18の
切換が行われるようになされている。 本実施例では、矢印方向に走行される鋼板Sについて、
圧延機の入側の板厚計26で板厚を検出し、その検出信
号を周波数解析装置28に入力し、該解析装228で検
出した板厚変動に特定の周期性があるか否かを解析する
。 即ち、検出した板厚変動に実質上周期性があり、該板厚
変動が前記バックアップロール12の信心に起因する周
期的な圧延荷重変動に近似する周波数を有し、且つ、そ
の振幅が基準値を超えている場合と、それ以外の場合と
に場合分けを行う。 上記解析の結果、板厚変動に上記特定の周期性かない場
合には、切換スイッチ18をa側にし、圧延荷重系14
から出力される圧延荷重信号を、バンドパスフィルタ2
0を通過させてバックアップロール12の傷心による影
響を取り除いた後、その補正後の信号をBISRA  
AGC22に入力する0次いで、上記この入力信号に基
づいてBISRA  AGC22から圧下位1指令信号
を前記油圧圧下制御系24に入力し、前記油圧シリンダ
16を駆動制御することにより、ロール圧下量を適切に
調整し、鋼板Sの圧延を行う。 一方、解析装置28による解析の結果、鋼板Sの板厚変
動に前述の特定の周期性が認められた場合には、前記切
換スイッチ18がb側に自動的に切換り、前記圧延荷重
信号を、バンドパスフィルタ20を迂回して、前記BI
SRA  AGC22に直接入力し、同様にロール圧下
量を調整し、鋼板Sの圧延を行う。 上述の如く、本実施例によれば、圧延機入側の鋼板Sに
ついて板厚を検出し、その検出結果から板厚変動に前記
特定の周期性がない場合には、従来と同様に圧延荷重信
号をバンドパスフィルタ20を介してBISRA  A
GC22に入力するため、バックアップロール12の偏
心の影響を取り除いて板厚を制御することができ、逆に
板厚変動に前記特定の周期性がある場合には、バンドパ
スフィルタ20を介さずに圧延荷重信号を直接BISR
A  AGC22に入力するため、該バンドパスフィル
タ20を用いることによる板厚制御に及ぼす欠点を解消
できる。 その結果、鋼板Sに、板厚制御性を低下させる前記特定
の周期性を有する板厚変動がある場合でも、板厚制御性
の低下を防止できるなめ、常に、良好な制御性の下で圧
延を行うことが可能となる。 本実施例の圧延機の板厚制御方法を、実際の圧延に適用
した場合の結果を、第2図のタイムチャートに示す。 第2図(A)は、圧延機入側における経時的な板厚変動
を、同図(B)は圧延時における圧延荷重変動を、同図
(C)は圧延機出側における板厚変動をそれぞれ示して
おり、図中左側は切換スイッチ18でb(I!lを選択
した場合、右側は逆にa側を選択した場合に対応する。 上と第2図より、圧延機入側に同図、(A)に示すよう
な実質上周期的に変化する板厚変動がある場合には、圧
延荷重信号をバンドパスフィルタ20に通過させた場合
(図中右側)に比べ、該フィルタ2oを迂回させた場合
(図中左1Ill)の方が、圧延機出側における板厚変
動が小さいことが示される。このように圧延機入側にお
ける板厚変動が、バックアップロール12の偏心に起因
する圧延変動に対応する周波数に近似する実質上の周波
数を有し、且つその大きさが所定の基準値を超える場合
には、圧延荷重信号を上記バンドパスフィルタ20を迂
回させることにより、板厚精度を向上できることが判る
。 次に、前記切換スイッチをa側からb側へ切換える判断
基準、即ち圧延機入側における板厚変動の前記特定の周
期性について説明する。 (1)板厚変動に対応する実質上の周波数が、バックア
ンプロール12の偏心に起因する圧延荷重変動に対応す
る周波数に近似するとは、例えば以下の通りである。即
ち、前者の周波数をfh、後者のそれを1日とすると、
次式(1)を満足する場合に、これらの周波数が近似し
ていると見做せる。 (fh−f日)/ f81 ≦0.1・・・ (1)(
2)板厚変動が、所定の基準値を超える振幅を有すると
は、例えば次式(2)を満足する場合である。 振幅≧目標板厚X0.02   ・・・・・・・・・(
2)以上、本発明を具体的に説明したが、本発明は前記
実施例に示したものに限られるものでなく、その要旨を
逸脱しない範囲で種々変更可能であることはいうまでも
ない。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a rolling mill applied to an embodiment of the present invention. The rolling mill is equipped with a pair of upper and lower work rolls 1o for rolling a steel plate (material to be rolled) indicated by S in the figure, and a backup roll 12 in contact with each of the work rolls 10. Also, in the upper position! A rolling load meter 14 is attached to the backup roll 12 positioned below, and a hydraulic cylinder 16 is attached to the backup roll 12 positioned below to adjust the amount of roll reduction. has been done. From the rolling load cell 14, measurement signals can be sequentially input to the band pass filter 20, the B I 5RAAGC 22, and the hydraulic pressure reduction control system 24 via the normal changeover switch 18 (the changeover switch 18 is connected to the a side). Further, the hydraulic pressure reduction control system 24 outputs a signal to the hydraulic cylinder 16 to control the roll reduction amount. The above-mentioned band pass filter 20 is based on the rolling FIf! actually measured by the above-mentioned rolling load meter 14 and based on the rolling load (variation). The function of removing frequency components corresponding to periodic load fluctuations caused by damage to the backup roll 12 from the signal is reduced. Moreover, when the changeover switch 18 is switched to b, the measurement signal from the rolling load meter 14 is transmitted to the IE connection B I5RAAGC22 without passing through the bandpass filter 20.
It has been made possible to input. Further, a plate thickness gauge 26 is disposed on the inlet side of the rolling mill, and a detection signal from the plate thickness gauge 26 is input to a frequency analyzer 28, and the changeover switch 18 is switched based on the analysis result. It is being done as it should be done. In this embodiment, regarding the steel plate S traveling in the direction of the arrow,
The plate thickness is detected by the plate thickness gauge 26 on the entrance side of the rolling mill, and the detected signal is input to the frequency analyzer 28, and it is determined whether or not the plate thickness variation detected by the analyzer 228 has a specific periodicity. To analyze. That is, the detected plate thickness variation has substantially periodicity, the plate thickness variation has a frequency that approximates the periodic rolling load variation caused by the reliability of the backup roll 12, and the amplitude thereof is equal to the reference value. Cases are divided into cases in which the amount exceeds the above limit and cases in which the amount exceeds the specified limit. As a result of the above analysis, if the plate thickness fluctuation does not have the above-mentioned specific periodicity, the changeover switch 18 is set to the a side, and the rolling load system 14
The rolling load signal output from the band pass filter 2
0 to remove the influence of the broken heart of the backup roll 12, the corrected signal is sent to BISRA.
0 input to the AGC 22 Next, based on this input signal, a roll reduction 1 command signal is input from the BISRA AGC 22 to the hydraulic pressure reduction control system 24 to drive and control the hydraulic cylinder 16, thereby appropriately controlling the roll reduction amount. Adjust and roll the steel plate S. On the other hand, if the above-mentioned specific periodicity is recognized in the thickness variation of the steel plate S as a result of analysis by the analysis device 28, the changeover switch 18 is automatically switched to side b, and the rolling load signal is , bypassing the band-pass filter 20, the BI
It is directly input to the SRA AGC 22, the roll reduction amount is adjusted in the same way, and the steel plate S is rolled. As described above, according to this embodiment, the thickness of the steel plate S on the entrance side of the rolling mill is detected, and if the thickness variation does not have the above-mentioned specific periodicity based on the detection result, the rolling load is changed as in the conventional case. The signal is passed through a bandpass filter 20 to BISRA A
Since it is input to the GC 22, the plate thickness can be controlled by removing the influence of the eccentricity of the backup roll 12, and conversely, if the plate thickness fluctuation has the above-mentioned specific periodicity, it is possible to control the plate thickness without going through the band pass filter 20. BISR rolling load signal directly
A Since the signal is input to the AGC 22, the disadvantages of controlling the plate thickness caused by using the bandpass filter 20 can be eliminated. As a result, even if the steel plate S has thickness fluctuations having the above-mentioned specific periodicity that deteriorates the thickness controllability, the deterioration of the thickness controllability can be prevented, so that rolling can always be carried out under good controllability. It becomes possible to do this. The time chart in FIG. 2 shows the results obtained when the method for controlling the thickness of a rolling mill according to this embodiment is applied to actual rolling. Figure 2 (A) shows changes in plate thickness over time at the entry side of the rolling mill, Figure 2 (B) shows changes in rolling load during rolling, and Figure 2 (C) shows changes in plate thickness at the exit side of the rolling mill. The left side of the figure corresponds to when b(I!l) is selected with the changeover switch 18, and the right side corresponds to when side a is selected. From the above and FIG. When there is a plate thickness fluctuation that changes substantially periodically as shown in Fig. 2 (A), compared to the case where the rolling load signal is passed through the band pass filter 20 (on the right side of the figure), the filter 2o It is shown that the variation in plate thickness on the exit side of the rolling mill is smaller when the plate is detoured (1 Ill on the left in the figure).As described above, the variation in plate thickness on the input side of the rolling mill is caused by the eccentricity of the backup roll 12. If the actual frequency is close to the frequency corresponding to the rolling fluctuation and the magnitude exceeds a predetermined reference value, the rolling load signal is bypassed through the bandpass filter 20 to improve plate thickness accuracy. Next, the criteria for switching the changeover switch from the a side to the b side, that is, the specific periodicity of plate thickness fluctuations at the entrance side of the rolling mill, will be explained. (1) Corresponding to plate thickness fluctuations. For example, the fact that the actual frequency corresponding to the rolling load fluctuation due to the eccentricity of the back unroll 12 is approximated is as follows.In other words, if the former frequency is fh, and the latter frequency is 1 day. Then,
If the following equation (1) is satisfied, these frequencies can be considered to be close. (fh - f day) / f81 ≦0.1... (1) (
2) The plate thickness fluctuation has an amplitude exceeding a predetermined reference value when, for example, the following equation (2) is satisfied. Amplitude≧Target thickness x0.02 ・・・・・・・・・(
2) Although the present invention has been specifically described above, it goes without saying that the present invention is not limited to what has been shown in the above embodiments, and can be modified in various ways without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に適用する圧延機を示す概
略構成図、 第2図は、上記実施例の効果を説明するための実測値を
示すタイムチャートである。 18・・・切換スイッチ、 20・・・バンドパスフィルタ、 22・・・BISRA  AGC。 24・・・油圧圧下制御系、 26・・・板厚計、 28・・・周波数解析装置、 S・・・鋼板。
FIG. 1 is a schematic configuration diagram showing a rolling mill applied to an embodiment of the present invention, and FIG. 2 is a time chart showing actual measured values for explaining the effects of the above embodiment. 18... Selector switch, 20... Band pass filter, 22... BISRA AGC. 24...Hydraulic reduction control system, 26...Plate thickness gauge, 28...Frequency analysis device, S...Steel plate.

Claims (1)

【特許請求の範囲】[Claims] (1)実測した圧延荷重に基づく圧延荷重信号を、バッ
クアップロールの偏心に起因する周期的荷重変動成分を
取り除くためのバンドパスフィルタを介してBISRA
AGCに入力し、被圧延材の板厚を制御する圧延機の板
厚制御方法において、圧延機入側で被圧延材の板厚変動
を周波数解析すると共に、 その解析結果から、被圧延材の板厚が実質上周期的に変
動し、その板厚変動に対応する実質上の周波数が、前記
バックアップロールの偏心に起因する周期的荷重変動に
対応する周波数に近似し、且つ該板厚変動が基準値を超
える振幅を有している場合には、信号を前記BISRA
AGCに直接入力することを特徴とする圧延機の板厚制
御方法。
(1) A rolling load signal based on the actually measured rolling load is passed through a bandpass filter to remove periodic load fluctuation components caused by eccentricity of the backup roll.
In a rolling mill thickness control method that inputs data into AGC to control the thickness of the rolled material, frequency analysis is performed on the thickness variation of the rolled material at the entrance side of the rolling mill, and from the analysis results, the thickness of the rolled material is determined. The plate thickness varies substantially periodically, the substantial frequency corresponding to the plate thickness variation is close to the frequency corresponding to the periodic load variation due to the eccentricity of the backup roll, and the plate thickness variation is If the signal has an amplitude exceeding the reference value, the signal is
A method for controlling plate thickness in a rolling mill, characterized by direct input to AGC.
JP2167991A 1990-06-26 1990-06-26 Plate thickness control method for rolling mill Pending JPH0455012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2167991A JPH0455012A (en) 1990-06-26 1990-06-26 Plate thickness control method for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2167991A JPH0455012A (en) 1990-06-26 1990-06-26 Plate thickness control method for rolling mill

Publications (1)

Publication Number Publication Date
JPH0455012A true JPH0455012A (en) 1992-02-21

Family

ID=15859776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2167991A Pending JPH0455012A (en) 1990-06-26 1990-06-26 Plate thickness control method for rolling mill

Country Status (1)

Country Link
JP (1) JPH0455012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179051A (en) * 1992-03-27 1994-06-28 Sumitomo Metal Ind Ltd Method and device for continuously producing strip
JP2015213940A (en) * 2014-05-09 2015-12-03 株式会社神戸製鋼所 Plate thickness control method of rolling machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179051A (en) * 1992-03-27 1994-06-28 Sumitomo Metal Ind Ltd Method and device for continuously producing strip
JP2015213940A (en) * 2014-05-09 2015-12-03 株式会社神戸製鋼所 Plate thickness control method of rolling machine

Similar Documents

Publication Publication Date Title
KR101958794B1 (en) Plant control device, rolling control device, plant control method, and plant control program
JPS60206511A (en) Method and device for controlling sheet shape
US5010756A (en) Method of and apparatus for controlling shape of rolled material on multi-high rolling mill
JPH0455012A (en) Plate thickness control method for rolling mill
US4576027A (en) Rolling mill
US5341663A (en) Automatic process control and noise suppression
JP2710863B2 (en) Rolling mill thickness control method
JPH0289757A (en) Method for adjusting meandering of band material
JP2797872B2 (en) Thickness control method of tandem mill
JPS61189811A (en) Control method of plate thickness
JPH05185124A (en) Method for controlling shape of material to be rolled in sendzimir mill
JP2535690B2 (en) Thickness control method for tandem rolling mill
JP2680252B2 (en) Shape control method for multi-high rolling mill
JP2710811B2 (en) Apparatus and method for monitoring thickness control function of rolling mill
JPH067819A (en) Camber and meandering control method in rolling mill
JPH06297020A (en) Automatic controlling method for plate thickness in mill
JPS63160712A (en) Plate thickness controller for rolling mill
JP3389903B2 (en) Metal strip rolling control method
JPH07214129A (en) Device for controlling tension in rolling mill
JPH08132113A (en) Device for controlling rolling mill
JPH0437407A (en) Controller for metallic strip rolling mill
JPH01321008A (en) Method for controlling sheet thickness in rolling mill
RU1794518C (en) Device for regulating thickness of the strip in the rolling mill
JPS61189812A (en) Thickness control method of rolling mill
JPH05293522A (en) Plate thickness controller for cold mill