JPH0454288A - Variable capacity swash plate type compressor - Google Patents

Variable capacity swash plate type compressor

Info

Publication number
JPH0454288A
JPH0454288A JP2162622A JP16262290A JPH0454288A JP H0454288 A JPH0454288 A JP H0454288A JP 2162622 A JP2162622 A JP 2162622A JP 16262290 A JP16262290 A JP 16262290A JP H0454288 A JPH0454288 A JP H0454288A
Authority
JP
Japan
Prior art keywords
swash plate
chamber
discharge chamber
refrigerant gas
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2162622A
Other languages
Japanese (ja)
Inventor
Kenji Tojo
健司 東條
Kunihiko Takao
邦彦 高尾
Masaru Ito
勝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2162622A priority Critical patent/JPH0454288A/en
Publication of JPH0454288A publication Critical patent/JPH0454288A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication

Abstract

PURPOSE:To improve reliability, by providing passage connecting a discharge chamber and a swash plate chamber, and also providing a mechanism which separates lubrication oil that is discharge into the discharge chamber together with refrigerant gas, and returns this oil into the swash plate chamber, and storing sufficient lubrication oil within a compressor even at the time of a capacity control operation in which a refrigerant circulation amount is small. CONSTITUTION:When a compressor main shaft 13 is driven, a drive plate 14 and a swash plate 12 are rotated and a piston support 21 conducts swinging movements. With this, a piston 31 is reciprocated within a cylinder 33, and refrigerant gas is sucked and compressed. In this instance, a swash plate chamber 10 and a discharge chamber 9 lower portion provided at a rear cover 3 are connected to each other by means of introduction holes 405, 505 and 205 provided on a cylinder head 4, a suction valve plate and a cylinder block 2. Also, a throttle pipe 206 is inserted into the hole 205 and lubrication oil which is separated from refrigerant gas by colliding with the wall surface of the chamber 9 and accumulated in the lower area, is delivered into the swash plate 10 and again delivered to a sliding part for lubrication.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車用空調システムに係り、特に。[Detailed description of the invention] [Industrial application field] The present invention relates to an air conditioning system for an automobile, and more particularly.

このシステムに用いられる行程容積可変の圧縮機に好適
な、潤滑油の供給と分離、還流メカニズムに関する。
The present invention relates to a lubricating oil supply, separation, and reflux mechanism suitable for the variable stroke volume compressor used in this system.

〔従来の技術〕[Conventional technology]

従来の自動車用空調システムに用いられている可変容量
圧縮機では、特公昭58−4195号公報などに記載の
ように、冷媒ガスとともに圧縮機から排出された潤滑油
は、冷凍サイクル中を一巡して圧縮機のシリンダ内に吸
い込まれ、シリンダとピストンリングの隙間から斜板室
に漏れるブローバイガスとともに斜板室へはき出された
り、シリンダ壁面に付着し、ピストンシリンダによりか
きおとされ、斜板室へ貯る構造となっていた。
In variable capacity compressors used in conventional automobile air conditioning systems, as described in Japanese Patent Publication No. 58-4195, lubricating oil discharged from the compressor together with refrigerant gas goes through the refrigeration cycle. It is sucked into the cylinder of the compressor, and is ejected into the swash plate chamber along with the blow-by gas that leaks into the swash plate chamber from the gap between the cylinder and piston ring, or it adheres to the cylinder wall, is scraped away by the piston cylinder, and is stored in the swash plate chamber. It had a structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、吐出室に冷媒ガスとともに排出される
潤滑油の回収方法については何も考慮されていなかった
。このため、容量制御を行い、冷媒循環量が小さな運転
条件では、吐出冷媒ガスとともに冷凍サイクル中に排出
され潤滑油が、凝縮器や蒸発器などに貯り、圧縮機に戻
る量が低下するため、圧縮機に貯る潤滑油が不足し、摺
動部の焼付、摩耗などの損傷を生じる問題があった。
The above-mentioned conventional technology does not give any consideration to the method for recovering the lubricating oil discharged into the discharge chamber together with the refrigerant gas. Therefore, under operating conditions where capacity control is performed and the amount of refrigerant circulated is small, the lubricating oil that is discharged during the refrigeration cycle along with the discharged refrigerant gas accumulates in the condenser and evaporator, reducing the amount returned to the compressor. However, there was a problem that the lubricating oil stored in the compressor was insufficient, causing damage such as seizure and wear of the sliding parts.

本発明の目的は、冷媒循環量が少ない容量制御運転時に
も、圧縮機内に十分な潤滑油を貯め、信頼性の高い可変
容量圧縮機を提供することにある。
An object of the present invention is to provide a highly reliable variable capacity compressor that stores sufficient lubricating oil in the compressor even during capacity control operation with a small amount of refrigerant circulation.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、吐出室と斜板室を適当な絞りあるいは弁を
介して結ぶ通路を設け、冷媒ガスとともに吐出室に排出
される潤滑油を分離し斜板室へ戻す機構を設け、斜板室
への油の回収を可能とすることにより達成される。
The above purpose is to provide a passage that connects the discharge chamber and the swash plate chamber through an appropriate throttle or valve, and a mechanism to separate the lubricating oil discharged into the discharge chamber together with the refrigerant gas and return it to the swash plate chamber. This is achieved by making it possible to recover

〔作用〕[Effect]

冷媒ガスとともに吐出室に排出された潤滑油は、吐出室
の壁面などに衝突して一部は冷媒ガスと分離され、下部
に貯る。吐出室下部と、斜板室とを絞りを介して結ぶ流
路を設けることにより、吐出室と斜板室の圧力差に応じ
て吐出室に貯る潤滑油、あるいは潤滑油と冷媒ガスのミ
ストが斜板室に送られ、潤滑油は斜板室に貯められる。
The lubricating oil discharged into the discharge chamber together with the refrigerant gas collides with the wall surface of the discharge chamber, a portion of which is separated from the refrigerant gas, and is stored in the lower part. By providing a flow path that connects the lower part of the discharge chamber and the swash plate chamber through a throttle, the lubricating oil accumulated in the discharge chamber, or the mist of lubricating oil and refrigerant gas, is slanted depending on the pressure difference between the discharge chamber and the swash plate chamber. The lubricating oil is sent to the plate chamber and stored in the swash plate chamber.

また、この流路の途中に開閉可能な弁を設け、冷媒循環
量が十分多い場合には閉じ、少ない場合には開けること
により、性能面での低下を抑え、斜板室に十分な潤滑油
を確保することが可能となる。
In addition, a valve that can be opened and closed is installed in the middle of this flow path, and by closing it when the refrigerant circulation is sufficiently high and opening it when it is low, performance is suppressed and sufficient lubricating oil is supplied to the swash plate chamber. It becomes possible to secure it.

〔実施例〕〔Example〕

以下1本発明の実施例を図を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明による可変ストローク斜板式
圧縮機の全体構造を示したもので、第1図はビストンス
トロークが最大、つまり斜板傾斜角が最大となっている
状態を示しており、第2図は斜板傾斜角が最小の状態を
示したものである。第3図は、第1図及び第2図の■−
■線断面図である0円筒状のシリンダブロック2の一端
には、中央部にラジアル軸受18.19を介して主軸1
3を回転自在に支持するフロントハウジング1が配置さ
れ、斜板室10を形成している。シリンダブロック2に
は、主軸13を中心として主軸13の軸線と平行にして
円周方向に配置された複数個のシリンダ33が形成され
ている。
Figures 1 and 2 show the overall structure of a variable stroke swash plate compressor according to the present invention, and Figure 1 shows the state in which the piston stroke is at its maximum, that is, the swash plate inclination angle is at its maximum. FIG. 2 shows the state where the swash plate inclination angle is the minimum. Figure 3 shows the ■− of Figures 1 and 2.
■ Line sectional view 0 At one end of the cylindrical cylinder block 2, a main shaft 1 is connected via a radial bearing 18, 19 in the center.
A front housing 1 that rotatably supports the swash plate 3 is disposed to form a swash plate chamber 10. The cylinder block 2 is formed with a plurality of cylinders 33 arranged circumferentially around the main shaft 13 and parallel to the axis of the main shaft 13 .

主軸13は、シリンダブロック2のほぼ中心線上にあっ
て、シリンダブロック及びフロントハウジング1の中央
部に設けられたラジアル軸受18゜19により回転自在
に支持され、圧入ビン11、あるいは、塑性結合等によ
りドライブプレート14が固定されている。ドライブプ
レート14にはカム溝142が設けられ、斜板耳部12
1に係合されたピボットビン16が移動可能に取り付け
られている。また、カム溝142が設けられたドライブ
プレート14の側面141と、斜板耳部121の側面と
は接触する構造となっている。これにより、主軸13が
回転すると、ドライブプレート14が回転しドライブプ
レートの側面141から斜板耳部121に回転力が与え
られ、斜板12が回転する。ドライブプレート14に形
成されたカム溝142は一つの閉曲線であり、斜板の傾
転角が変りピボットビン16がこのカム溝内を移動して
もピストン31の上死点位置が変らないような曲線とな
っている。
The main shaft 13 is located approximately on the center line of the cylinder block 2, and is rotatably supported by radial bearings 18 and 19 provided at the center of the cylinder block and the front housing 1, and is supported by a press-fit pin 11 or a plastic coupling. A drive plate 14 is fixed. The drive plate 14 is provided with a cam groove 142, and the swash plate lug 12 is provided with a cam groove 142.
A pivot bin 16 engaged with 1 is movably mounted. Further, the side surface 141 of the drive plate 14 provided with the cam groove 142 is in contact with the side surface of the swash plate lug 121. As a result, when the main shaft 13 rotates, the drive plate 14 rotates, a rotational force is applied from the side surface 141 of the drive plate to the swash plate lug 121, and the swash plate 12 rotates. The cam groove 142 formed in the drive plate 14 is a closed curve, and even if the tilting angle of the swash plate changes and the pivot pin 16 moves within this cam groove, the top dead center position of the piston 31 does not change. It is a curved line.

主軸13には、スリーブ15が主軸13に対して軸方向
に滑動可能に組み込まれており、スリーブ15には、ス
リーブビン17により斜板12が回転自在に締結されて
いる。従って、主軸13が回転すると、ドライブプレー
ト14.斜板12゜スリーブ15が共に回転する。
A sleeve 15 is incorporated into the main shaft 13 so as to be slidable in the axial direction with respect to the main shaft 13, and the swash plate 12 is rotatably fastened to the sleeve 15 by a sleeve pin 17. Therefore, when the main shaft 13 rotates, the drive plate 14 . The swash plate 12° and the sleeve 15 rotate together.

斜板12には、ベアリング23を介してピストンサポー
ト21が締結されており、斜板12に固定された止め輸
22により、ベアリング23が、斜板12の軸方向に移
動しないように、斜板のハブ部122に固定されている
。一方、ピストンサポート21は、ベアリング23に対
し突起部211により、第1図及び第2図の右方向への
移動を規制され、しかも、斜板12との間に設置された
スラストベアリング25により、第1図、第2図の左方
向への移動も規制されている。
A piston support 21 is fastened to the swash plate 12 via a bearing 23, and a stopper 22 fixed to the swash plate 12 prevents the bearing 23 from moving in the axial direction of the swash plate 12. It is fixed to the hub portion 122 of. On the other hand, the piston support 21 is restricted from moving in the right direction in FIGS. Movement to the left in FIGS. 1 and 2 is also restricted.

また、ピストンサポート21には、半径方向にサポート
ビン26が圧入、ねじこみ、あるいは塑性結合等の方法
で固定されており、サポートビン26には、スライドボ
ール27.スライドボールに当接する球面部をもつ一対
の半円筒形状のスライドシュー29が、回転及び滑動自
在に装着されている、また、スライドシュー29は、フ
ロントハウジング1の内周部に設けられた軸方向案内溝
28に沿って往復運動し、前記ピストンサポート21が
主軸13のまわりに回転しないよう、軸回りの運動を拘
束している。
Further, a support bin 26 is fixed to the piston support 21 in the radial direction by a method such as press fitting, screwing, or plastic coupling, and a slide ball 27. A pair of semi-cylindrical slide shoes 29 having spherical surfaces that come into contact with the slide balls are rotatably and slidably mounted. The piston support 21 reciprocates along the guide groove 28, and movement around the axis is restrained so that the piston support 21 does not rotate around the main axis 13.

ピストンサポート21には1両端にボール321゜32
2をもつ複数個のコネクチングロッド32の一端が、ボ
ール321の中心口りに回転自在に取り付けられ、他端
にはボール322の中心まわりにピストン31が取り付
けられている。ピストン31には、ピストンリング34
.35が装着され。
The piston support 21 has balls 321°32 at both ends.
One end of a plurality of connecting rods 32 having a diameter of 2 is rotatably attached to the center opening of the ball 321, and a piston 31 is attached to the other end around the center of the ball 322. The piston 31 has a piston ring 34
.. 35 is installed.

シリンダブロック2に設けられたシリンダ33に組み込
まれている。また、シリンダブロック2には、吸入弁5
.シリンダヘッド4.吐出弁6.パツキン7、リアカバ
ー3が配置され、ドライブプレート14.斜板12.ピ
ストサポート21等を取り囲むように配置されたフロン
トハウジング1と一体に、ボルト(図示せず)などで結
合されている。
It is incorporated into a cylinder 33 provided in the cylinder block 2. In addition, the cylinder block 2 includes a suction valve 5.
.. Cylinder head 4. Discharge valve6. The packing 7, the rear cover 3 are arranged, and the drive plate 14. Swash plate 12. The front housing 1 is integrally connected to the front housing 1, which is arranged to surround the piston support 21 and the like, with bolts (not shown) or the like.

フロントハウジング1とシリンダブロック2とは、Oリ
ング38で、リアカバー3とシリンダブロック2とは、
Oリング39により機密を持っている。シリンダヘッド
4には、各シリンダ33に対応して吸入ボート401と
、吐出ポート402が設けられ、リアカバー3に設けら
れた吸入室8と、吐出室9にそれぞれ通じている。
The front housing 1 and the cylinder block 2 are connected by an O-ring 38, and the rear cover 3 and the cylinder block 2 are connected by an O-ring 38.
It is kept secret by O-ring 39. The cylinder head 4 is provided with a suction boat 401 and a discharge port 402 corresponding to each cylinder 33, which communicate with a suction chamber 8 and a discharge chamber 9 provided in the rear cover 3, respectively.

リアカバー3には、吸入口301と吐出口(図示せず)
とが設けられ、吸入路302路と吸入室8との間に制御
弁41が備えられている。制御弁41の上流側とフロン
トハウジング1内の斜板室10とは、リアカバー3.パ
ツキン7、吐出弁6゜シリンダヘッド4、及び吸入弁5
の中心部に設けられた導通孔303,304,703,
603゜403及び503と、主軸13の中心部に設け
られた通路131、これに接続しドライブプレート14
に半径方向に開口する通路143により連通している。
The rear cover 3 has an inlet 301 and an outlet (not shown).
A control valve 41 is provided between the suction passage 302 and the suction chamber 8. The upstream side of the control valve 41 and the swash plate chamber 10 in the front housing 1 are connected to the rear cover 3. Packing 7, discharge valve 6° cylinder head 4, and suction valve 5
Conduction holes 303, 304, 703, provided in the center of
603° 403 and 503, a passage 131 provided in the center of the main shaft 13, and a drive plate 14 connected thereto.
It is communicated by a passage 143 that opens in the radial direction.

また、制御弁41の下流側は吸入室8に通じている。Further, the downstream side of the control valve 41 communicates with the suction chamber 8 .

リアカバー3に設けられた吐出室9の下部と、斜板室1
0とは、シリンダヘッド4.吸入弁板及びシリンダブロ
ック2に設けられた導通孔405゜505及び205に
より連通している。また、導通孔205には絞りパイプ
206が挿入されている。
The lower part of the discharge chamber 9 provided in the rear cover 3 and the swash plate chamber 1
0 means cylinder head 4. The inlet valve plate and the through hole 405 provided in the cylinder block 2 communicate with each other through 505 and 205. Furthermore, a throttle pipe 206 is inserted into the conduction hole 205 .

このような構成とすることにより、エンジン(図示せず
)により圧縮機の主軸13が駆動されるとドライブプレ
ート14.斜板12が回転し、主軸の回転に対しピスト
ンサポート21が揺動運動する。これに伴い、ピストン
31はシリンダ33内を往復運動し、冷媒ガスを吸入、
圧縮する。
With this configuration, when the main shaft 13 of the compressor is driven by the engine (not shown), the drive plate 14. The swash plate 12 rotates, and the piston support 21 swings in response to the rotation of the main shaft. Along with this, the piston 31 reciprocates within the cylinder 33, sucks in refrigerant gas,
Compress.

なお、ガスを圧縮する際に作用するラジアル力は、フロ
ントハウジング1及びシリンダブロック2に設けられた
二個のラジアル軸受18.19で支持される。
Note that the radial force that acts when compressing gas is supported by two radial bearings 18 and 19 provided in the front housing 1 and the cylinder block 2.

次に、斜板室28に貯る潤滑油の流れについて説明する
。斜板室底部に貯る潤滑油は、斜板の回転、ピストンサ
ポートの揺動運動によりかき揚げられ軸受なと摺動部の
潤滑に供される。シリンダ壁面に付着した油は、ピスト
ン31とシリンダ壁との摺動に供され、一部はピストン
リング34゜35により掻き揚げられ、シリンダ室(図
示せず)へ入る。一方、冷凍サイクル中を回って冷媒ガ
スとともに圧縮機に戻った潤滑油は、シリンダ室に吸い
込まれ、シリンダ壁に付着して、一部はブローバイガス
とともに斜板室28へ排出される。シリンダ室に残った
潤滑油は、再び、冷媒ガスとともに吐出室9へ排出され
る。吐出室9へ排出された潤滑油は、吐出室9の壁面に
衝突し、流速が遅くなるため冷媒ガスから分離され、重
力により下部に落下し貯る。下部に貯った油は、吐出室
と斜板室の圧力差により吐出室と斜板室を結ぶ流路を通
り、斜板室に送られる。斜板室への還油量は、流路20
5に設けられた絞り管206の径と長さにより調節され
る。斜板室28へ戻った潤滑油は斜板室底部に貯り、斜
板の回転、ピストンサポートの揺動運動などにより掻き
揚げられ、再び摺動部へ送られ潤滑に供される。一方、
ブロー バイガスや、吐出室8から潤滑油に混じって斜
板室28へ流入した冷媒ガスは、ドライブプレート14
に半径方向に開口する通路143から、主軸13の中心
部に設けられた通路131を通り、吸入弁5゜シリンダ
ヘッド4.−吐出弁6、及びパツキン7の中心部に設け
られた導通孔503,403,603゜703を経由し
てリアカバー3に設けられた流路303から、制御弁4
1の上流側の吸入路に戻される。第2図に示すようにエ
アコンの熱負荷が小さくなると、これを検知して制御弁
50が働き、吸入路302から吸入室8へ至る開孔面積
を減少させる。このため、シリンダ入口、すなわち、制
御弁下流の圧力は低下する。
Next, the flow of lubricating oil stored in the swash plate chamber 28 will be explained. The lubricating oil stored at the bottom of the swash plate chamber is stirred up by the rotation of the swash plate and the rocking motion of the piston support, and is used to lubricate the bearings and sliding parts. The oil adhering to the cylinder wall surface is subjected to the sliding movement between the piston 31 and the cylinder wall, and a portion is scraped up by the piston rings 34 and 35 and enters the cylinder chamber (not shown). On the other hand, the lubricating oil that has circulated through the refrigeration cycle and returned to the compressor together with the refrigerant gas is sucked into the cylinder chamber, adheres to the cylinder wall, and is partially discharged to the swash plate chamber 28 along with the blow-by gas. The lubricating oil remaining in the cylinder chamber is discharged to the discharge chamber 9 together with the refrigerant gas again. The lubricating oil discharged into the discharge chamber 9 collides with the wall surface of the discharge chamber 9, and since the flow velocity becomes slow, it is separated from the refrigerant gas, and falls to the lower part by gravity and is stored. The oil stored in the lower part is sent to the swash plate chamber through a flow path connecting the discharge chamber and the swash plate chamber due to the pressure difference between the discharge chamber and the swash plate chamber. The amount of oil returned to the swash plate chamber is determined by the flow path 20.
It is adjusted by the diameter and length of the restrictor tube 206 provided in 5. The lubricating oil returned to the swash plate chamber 28 is stored at the bottom of the swash plate chamber, is scraped up by the rotation of the swash plate, the rocking motion of the piston support, etc., and is sent to the sliding portion again for lubrication. on the other hand,
Blow-by gas and refrigerant gas mixed with lubricating oil from the discharge chamber 8 and flowing into the swash plate chamber 28 are transferred to the drive plate 14.
From a passage 143 opening in the radial direction to the cylinder head 4. - From the flow path 303 provided in the rear cover 3 via the discharge valve 6 and the conduction holes 503, 403, 603° 703 provided in the center of the packing 7, the control valve 4
1 is returned to the upstream suction passage. As shown in FIG. 2, when the heat load of the air conditioner decreases, this is detected and the control valve 50 operates to reduce the opening area from the suction passage 302 to the suction chamber 8. Therefore, the pressure at the cylinder inlet, that is, downstream of the control valve, decreases.

斜板室28は、制御弁50の上流と連通しているため、
斜板室28の圧力が、シリンダ33人口の圧力よりも高
くなり、斜板12には斜板傾点角を小さくする方向のモ
ーメントが発生する。この結果、斜板12は、傾点にビ
ストンストロークが減少して、圧縮機の吐出量は低下す
る。このような状態でも、潤滑油の流れは変らず、冷媒
ガスとともに吐出室9に排出された潤滑油は、吐出室内
9で冷媒ガスと分離され、圧力差により斜板室28へ送
られる。斜板12が傾転し、ピストンストロ−りが減少
して圧縮機の吐出量が低下するほど、吐出室内へ排出さ
れる冷媒ガス量は少なくなるのでこれに含まれる。潤滑
油の分離は促進され、斜板室28へ回収される割合は増
加する。
Since the swash plate chamber 28 communicates with the upstream side of the control valve 50,
The pressure in the swash plate chamber 28 becomes higher than the pressure in the cylinder 33, and a moment is generated in the swash plate 12 in a direction that reduces the swash plate inclination angle. As a result, the piston stroke of the swash plate 12 decreases to the tilt point, and the discharge amount of the compressor decreases. Even in this state, the flow of the lubricating oil does not change, and the lubricating oil discharged into the discharge chamber 9 together with the refrigerant gas is separated from the refrigerant gas in the discharge chamber 9 and sent to the swash plate chamber 28 due to the pressure difference. The more the swash plate 12 is tilted, the piston stroke is reduced, and the discharge amount of the compressor is lowered, the less the amount of refrigerant gas discharged into the discharge chamber is included in this. Separation of lubricating oil is promoted, and the proportion of lubricating oil recovered into the swash plate chamber 28 increases.

さらにエアコンの熱負荷が低下し、斜板12が傾転して
ビストンストロークが小さくなり、圧縮機の吐8量が減
少すると、冷凍サイクル中を回る冷媒ガスの流速が低下
するため、凝縮器、蒸発器などに貯る潤滑油は、圧縮機
に戻らなくなる。この様な場合でも、吐出室9に排出さ
れる冷媒ガス量が少なくなるので、二九に含まれる大部
分の潤滑油は分離され、斜板室28へ還流するため、斜
板室28に貯る潤滑油量は減少せず、十分な潤滑油量を
確保できる。すなわち、第4図に示すように、斜板室2
8から、直接、掻き揚げられシリンダ室へ入った潤滑油
、あるいは、ブローバイガスの還流路から吸入路302
を経てシリンダ室へ入った潤滑油は、冷媒ガスとともに
吐出室9へ排出され、吐出室9でガスと分離され、斜板
室28へ戻る。潤滑油は第4図に実線で示す経路を、循
環することになる。
Furthermore, when the heat load of the air conditioner decreases, the swash plate 12 tilts, the piston stroke becomes smaller, and the discharge amount of the compressor decreases, the flow rate of the refrigerant gas circulating in the refrigeration cycle decreases. Lubricating oil that accumulates in the evaporator will no longer return to the compressor. Even in such a case, since the amount of refrigerant gas discharged into the discharge chamber 9 is reduced, most of the lubricating oil contained in the pump is separated and returned to the swash plate chamber 28, so that the lubricant stored in the swash plate chamber 28 is The amount of oil does not decrease and a sufficient amount of lubricating oil can be secured. That is, as shown in FIG.
8, the lubricating oil or blow-by gas that has been scooped up directly into the cylinder chamber is returned to the suction path 302.
The lubricating oil that has entered the cylinder chamber through the refrigerant gas is discharged to the discharge chamber 9 together with the refrigerant gas, is separated from the gas in the discharge chamber 9, and returns to the swash plate chamber 28. The lubricating oil will circulate along the path shown by the solid line in FIG.

このように、圧縮機の容量制御を行い、小容量で運転し
た場合でも、圧縮機内に潤滑油を確保し長期間にわたり
、信頼性の高い運転を行うことができる。
In this way, even when the compressor capacity is controlled and the compressor is operated at a small capacity, lubricating oil can be ensured within the compressor and highly reliable operation can be performed over a long period of time.

次に、他の実施例について説明する。第5図は、吐出室
9と斜板室28を結ぶ流路205の途中に、開閉可能な
弁を設置した例である。弁は、エアコンの熱負荷が大き
く、吐出圧力が高い場合には閉じ、熱負荷が少なくなり
、吐出圧力が低くなると開く構造となっている。すなわ
ち、第5図かられかるように、弁は、弁体6とこれを押
す弁ばね62から構成されている。弁体61には、吐出
室9と斜板室28の圧力との差圧が作用する。この力が
弁体61を押す弁ばね62の力よりも大きいと弁体61
は弁座63に密着し、流路205は閉じられる。一方、
差圧による力が、弁ばね62の力よりも小さいと、弁体
61は弁ばね62により押し上げられ、流路が開く、こ
のような弁を、流路の途中に設けることにより、エアコ
ンの熱負荷が大きく、冷凍サイクル中を回る冷媒量が充
分多い場合には、流路205を閉じ、吐出室から斜板室
へ戻る潤滑油に混じる冷媒による若干の性能低下を抑え
、最大能力で運転することができる。−方、熱負荷が小
さくなると、吐出圧力が低下し、吐出室と斜板室との圧
力差が小さくなり、弁ばね62により弁体61が押し上
げられ流路が開いて、吐出室9で分離された潤滑油は斜
板室28に還流され、斜板室28に十分な潤滑油を保持
することが可能となる。
Next, other embodiments will be described. FIG. 5 shows an example in which a valve that can be opened and closed is installed in the middle of a flow path 205 that connects the discharge chamber 9 and the swash plate chamber 28. The valve is structured so that it closes when the heat load of the air conditioner is large and the discharge pressure is high, and opens when the heat load decreases and the discharge pressure becomes low. That is, as shown in FIG. 5, the valve is composed of a valve body 6 and a valve spring 62 that presses the valve body 6. A pressure difference between the pressures in the discharge chamber 9 and the swash plate chamber 28 acts on the valve body 61 . If this force is larger than the force of the valve spring 62 pushing the valve body 61, the valve body 61
is in close contact with the valve seat 63, and the flow path 205 is closed. on the other hand,
When the force due to the differential pressure is smaller than the force of the valve spring 62, the valve body 61 is pushed up by the valve spring 62, opening the flow path. By providing such a valve in the middle of the flow path, heat from the air conditioner can be removed. When the load is large and the amount of refrigerant circulating in the refrigeration cycle is large enough, the flow path 205 is closed to suppress the slight performance deterioration caused by the refrigerant mixed with the lubricating oil returning from the discharge chamber to the swash plate chamber, and to operate at maximum capacity. I can do it. - On the other hand, when the heat load decreases, the discharge pressure decreases, the pressure difference between the discharge chamber and the swash plate chamber becomes smaller, the valve body 61 is pushed up by the valve spring 62, the flow path is opened, and the discharge chamber 9 is separated. The lubricating oil is returned to the swash plate chamber 28, and it becomes possible to hold sufficient lubricating oil in the swash plate chamber 28.

第6図は、吐出室9と斜板室28を結ぶ流路の途中に、
電気的に開閉する弁を設けた例である。
FIG. 6 shows that in the middle of the flow path connecting the discharge chamber 9 and the swash plate chamber 28,
This is an example in which a valve that is electrically opened and closed is provided.

圧縮機外部から弁部に通電することにより、マグネット
63により吸引され、流路205は開く、電流を遮断す
ると、弁体61は弁ばね62により押され、流路205
は閉じる。エアコンの熱負荷が大きい場合には電流を遮
断し、流路を瀾じ、熱負荷が小さな場合には通電して流
路を開くことにより、前述と同様の効果を得ることがで
きる。
When the valve section is energized from outside the compressor, it is attracted by the magnet 63 and the flow path 205 is opened. When the current is cut off, the valve body 61 is pushed by the valve spring 62 and the flow path 205 is opened.
closes. When the heat load of the air conditioner is large, the current is cut off and the flow path is closed, and when the heat load is small, the current is turned on and the flow path is opened, thereby achieving the same effect as described above.

さらに第7図は、シリンダから構成される装置ガスを集
める吐出室9を設け、吐出室9と斜板室28を結ぶ流路
205を設け、さらに斜板室28と吸入室8を結ぶ流路
206を設けた例を示す。
Further, in FIG. 7, a discharge chamber 9 configured from a cylinder is provided to collect the device gas, a flow path 205 is provided to connect the discharge chamber 9 and the swash plate chamber 28, and a flow path 206 is further provided to connect the swash plate chamber 28 and the suction chamber 8. An example is shown below.

このような構成とすることにより、吐出室で分離された
油、あるいは油と冷媒ガスのミストが吐出室から斜板室
28へ戻される。また、斜板室28に貯る油が、吸入室
8へ送られ、シリンダ室へ吸い込まれ、シリンダ33壁
面の潤滑に供される。
With this configuration, oil separated in the discharge chamber or a mist of oil and refrigerant gas is returned from the discharge chamber to the swash plate chamber 28. Further, oil stored in the swash plate chamber 28 is sent to the suction chamber 8 and sucked into the cylinder chamber, where it is used to lubricate the wall surface of the cylinder 33.

本実施例では、流路206の途中に弁装置71゜72が
設置されており、通常の熱負荷の高い運転条件では、圧
縮機は最大容量で運転され、吐出室9と斜板室28を結
ぶ流路に設置された弁装置Aは前述のように閉じ、一方
、斜板室と吸入室を結ぶ流路に備えられた弁装置Bも弁
体71が弁ばね72に押され閉じる。一方、熱負荷が小
さくなり、ビストンストロークが減少して容量制御運転
状態になると、吐出室9と斜板室28の圧力差が減少し
て前述のように弁装置Aは開く、一方、容量制御状態で
は斜板室28の圧力は吸入室8の圧力よりも高く、この
圧力差により弁体71は押し上げられ、弁装置Bも開く
、このような弁装置A、Bを流路の途中に設けることに
より、エアコンの熱負荷が高く、サイクル中を回る冷媒
量が充分多い場合には流路205,206を閉じ、流路
を開くことによる若干の性能低下を抑える。一方、熱負
荷が小さく、冷媒循環量が減少した場合には、流路20
5,206を開き、吐出室9で分離された油を斜板室2
8に還流し、斜板室28に十分な潤滑油を保持するとと
もに斜板室28に貯る潤滑油を、吸入室8に送ることに
より、シリンダ室に潤滑油が吸い込まれ、シリンダ33
壁とピストン31あるいはピストンシリンダ34.35
間の潤滑に供することができ、どのような運転状態でも
十分な潤滑がなされ、信頼性の高い運転を行うことがで
きる。
In this embodiment, valve devices 71 and 72 are installed in the middle of the flow path 206, and under normal operating conditions with a high heat load, the compressor is operated at maximum capacity and connects the discharge chamber 9 and the swash plate chamber 28. The valve device A installed in the flow path is closed as described above, and the valve device B installed in the flow path connecting the swash plate chamber and the suction chamber is also closed as the valve body 71 is pushed by the valve spring 72. On the other hand, when the heat load becomes smaller and the piston stroke decreases to enter the capacity control operation state, the pressure difference between the discharge chamber 9 and the swash plate chamber 28 decreases and the valve device A opens as described above. In this case, the pressure in the swash plate chamber 28 is higher than the pressure in the suction chamber 8, and this pressure difference pushes up the valve body 71 and opens the valve device B. By providing such valve devices A and B in the middle of the flow path, When the heat load of the air conditioner is high and the amount of refrigerant circulating during the cycle is sufficiently large, the flow paths 205 and 206 are closed to suppress the slight performance degradation caused by opening the flow paths. On the other hand, when the heat load is small and the refrigerant circulation amount is reduced, the flow path 20
5, 206 is opened, and the oil separated in the discharge chamber 9 is transferred to the swash plate chamber 2.
By supplying the lubricating oil stored in the swash plate chamber 28 to the suction chamber 8, the lubricating oil is sucked into the cylinder chamber, and the lubricating oil is sucked into the cylinder chamber 33.
Wall and piston 31 or piston cylinder 34.35
This provides sufficient lubrication under any operating conditions, allowing for highly reliable operation.

このような構成では、圧縮容量が低下し、冷媒循環量が
減少して、サイクルからの油戻りが期待できないような
運転状態でも、常に、斜板室→吸入室→シリンダ室→吐
出室→斜板室なる潤滑油の流れが形成されるため、長期
間にわたり、信頼性の高い運転が可能となる。
In such a configuration, even in operating conditions where the compression capacity is reduced, the amount of refrigerant circulated is reduced, and oil return from the cycle cannot be expected, the swash plate chamber → suction chamber → cylinder chamber → discharge chamber → swash plate chamber is always maintained. This creates a flow of lubricating oil that enables highly reliable operation over a long period of time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷媒ガスとともに吐出室に排出された
潤滑油を、効率良く斜板室へ還流させることができるの
で、斜板室に十分な潤滑油を保持し、摺動部各部の潤滑
に供することが可能となる。
According to the present invention, the lubricating oil discharged into the discharge chamber together with the refrigerant gas can be efficiently returned to the swash plate chamber, so that sufficient lubricating oil is retained in the swash plate chamber and used to lubricate each sliding part. becomes possible.

また、シリンダ壁面など摺動部への給油も確実に行われ
る。
Moreover, the lubricating of sliding parts such as the cylinder wall surface is also performed reliably.

このため、圧縮機の容量制御を行い冷凍サイクルの冷媒
循環量が少ない状態でも、常に、斜板室に潤滑油を保持
し、長時間にわたり運転することができる。
Therefore, even when the capacity of the compressor is controlled and the amount of refrigerant circulated in the refrigeration cycle is small, lubricating oil can always be maintained in the swash plate chamber and the system can be operated for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の最大容量時の断面図、第2
図は最小容量時の断面図、第3図は第1図及び第2図の
■−■線断面図、第4図は潤滑油の流れの系統図、第5
図ないし第7図は流路部所面図である。 l・・・フロントハウジング、2・・・シリンダブロッ
ク。 3・・・リアカバー、12・・・斜板、13・・・主軸
、14・・・ドライブプレート、15・・・スリーブ、
16・・・ピボットピン、17・・・スリーブピン、3
1・・、ピストン、32・・・コネクティングロッド、
5o・・・制御弁。
Figure 1 is a sectional view of one embodiment of the present invention at maximum capacity;
The figure is a cross-sectional view at the minimum capacity, Figure 3 is a cross-sectional view along the ■-■ line in Figures 1 and 2, Figure 4 is a system diagram of the flow of lubricating oil, and Figure 5 is a cross-sectional view at the minimum capacity.
Figures 7 through 7 are top views of the flow path. l...Front housing, 2...Cylinder block. 3... Rear cover, 12... Swash plate, 13... Main shaft, 14... Drive plate, 15... Sleeve,
16... Pivot pin, 17... Sleeve pin, 3
1... Piston, 32... Connecting rod,
5o...control valve.

Claims (1)

【特許請求の範囲】[Claims] 1.複数個のシリンダが同一の円周上に配置されたハウ
ジング内に、傾斜角が変えられる斜板を前記円と同軸的
に設置するとともに、前記斜板が傾斜して回転すること
により往復運動するピストンを前記シリンダ内に配設し
、前記斜板の傾斜角を変えた際に、前記ピストンのスト
ロークが変化する可変容量斜板式圧縮機において、前記
複数個のシリンダから排出される冷媒ガスを集める吐出
室を設け、前記吐出室と、前記斜板を収容する斜板室と
を結ぶ流路を設け前記吐出室で冷媒ガスから分離された
油あるいは油と冷媒ガスのミストを前記吐出室から前記
斜板室へ戻すように構成されたことを特徴とする可変容
量形斜板式圧縮機。
1. A swash plate whose inclination angle can be changed is installed coaxially with the circle in a housing in which a plurality of cylinders are arranged on the same circumference, and the swash plate is tilted and rotated to perform reciprocating motion. A variable displacement swash plate compressor in which a piston is disposed within the cylinder and the stroke of the piston changes when the inclination angle of the swash plate is changed, and refrigerant gas discharged from the plurality of cylinders is collected. A discharge chamber is provided, and a flow path is provided that connects the discharge chamber and a swash plate chamber that accommodates the swash plate, and oil separated from the refrigerant gas in the discharge chamber or a mist of oil and refrigerant gas is transferred from the discharge chamber to the slant plate. A variable displacement swash plate compressor characterized in that it is configured to return the air to the plate chamber.
JP2162622A 1990-06-22 1990-06-22 Variable capacity swash plate type compressor Pending JPH0454288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2162622A JPH0454288A (en) 1990-06-22 1990-06-22 Variable capacity swash plate type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2162622A JPH0454288A (en) 1990-06-22 1990-06-22 Variable capacity swash plate type compressor

Publications (1)

Publication Number Publication Date
JPH0454288A true JPH0454288A (en) 1992-02-21

Family

ID=15758110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2162622A Pending JPH0454288A (en) 1990-06-22 1990-06-22 Variable capacity swash plate type compressor

Country Status (1)

Country Link
JP (1) JPH0454288A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066492A1 (en) * 2004-01-07 2005-07-21 Valeo Thermal Systems Japan Corporation Variable displacement compressor
JP2007192154A (en) * 2006-01-20 2007-08-02 Sanden Corp Reciprocating fluid machine
EP1906017A1 (en) * 2005-07-04 2008-04-02 Valeo Thermal Systems Japan Corporation Compressor
WO2008072513A1 (en) * 2006-12-07 2008-06-19 Sanden Corporation Compressor
JP2009542956A (en) * 2006-06-30 2009-12-03 ダウォン テクニカル カレッジ Oil separation structure of variable capacity compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066492A1 (en) * 2004-01-07 2005-07-21 Valeo Thermal Systems Japan Corporation Variable displacement compressor
EP1906017A1 (en) * 2005-07-04 2008-04-02 Valeo Thermal Systems Japan Corporation Compressor
EP1906017A4 (en) * 2005-07-04 2009-11-18 Valeo Thermal Sys Japan Co Compressor
JP2007192154A (en) * 2006-01-20 2007-08-02 Sanden Corp Reciprocating fluid machine
JP2009542956A (en) * 2006-06-30 2009-12-03 ダウォン テクニカル カレッジ Oil separation structure of variable capacity compressor
WO2008072513A1 (en) * 2006-12-07 2008-06-19 Sanden Corporation Compressor

Similar Documents

Publication Publication Date Title
US7530797B2 (en) Variable displacement compressor
US6149398A (en) Variable capacity piston- operated refrigerant compressor with an oil separating means
JPH0637874B2 (en) Variable capacity compressor
US5873704A (en) Variable capacity refrigerant compressor
KR100202784B1 (en) Variable capacity compressor
EP0926346A2 (en) Compressor
US5518374A (en) Variable capacity swash plate type compressor having pulsation suppressing chamber located capacity control valve
KR940011712B1 (en) Clutchless compressor
JP2002031050A (en) Compressor
JP4648845B2 (en) Swash plate type and swing swash plate type variable capacity compressor
US5752809A (en) Variable displacement compressor
US5201189A (en) Refrigerant compressor with an initial seizure prevention means
US6551072B2 (en) Variable displacement compressors
JPH0454288A (en) Variable capacity swash plate type compressor
JP4439434B2 (en) Constant velocity joint and swing swash plate compressor using the same
EP0777050A2 (en) A lubricating mechanism for a piston compressor
EP0794331A2 (en) A reciprocating piston variable displacement type compressor improved to distribute lubricating oil sufficiently
US5152673A (en) Fluid pumping assembly having a control valve boss fluid by-pass
US6019027A (en) Refrigerant compressor
KR20080010112A (en) Oil separator structure of variable capacity compressor
JP2001027177A (en) Variable displacement swash plate type compressor
US5167492A (en) Fluid pumping assembly having a lubrication circuit functioning independent of the orientation of the fluid pumping assembly
JP3269169B2 (en) Oscillating swash plate type variable displacement compressor
JPH0326876A (en) Swash plate type variable capacity compressor
JP2002005020A (en) Refrigerating compressor