JPH0454522B2 - - Google Patents

Info

Publication number
JPH0454522B2
JPH0454522B2 JP26536086A JP26536086A JPH0454522B2 JP H0454522 B2 JPH0454522 B2 JP H0454522B2 JP 26536086 A JP26536086 A JP 26536086A JP 26536086 A JP26536086 A JP 26536086A JP H0454522 B2 JPH0454522 B2 JP H0454522B2
Authority
JP
Japan
Prior art keywords
rolling
lubricant
roll
stainless steel
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26536086A
Other languages
Japanese (ja)
Other versions
JPS63119909A (en
Inventor
Hideo Yamamoto
Toshiaki Mase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26536086A priority Critical patent/JPS63119909A/en
Publication of JPS63119909A publication Critical patent/JPS63119909A/en
Publication of JPH0454522B2 publication Critical patent/JPH0454522B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 この発明は、鋼帯エツジ近傍での圧延ロールに
よる焼付き疵や被圧延材の圧延ロールへの噛み込
み不良を生じることなく表面性状の良好な鋼帯製
品を安定製造するためのステンレス鋼の熱間圧延
方法に関するものである。 〈従来技術とその問題点〉 鋼帯の熱間圧延に際しては、一般に、ワークロ
ールと被圧延材との摩擦係数を低下させてワーク
ロールの摩耗や肌荒れを軽減したり圧延動力を減
少したりするため、鉱油、油脂又は合成エステル
等から成る熱間圧延油を使用すことが広く行われ
ている。 ところが、被圧延材が特にステンレス鋼の場合
には、炭素鋼帯の圧延に比べて“圧延温度が高
い”ことや“変形抵抗が高い”などの理由から、
上記圧延油を使用したとしてもその潤滑効果が十
分に発揮され難く、従つて良好な作業条件の安定
維持が非常に困難であるとの問題があつた。その
上、この場合に鋼帯エツジ近傍は中央部より温度
が低くて二次酸化スケールの生成量が少ないこと
から二次酸化スケールによる潤滑作用が望めず、
従つてこの部分ではロールと鋼帯との焼付けきに
よつて発生するワークロールの肌荒れが特に著し
いとの指摘もなされていた。 このようなことから、従来、ステンレス鋼帯を
熱間圧延する場合には、“焼付け”や“肌荒れ”
等の問題に一層確実に対処すべく、油膜強度及び
耐熱性の高い油脂又は合成油、或いはこれらに黒
鉛、二硫化モリブデン、マイカ、タルク等の固体
潤滑材を添加した潤滑油剤を圧延油として使用し
たり(特開昭57−80495号公報)、圧延油を所定個
所(エツジ近傍等)に集中して供給する(実公昭
55−12968号公報)と言つた手段が適用されてい
た。しかしながら、これらの潤滑強化策は必要以
上に摩擦係数を下げることとなり、そのため今度
は圧延ロールへの噛み込み不良やスリツプ等の不
都合を引き起こして逆に安定した圧延作業が出来
なくなるとの新たな問題が指摘されていたのであ
る。 このように、特にステンレス鋼帯の熱間圧延に
おいては、噛み込み不良やスリツプが発生しない
範囲の潤滑条件ではロールと鋼帯との焼付き防止
対策が十分ではなく、逆に焼付きによる肌荒れの
心配のない潤滑条件では噛み込み不良やスリツプ
が発生して安定な作業が確保出来ないとの相反す
る問題の比重が大きく、その改善策が強く望まれ
ているのが現状であつた。 〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、ステン
レス鋼帯の熱間圧延において“噛み込み不良”や
“スリツプ”を引き起こすことなく、“焼付き疵”
の発生を防止し、表面性状の良好なステンレス鋼
帯製品を安定製造する方法を提供すべく鋭意研究
を行つたところ、 「ステンレス鋼帯の熱間圧延に際して、従来の
圧延油等の液状媒体に酸化鉄、無水硅酸及びアル
ミナから選ばれる固体粉末の何れか1種又は2種
以上を特定量分散させ、摩擦係数を特定値に調整
した潤滑剤を鋼帯エツジ近傍に相当するロール表
面に供給して熱間圧延すると、前記問題点は十分
に解消され、表面性状の良好なステンレス鋼熱延
鋼帯を安定した作業性の下で製造できるようにな
る」 との新たな知見が得られたのである。 この発明は、上記知見に基づいてなされたもの
であり、 ステンレス鋼帯を熱間圧延するに当り、圧延ロ
ールの少なくとも鋼帯エツジ部圧延相当位置表面
に、酸化鉄、無水硅酸及びアルミナの1種以上を
1容量%以上添加して摩擦係数を0.2〜0.4に調整
した分散液を供給しつつ圧延することにより、噛
み込み不良やスリツプを引き起こすことがなく、
しかも焼付き疵の発生もなしに表面性状の良好な
ステンレス鋼帯を安定製造し得るようにした点、
に特徴を有している。 なお、ここで言う「圧延ロールの鋼帯エツジ部
圧延相当位置」とは、圧延されるステンレス鋼帯
のエツジ部が接触するワークロールの表面部分を
指すものであり、上記分散液の供給はこの部分を
含む近傍のみに制限するのが能率的かつ経済的で
あるが、該部分を含むロール表面全体であつても
良いことは勿論である。 また、液中に分散される「酸化鉄」とは化学記
号でFe2O3及びFe3O4で表されるものを言い、こ
れら酸化鉄、無水硅酸又はアルミナは粒径:0.1
〜50μmのものを使用するのが好ましい。 更に、「分散液の摩擦係数」及び「分散液に分
散させる酸化鉄、無水硅酸及びアルミナの合計
量」を前記の如くに数値限定したのは次の通りで
ある。即ち、分散液の摩擦係数が0.2未満ではロ
ールへの噛み込み時にスリツプが発生するのを十
分に防止することができず、一方該摩擦係数が
0.4を越えると圧延荷重が高くなるからであり、
また、分散液中に占める酸化鉄、無水硅酸又はア
ルミナの1種以上の量が1容量%未満であると、
分散液の摩擦係数が例え0.2〜0.4の範囲内にあつ
たとしても酸化鉄、無水硅酸又はアルミナ粉末を
分散させて得られる効果が不十分で、噛み込み不
良や焼付け発生を抑え切れなくなつてしまうため
である。そして、分散液の摩擦係数は、分散させ
る酸化鉄、無水硅酸又はアルミナの量を加減する
こと等により容易に調整することができる。 また、第1図は、各種固体粉末を水に分散させ
た“水分散型潤滑剤”と鉱油(40℃における粘度
が50cstの#120マシン油相当油)に分散させた
“油分散型潤滑剤”とを用い、下記条件のシリン
ダー・ブロツク方式の摩擦試験により調査した
「潤滑剤の種類・配合量と摩擦係数との関係」を
示すグラフである。 A) 供試潤滑剤中の分散固体粉末 固体粉末の種類:Al2O3、SiO2Fe2O3、天然
マイカ、黒鉛。 固体粉末の粒径:何れも1μm。 固体粉末の添加量:0,0.5,2,5, 10,20,30及び40容量
%。 B) 摩擦試験 被加工材(ブロツク): 材質…SUS 304ステンレス鋼、 寸法…10t×20b×70。 加工工具材(シリンダー): 材質:ハイクロム鋳鉄(2.5%C,
15%Cr、1%Ni,1.5%Mo)、 寸法…100φ×40h。 被加工材温度:1000℃。 被加工材押付け荷重:100Kgf。 加工工具回転速度:10rpm。 潤滑剤供給方法:加工工具の表面に連続塗布
する(30g/m2)。 試験(摩擦)時間:30秒。 C) 摩擦係数の算出方法 被加工材を押付けた際の回転トルク(T)を測定
して摩擦力(F)を求め、式 μ=F/T により摩擦係数(μ)を算出。 この第1図からは、液中に分散させる固体粉末
をAl2O3、SiO2又はFe2O3にすると共にその添加
量を1〜40容量%に加減することにより、潤滑剤
は摩擦係数が0.2〜0.4の範囲に調整されることが
分かる(なお、この摩擦試験では試験後の被加工
材及び加工工具の表面状況を観察し、焼付き疵発
生の有無をも目視確認したが、その結果は次の第
2図に併せて示した)。 一方、第2図は第1図の結果を得たと同様の供
試潤滑剤を使用し、小型圧延機による下記条件の
噛み込み試験により調査した「潤滑剤の種類・配
合量とスリツプ発生状況(被圧延材をロールギヤ
ツプに押し付けた際の噛み込みの可否)との関
係」を示すと共に、先の摩擦試験で得た「潤滑剤
の種類・配合量と焼付き疵発生状況との関係」を
も併せて示すグラフであり、スリツプ発生(噛み
込まず)は“×印”で、焼付き疵発生は“黒塗
り”でそれぞれ摩擦係数の推移線上に表示したも
のである。 〔噛み込み試験条件〕 圧延ロール: 材質…Niグレン鋳鉄(3.3%C、1.7
%Cr、4.5%Ni、0.5%Mo)。 直径…100mmφ。 被圧延材: 材質…SUS 304ステンレス鋼、 寸法…3.0t×30b×100。 被圧延材温度:1000℃。 ロールギヤツプ:2.0mm。 圧延速度:30m/min。 潤滑剤供給方法:圧延ロールの表面に塗布
(30g/m2)。 被圧延材押し付け力:1Kgf。 この第2図からも、液中に分散させる固体粉末
をAl2O3、SiO2又はFe2O3にすると共にその添加
量調整により摩擦係数を加減し、かつ上記固体粉
末の添加量を1容量%以上とすることによつて圧
延ロールへの噛み込み不良が無くなることは勿
論、焼付きの発生も階無となることが分かる。 続いて、この発明を実施例により具体的に説明
する。 〈実施例〉 4重7スタンドのタンデムミルを使用すると共
に、“噛み込み時や圧延時のスリツプ”及び“ロ
ールの焼付き疵発生”の多い前段スタンド(特に
ここでは第1スタンド)において、被圧延材エツ
ジが圧延される部位を含めたその近傍の上・下ロ
ール面にそれぞれ第1表で示す潤滑剤を供給しつ
つ、SUS304ステンレス鋼帯スラブ(厚さ:20
mm、幅:1000mm、重量:1000トン、温度:1000〜
1050℃)を下記条件で連続圧延し、ステンレス鋼
熱間圧延鋼帯を製造した。
<Industrial Application Field> The present invention is capable of stably manufacturing steel strip products with good surface properties without causing seizure defects caused by rolling rolls near the edge of the steel strip or defects in biting of the rolled material into the rolling rolls. The present invention relates to a method for hot rolling stainless steel. <Prior art and its problems> When hot rolling steel strips, generally the friction coefficient between the work roll and the material to be rolled is lowered to reduce wear and roughness of the work roll and to reduce rolling power. Therefore, hot rolling oil made of mineral oil, fat, synthetic ester, etc. is widely used. However, when the material to be rolled is stainless steel, the rolling temperature is higher and the deformation resistance is higher than when rolling carbon steel strips.
Even if the above-mentioned rolling oil is used, there is a problem that its lubricating effect is not sufficiently exhibited, and therefore it is very difficult to stably maintain good working conditions. Furthermore, in this case, the temperature near the edge of the steel strip is lower than that at the center, and the amount of secondary oxide scale produced is small, so the lubricating effect of the secondary oxide scale cannot be expected.
Therefore, it has been pointed out that the surface roughness of the work roll caused by baking between the roll and the steel strip is particularly severe in this area. For this reason, conventionally, when hot rolling stainless steel strips, "baking" and "roughening" occur.
In order to more reliably deal with such problems, we use oils and synthetic oils with high oil film strength and heat resistance, or lubricants with solid lubricants such as graphite, molybdenum disulfide, mica, and talc added to these as rolling oil. (Japanese Unexamined Patent Publication No. 57-80495), rolling oil is supplied concentratedly to a predetermined location (near the edge, etc.) (Jikkosho
55-12968) was applied. However, these measures to strengthen lubrication lower the coefficient of friction more than necessary, which in turn causes problems such as poor biting and slippage in the rolling rolls, and conversely creates new problems such as the inability to perform stable rolling operations. was pointed out. In this way, especially in the hot rolling of stainless steel strips, under lubrication conditions that do not cause poor biting or slippage, measures to prevent seizure between the roll and the steel strip are insufficient, and conversely, roughening of the surface due to seizure may occur. Under safe lubrication conditions, problems such as poor biting and slippage occur, making it impossible to ensure stable work, which is a contradictory problem, and there is a strong need for improvement measures. <Means for solving the problem> From the above-mentioned viewpoint, the present inventors have solved the problem of "seizing defects" without causing "biting defects" or "slips" in hot rolling of stainless steel strips.
We conducted extensive research to provide a method for stably manufacturing stainless steel strip products with good surface quality while preventing the occurrence of A lubricant with a specific amount of one or more solid powders selected from iron oxide, silicic anhydride, and alumina dispersed and whose friction coefficient is adjusted to a specific value is supplied to the roll surface near the edge of the steel strip. The above-mentioned problems are fully resolved by hot rolling, and hot-rolled stainless steel strips with good surface quality can be manufactured with stable workability.'' It is. This invention was made based on the above findings, and when hot rolling a stainless steel strip, a mixture of iron oxide, silicic anhydride, and alumina is applied to the surface of at least the edge of the steel strip at a position corresponding to rolling. By rolling while supplying a dispersion liquid in which the friction coefficient is adjusted to 0.2 to 0.4 by adding 1% by volume or more of seeds or more, there is no occurrence of poor biting or slipping.
Moreover, it is possible to stably produce stainless steel strips with good surface quality without the occurrence of seizure defects.
It has the following characteristics. The "position of the rolling roll corresponding to the rolling of the steel strip edge" referred to here refers to the surface portion of the work roll that comes into contact with the edge of the stainless steel strip being rolled, and the dispersion liquid is supplied from this point. Although it is efficient and economical to limit the range to only the vicinity including the part, it is of course possible to limit the range to the entire roll surface including the part. In addition, "iron oxide" dispersed in the liquid is represented by the chemical symbols Fe 2 O 3 and Fe 3 O 4 , and these iron oxides, silicic anhydride, or alumina have a particle size of 0.1
It is preferable to use ~50 μm. Furthermore, the reason for numerically limiting the "friction coefficient of the dispersion" and the "total amount of iron oxide, silicic anhydride, and alumina to be dispersed in the dispersion" as described above is as follows. In other words, if the friction coefficient of the dispersion is less than 0.2, it will not be possible to sufficiently prevent slips from occurring when the dispersion is bitten into the roll;
This is because when it exceeds 0.4, the rolling load becomes high.
Further, if the amount of one or more of iron oxide, silicic anhydride, or alumina in the dispersion is less than 1% by volume,
Even if the friction coefficient of the dispersion liquid is within the range of 0.2 to 0.4, the effect obtained by dispersing iron oxide, silicic acid anhydride, or alumina powder will be insufficient, and it will not be possible to suppress defective biting and occurrence of seizure. This is because the The friction coefficient of the dispersion liquid can be easily adjusted by adjusting the amount of iron oxide, silicic anhydride, or alumina to be dispersed. Figure 1 also shows a "water-dispersed lubricant" in which various solid powders are dispersed in water, and an "oil-dispersed lubricant" in which various solid powders are dispersed in mineral oil (equivalent to #120 machine oil with a viscosity of 50 cst at 40°C). This is a graph showing the ``relationship between the type and amount of lubricant and the coefficient of friction'' investigated through a cylinder block type friction test under the following conditions. A) Dispersed solid powder in the test lubricant Types of solid powder: Al 2 O 3 , SiO 2 Fe 2 O 3 , natural mica, graphite. Particle size of solid powder: 1 μm in each case. Amount of solid powder added: 0, 0.5, 2, 5, 10, 20, 30 and 40% by volume. B) Friction test Work material (block): Material...SUS 304 stainless steel, dimensions...10t x 20b x 70. Processing tool material (cylinder): Material: High chrome cast iron (2.5%C,
15% Cr, 1% Ni, 1.5% Mo), dimensions...100φ x 40h. Workpiece temperature: 1000℃. Work material pressing load: 100Kgf. Machining tool rotation speed: 10rpm. Lubricant supply method: Continuously apply to the surface of the processing tool (30g/m 2 ). Test (friction) time: 30 seconds. C) Calculation method of friction coefficient Measure the rotational torque (T) when pressing the workpiece to find the friction force (F), and calculate the friction coefficient (μ) using the formula μ=F/T. From this Figure 1, it can be seen that by using Al 2 O 3 , SiO 2 or Fe 2 O 3 as the solid powder dispersed in the liquid and adjusting the amount added to 1 to 40% by volume, the lubricant has a coefficient of friction. is adjusted to a range of 0.2 to 0.4. The results are also shown in Figure 2 below). On the other hand, Figure 2 shows the ``type and amount of lubricant and slip occurrence status'' investigated by a biting test using a small rolling mill under the following conditions using the same test lubricant as the one used to obtain the results in Figure 1. In addition to showing the relationship between the occurrence of jamming when the rolled material is pressed against the roll gap, we also show the relationship between the type and amount of lubricant and the occurrence of seizure defects obtained in the previous friction test. This graph is also shown, and the occurrence of slips (no biting) is indicated by an "x" mark, and the occurrence of burn-in flaws is indicated by "black lines", respectively, on the curve of the coefficient of friction. [Bite test conditions] Roll: Material…Ni grain cast iron (3.3% C, 1.7
%Cr, 4.5%Ni, 0.5%Mo). Diameter…100mmφ. Rolled material: Material...SUS 304 stainless steel, Dimensions...3.0t x 30b x 100. Rolled material temperature: 1000℃. Roll gap: 2.0mm. Rolling speed: 30m/min. Lubricant supply method: Apply to the surface of the rolling roll (30g/m 2 ). Pressing force on rolled material: 1Kgf. This figure 2 also shows that the solid powder to be dispersed in the liquid is Al 2 O 3 , SiO 2 or Fe 2 O 3 and the friction coefficient is adjusted by adjusting the amount added. It can be seen that by increasing the amount by volume % or more, not only the defective biting into the rolling roll is eliminated, but also the occurrence of seizure is eliminated. Next, the present invention will be specifically explained with reference to Examples. <Example> In addition to using a tandem mill with 4 layers and 7 stands, the pre-stage stand (especially the first stand here), which has many "slips during biting and rolling" and "occurrence of roll seizure defects," was While supplying the lubricant shown in Table 1 to the upper and lower roll surfaces in the vicinity of the rolling material edge including the part where it is rolled, the SUS304 stainless steel strip slab (thickness: 20
mm, width: 1000mm, weight: 1000 tons, temperature: 1000~
(1050°C) was continuously rolled under the following conditions to produce a hot rolled stainless steel strip.

〔第1スタンドの圧延条件〕[Rolling conditions of the first stand]

ロール材質:ハイクロム鋳鉄(2.5%C、15
%Cr、1%Ni、1.5%Mo)。 ロール直径:740mmφ。 圧延速度:150m/min。 圧下率:30%。 潤滑剤の供給:第1表に示した潤滑剤のう
ち、 水分散型潤滑剤(試験番号3及び
9)は3倍に希釈して、また他の潤
滑剤はインジエクシヨン方式により
水に5容量%の濃度に分散させ、そ
れぞれ圧力3Kg/cm2で5/minの
流量のノズルから上・下ロールの
“圧延材エツジが圧延される近傍200
mm”に供給。供給量は合計で20/
min。 そして、このときの“圧延材噛み込み時及び圧
延時のスリツプ状況”、“1000トン圧延後における
ロール表面の焼付き疵発生の有無”並びに“1000
トン圧延後におけるロール表面の摩耗程度”観察
したが、その結果は第1表に示す通りであつた。 即ち、試験番号1は鉱油を潤滑剤として供給し
て圧延する従来例を示したものであるが、この場
合にはスリツプの発生は無いものの焼付き疵が発
生し、ロールの摩耗が著しい。 試験番号2は、鉱油にナタネ油を40容量%添加
したものを潤滑剤として供給して圧延する従来例
を示したものであるが、この場合にはロール摩耗
の程度は試験番号1におけるよりも軽度ではある
がスリツプが発生する上、焼付き疵までもが生じ
る。 試験番号3は、水溶性アクリル樹脂を10容量%
含む水に粒径:1μmの黒鉛を10容量%添加した潤
滑剤を供給して圧延する従来例を示したものであ
るが、この場合には焼付き疵の発生が無くロール
摩耗も少ないが、噛み込み時や圧延時にスリツプ
が発生し、安定した圧延ができない。 試験番号4は、試験番号1において使用した濁
滑剤(鉱油)に粒径:1μmのFe2O3を0.5容量%添
加したものを潤滑剤として供給して圧延した場合
の例であるが、この場合にはスリツプの発生が無
く、ロール摩耗は試験番号1に比べて軽度となる
が、焼付き疵が発生する。 これに対して、試験番号5は鉱油に粒径:1μm
のFe2O3を1容量%添加した潤滑剤を、試験番号
6は鉱油に粒径:5μmのFe2O3を30容量%添加し
た潤滑剤を、試験番号7は鉱油に粒径:50μmの
Fe2O3を5容量%添加した潤滑剤をそれぞれ添加
した潤滑剤を供給して圧延した本発明例を示した
ものであり、固体粉末の単位面積当りの供給量を
各々0.4g/m2、13.0g/m2及び2.1g/m2とした
ものである。この場合には、何れもスリツプ及び
焼付き疵の発生は無く、ロール摩耗も軽微である
ことは分かる。 試験番号8は、試験番号2において使用した潤
滑剤に粒径:1μmのAl2O3を10容量%と粒径:
5μmのFe2O3とを30容量%添加したものを潤滑剤
として供給して(固体粉末としての供給量は5.4
g/m2)圧延した場合の例であるが、この場合も
スリツプ及び焼付き疵の発生は無く、ロール摩耗
程度も軽微であつた。 試験番号9は、メチルセルロースを含む水に粒
径:1μmのFe2O3を20容量%添加したものを潤滑
剤として供給して(固体粉末としての供給量は
8.7g/m2)圧延した場合の例であるが、この場
合もスリツプ及び焼付き疵の発生は無く、ロール
摩耗程度も軽微であつた。 試験番号10は、鉱油に粒径:0.1μmのSiO2を2
容量%添加したものを潤滑剤として供給して(固
体粉末としての供給量は0.4g/m2)圧延した場
合の例であるが、この場合もやはりスリツプ及び
焼付き疵の発生は無く、ロール摩耗程度も軽微で
あつた。 これらの試験番号5〜10の結果からも、水又は
鉱油等の液体にFe2O3、Fe3O4、Al2O3及びSiO2
のうちの1種以上の固体を1容量%以上添加し摩
擦係数を0.2〜0.4に調整した潤滑剤を用いてステ
ンレス鋼の熱間圧延を行うと、スリツプや焼付き
疵の発生が殆んど見られなくなり、表面性状の良
好なステンレス鋼熱延鋼帯を良好な作業性の下で
安定生産することが可能となることが明瞭であ
る。 〈発明の総括〉 以上に説明した如く、この発明によれば、“噛
み込み不良”や“圧延時のスリツプ”を生じるこ
となくステンレス鋼帯の熱間圧延が実施でき、し
かも鋼帯エツジ近傍と圧延ロールとの焼付き疵の
発生が極力防止されることから、表面性状の良好
な高品質のステンレス鋼帯を安定生産することが
可能となる上、ロール摩耗の軽減による圧延ロー
ルの寿命向上も達成できるなど、産業上極めて有
用な効果がもたらされるのである。
Roll material: High chrome cast iron (2.5%C, 15
%Cr, 1%Ni, 1.5%Mo). Roll diameter: 740mmφ. Rolling speed: 150m/min. Rolling reduction rate: 30%. Supply of lubricant: Among the lubricants shown in Table 1, the water-dispersed lubricants (test numbers 3 and 9) were diluted 3 times, and the other lubricants were added to 5% by volume in water using the injection method. The edges of the rolled material of the upper and lower rolls are distributed at a pressure of 3 kg/cm 2 and a flow rate of 5/min, respectively, from a nozzle with a pressure of 3 kg/cm 2 and a flow rate of 200 kg/min.
mm”.The total supply amount is 20/mm”.
min. At this time, "slip conditions during rolling material biting and rolling", "presence or absence of seizing defects on the roll surface after rolling 1000 tons", and "1000
The degree of wear on the roll surface after ton rolling was observed, and the results were as shown in Table 1. That is, test number 1 shows the conventional example of rolling with mineral oil supplied as a lubricant. However, in this case, although there is no slippage, seizure defects occur and the roll wear is significant.In test number 2, rolling was performed using mineral oil with 40% by volume of rapeseed oil added as a lubricant. In this case, although the degree of roll wear is milder than in Test No. 1, slips occur and even seizure defects occur. 10% by volume of acrylic resin
This shows a conventional example of rolling by supplying a lubricant containing water containing 10% by volume of graphite with a particle size of 1 μm, but in this case, no seizure defects occur and there is little roll wear. Slips occur during biting and rolling, making stable rolling impossible. Test No. 4 is an example in which rolling was performed using the clouding lubricant (mineral oil) used in Test No. 1 with 0.5% by volume of Fe 2 O 3 with a particle size of 1 μm added as a lubricant. In this case, no slipping occurred and roll wear was milder than in Test No. 1, but seizure defects occurred. On the other hand, in test number 5, particle size: 1 μm was applied to mineral oil.
Test No. 6 was a lubricant with 1% by volume of Fe 2 O 3 added to mineral oil, test number 7 was a lubricant with 30% by volume of Fe 2 O 3 of 5 μm particle size added to mineral oil, and test number 7 was a mineral oil with a particle size of 50 μm. of
This shows an example of the present invention in which a lubricant containing 5% by volume of Fe 2 O 3 was supplied for rolling, and the amount of solid powder supplied per unit area was 0.4 g/m 2 . , 13.0g/m 2 and 2.1g/m 2 . In this case, it can be seen that no slips or seizure defects occur, and roll wear is slight. In test number 8, 10% by volume of Al 2 O 3 with a particle size of 1 μm was added to the lubricant used in test number 2.
30% by volume of Fe 2 O 3 with a diameter of 5 μm was supplied as a lubricant (the amount supplied as a solid powder was 5.4
g/m 2 ) This is an example of rolling. In this case as well, no slips or seizure defects occurred, and the degree of roll wear was slight. In test number 9, 20% by volume of Fe 2 O 3 with a particle size of 1 μm was added to water containing methylcellulose and supplied as a lubricant (the amount supplied as a solid powder was
8.7 g/m 2 ) This is an example of rolling. In this case as well, no slips or seizure defects occurred, and the degree of roll wear was slight. In test number 10, 2 SiO 2 particles with a particle size of 0.1 μm were added to mineral oil.
This is an example of rolling with % by volume added as a lubricant (supplied amount as solid powder is 0.4 g/m 2 ), but in this case as well, there were no slips or seizure defects, and the roll was smooth. The degree of wear was also slight. From the results of these test numbers 5 to 10, it is clear that Fe 2 O 3 , Fe 3 O 4 , Al 2 O 3 and SiO 2 are present in liquids such as water or mineral oil.
When stainless steel is hot rolled using a lubricant containing at least 1% by volume of one or more of these solids and the friction coefficient adjusted to 0.2 to 0.4, slips and seizure defects almost never occur. It is clear that it becomes possible to stably produce hot-rolled stainless steel strips with good surface quality and good workability. <Summary of the Invention> As explained above, according to the present invention, it is possible to hot-roll a stainless steel strip without causing "defects in biting" or "slips during rolling", and moreover, it is possible to hot-roll stainless steel strips near the edge of the steel strip. Since the occurrence of seizure defects with the rolling rolls is prevented as much as possible, it is possible to stably produce high-quality stainless steel strips with good surface properties, and the lifespan of the rolling rolls is also extended by reducing roll wear. This brings about extremely useful effects industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各種固体粉末を分散させた潤滑剤を
用いてシリンダー・ブロツク方式の摩擦試験によ
り調査した「潤滑剤の種類・配合量と摩擦係数と
の関係」を示すグラフ、第2図は、シリンダー・
ブロツク方式の摩擦試験により調査した「潤滑剤
の種類・配合量と焼付き疵発生状況との関係」、
並びに小型圧延機を使用すると共に、各種固体粉
末を分散させた潤滑剤を用いた噛み込み試験によ
り調査した「潤滑剤の種類・配合量とスリツプ発
生状況との関係」を併せて示しグラフである。
Figure 1 is a graph showing the relationship between the type and amount of lubricant and the coefficient of friction, which was investigated by a cylinder block friction test using lubricants in which various solid powders were dispersed. ,cylinder·
``The relationship between the type and amount of lubricant and the occurrence of seizure defects'' investigated using a block friction test.
This graph also shows the relationship between the type and amount of lubricant and the occurrence of slippage, which was investigated using a small rolling mill and a bite test using a lubricant in which various solid powders were dispersed. .

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス鋼帯を熱間圧延するに当り、圧延
ロールの少なくとも鋼帯エツジ部圧延相当位置表
面に、酸化鉄、無水硅酸及びアルミナの1種以上
を1容量%以上添加して摩擦係数を0.2〜0.4に調
整した分散液を供給しつつ圧延することを特徴と
する、ステンレス鋼帯の熱間圧延方法。
1. When hot rolling a stainless steel strip, at least 1% by volume of one or more of iron oxide, silicic anhydride, and alumina is added to the surface of the rolling roll at least at the edge of the steel strip at a position corresponding to rolling, to increase the friction coefficient to 0.2. A method for hot rolling a stainless steel strip, characterized in that rolling is carried out while supplying a dispersion liquid adjusted to a concentration of ~0.4.
JP26536086A 1986-11-07 1986-11-07 Hot rolling method for stainless steel strip Granted JPS63119909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26536086A JPS63119909A (en) 1986-11-07 1986-11-07 Hot rolling method for stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26536086A JPS63119909A (en) 1986-11-07 1986-11-07 Hot rolling method for stainless steel strip

Publications (2)

Publication Number Publication Date
JPS63119909A JPS63119909A (en) 1988-05-24
JPH0454522B2 true JPH0454522B2 (en) 1992-08-31

Family

ID=17416096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26536086A Granted JPS63119909A (en) 1986-11-07 1986-11-07 Hot rolling method for stainless steel strip

Country Status (1)

Country Link
JP (1) JPS63119909A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662980B2 (en) * 1987-04-11 1994-08-17 日新製鋼株式会社 Lubricating oil composition for stainless steel hot rolling

Also Published As

Publication number Publication date
JPS63119909A (en) 1988-05-24

Similar Documents

Publication Publication Date Title
JPH0454522B2 (en)
JP2570060B2 (en) Hot rolling lubrication method for steel
JPH0662980B2 (en) Lubricating oil composition for stainless steel hot rolling
JPS5913281B2 (en) Hot rolling method for metal slabs
JPH07112564B2 (en) Lubricant for hot rolling of stainless steel
JPH01167396A (en) Lubricant for hot-rolling stainless steel
YARITA Problems of friction, lubrication, and materials for rolls in the rolling technology
JPH09103803A (en) Warm rolling method of austenitic stainless steel sheet
JPH0770576A (en) Lubricant composition for hot rolling
JPS60161488A (en) Cold rolling oil for steel plate
JPH0222117B2 (en)
JPS62254902A (en) Cold rolling method for steel sheet
JP2928712B2 (en) Hot rolling method
JP3129228B2 (en) Cold rolling method for stainless steel sheet
JPH0384097A (en) Cold-rolling oil for steel and rolling process using the same
JPH0234203A (en) Method for cold rolling steel sheet
JP3447361B2 (en) Work roll for cold rolling
JPH03151101A (en) Method for cold-rolling titanium sheet
JPH06122002A (en) Hot rolling method
JP2880385B2 (en) Seamless steel tube rolling method
JPH10156403A (en) Method for executing temper rolling of cold rolled steel sheet
JP3263227B2 (en) How to prevent surface flaws on stainless steel plates
JP2898824B2 (en) Manufacturing method of high gloss metal plate
JPS63177903A (en) Method for cold rolling of hard-to-work material
CA2079336C (en) Aqueous lubricant for use in hot rolling of stainless steel